LASER DIODE NX8303BG-CC

1 310 nm InGaAsP MQW-DFB LASER DIODE COAXIAL MODULE FOR 622 Mb/s

DESCRIPTION

NEC

The NX8303BG-CC is a 1 310 nm Distributed Feed-Back (DFB) laser diode coaxial module with single mode fiber. Multiple Quantum Well (MQW) structure is adopted to achieve stable dynamic single longitudinal mode operation over wide temperature range of -10 to +85 °C.

This module is ideal as a light source for Synchronous Digital Hierarchy (SDH) system, STM-4, long-haul L-4.1 ITU-T recommendations.

 $\lambda_p = 1 \ 310 \ nm$ Pf = 2.0 mW

Tc = -10 to +85 °C SMSR = 40 dB

FEATURES

- Peak emission wavelength
- Optical output power
- Wide operating temperature range
- Side Mode Suppression Ratio
- InGaAs monitor PIN-PD
- With SC-UPC connector
- Based on Telcordia reliability

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (UNIT : mm)

OPTICAL FIBER CHARACTERISTICS

Parameter	Specification	Unit
Mode Field Diameter	9.5±1	μm
Cladding Diameter	125±2	μm
Maximum Cladding Noncircularity	2	%
Maximum Core/Cladding Concentricity	1.6	%
Outer Diameter	0.9±0.1	mm
Cut-off Wavelength	1 100 to 1 270	nm
Minimum Fiber Bending Radius	30	mm
Fiber Length	500±50	mm
Flammability	UL1581 VW-1	

ORDERING INFORMATION

Part Number	Available Connector	Flange Type
NX8303BG-CC	With SC-UPC Connector	Flat Mount Flange

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Optical Output Power from Fiber	Pf	5	mW
Forward Current of LD	lF	150	mA
Reverse Voltage of LD	VR	2.0	V
Forward Current of PD	lF	2.0	mA
Reverse Voltage of PD	VR	15	V
Operating Case Temperature	Tc	–10 to +85	°C
Storage Temperature	Tstg	-40 to +85	°C
Lead Soldering Temperature	Tsld	260 (10 sec.)	°C
Relative Humidity (noncondensing)	RH	85	%

ELECTRO-OPTICAL CHARACTERISTICS (Tc = -10 to +85 °C, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Optical Output Power from Fiber	Pf	CW		2.0		mW
Operating Voltage	Vop	Pf = 2.0 mW		1.2	1.6	V
Threshold Current	Ith	Tc = 25 °C		15	25	mA
					55	
Threshold Output Power	Pth	IF = Ith			100	μW
Modulation Current	Imod	$P_f = 2.0 \text{ mW}, \text{ Tc} = 25 ^{\circ}\text{C}$	8	20	30	mA
		P _f = 2.0 mW	6		50	
Differential Efficiency	$\eta_{ ext{d}}$	Pf = 2.0 mW, Tc = 25 °C	0.070	0.100	0.200	W/A
		Pf = 2.0 mW	0.040		0.300	
Temperature Dependence of Differential Efficiency	$\Delta\eta$ d	$\Delta \eta_{\rm d} = 10 \log \frac{\eta_{\rm d} (@ {\rm Tc} {}^{\circ}{\rm C})}{\eta_{\rm d} (@ 25 {}^{\circ}{\rm C})}$	-3.5	-2.2		dB
Kink	kink	P _f = Up to 2.4 mW			±20	%
Peak Emission Wavelength	λρ	Pf = 2.0 mW	1 280	1 310	1 335	nm
Temperature Dependence of Peak Emission Wavelength	Δλ/ΔΤ			0.09	0.1	nm/°C
Spectral Width	Δλ	Pf = 2.0 mW, -20 dB down width		0.1	1.0	nm
Side Mode Suppression Ratio	SMSR	Pf = 2.0 mW	30	40		dB
Cutt-off Frequency	fc	−3 dB, V _R = 5 V, P _f = 2.0 mW		2.0		GHz
Rise Time	tr	10-90 %, P _{pk} = 2.0 mW, I _F = I _{th}		0.15	0.5	ns
Fall Time	tr	90-10 %, P _{pk} = 2.0 mW, I _F = I _{th}		0.15	0.5	ns
Monitor Current	lm	$V_R = 5 V, P_f = 2.0 mW$	200	700	1 500	μA
Monitor Dark Current	lo	V _R = 5 V, T _c = 25 °C		0.1	50	nA
		V _R = 5 V		10	500	
Monitor PD Terminal Capacitance	Ct	V _R = 5 V, f = 1 MHz		1.0	20	pF
Linearity	LINm	$V_R = 5 V, P_f = 0.2 \text{ to } 2.0 \text{ mW}$			10	%
Tracking Error	γ*1	Im = const.		0.5	1.0	dB
Relative Intensity Noise	RIN	Ref = −14 dB		-135		dB/Hz

*1
$$\gamma = \left| 10 \log \frac{P_f}{2.0 \text{ mW}} \right|$$

Data Sheet P15231EJ1V0DS

TEMPERATURE DEPENDENCE OF

PEAK EMISSION WAVELENGTH

-40

0

-20

0.5

1.0

Forward Voltage VF (V)

1.5

2.0

2.5

20

Case Temperature Tc (°C)

FORWARD CURRENT vs.

FORWARD VOLTAGE

40

60

80

100

Remark The graphs indicate nominal characteristics.

DFB-LD FAMILY

	Absolute Maximum Ratings		Electro-Optical Characteristics $(T_c = 25 \ ^\circ C)$		acteristics)		
Part Number	Тс (°С)	T _{stg} (°C)	Ith (mA)	P _f (mW)	λ _P (nm)	Application	Package
			TYP.	MIN.	TYP.		
NX8300BE-CC NX8300CE-CC	0 to +75	-40 to +85	15	2	1 310	2.5 Gb/s: STM-16 (S-16.1, L-16.1)	Coaxial
NX8303BG-CC	-10 to +85	-40 to +85	15	2 ^{*1}	1 310	622 Mb/s: STM-4 (L-4.1)	Coaxial
NX8503BG-CC	-10 to +85	-40 to +85	15	2*1	1 550	156 Mb/s: STM-1 (L-1.2, L-1.3)	Coaxial
						622 Mb/s: STM-4 (L-4.2, L-4.3)	
NX8504BE-CC NX8504CE-CC	-10 to +85	-40 to +85	15	2	1 550	622 Mb/s: STM-4 (L-4.2, L-4.3)	Coaxial
NX8560LJ-CC	-10 to +70	-40 to +85	6	–2 dBm	1 550 ^{*2}	≤ 10 Gb/s: STM-64	BFY with GPO
NX8562LB	-20 to +65	-40 to +85	20	20	1 550 ^{*2}	CW Light Source for external modulator	BFY
NX8563LB	-20 to +65	-40 to +85	20	10	1 550 ^{*2}	CW Light Source for external modulator	BFY
NX8564LE-CC	-20 to +70	-40 to +85	7	0.5	1 550*2	2.5 Gb/s: STM-16 EA modulator integrated	BFY
NX8565LE-CC	-20 to +70	-40 to +85	7	0.5	1 550 ^{*2}	2.5 Gb/s: STM-16 EA modulator integrated	BFY
NX8570SA	-20 to +70	-40 to +85	20	20	1 550 ^{*2}	CW Light Source with λ monitoring PD	BFY

*1 TYP.

*2 Available for DWDM Wavelength based on ITU-T recommendation

REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system	C11159E
Quality grades on NEC semiconductor devices	C11531E
Semiconductor device mounting technology manual	C10535E
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

SEMICONDUCTOR LASER

((∃∏

AVOID EXPOSURE-Invisible
Laser Radiation is emitted from
this aperture

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of January, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).