

DCR1002SF

Phase Control Thyristor

Replaces July 2001 version, DS4243-5.0

DS4243-6.2 November 2002

PACKAGE OUTLINE

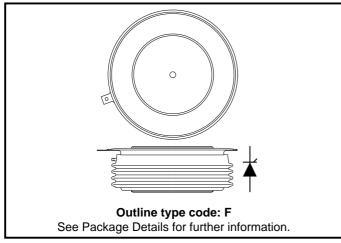


Fig. 1 Package outline

KEY PARAMETERS

 V_{DRM} 1400V $I_{T(AV)}$ 1850A I_{TSM} 32500A $dVdt^*$ 1000V/ μ s dI/dt 1000A/ μ s

*Higher dV/dt selections available

VOLTAGE RATINGS

Part Number	Repetitive Peak Voltages V _{DRM} V _{RRM}	Conditions
	v	
DCR1002SF14	1400	$\begin{split} & T_{vj} = 0^{\circ} \text{ to } 125^{\circ}\text{C.} \\ & I_{DRM} = I_{RRM} = 100\text{mA.} \\ & V_{DRM}, V_{RRM} = 10\text{ms } 1/2 \text{ sine.} \\ & V_{DSM} \& V_{RSM} = V_{DRM} \& V_{RRM} + 100V \\ & \text{respectively.} \end{split}$

Lower voltage grades available.

ORDERING INFORMATION

When ordering, use part number shown in the Voltage Ratings table.

If a lower voltage grade is required, then use $\rm V_{DRM}/100$ for the grade required e.g.:

DCR1002SF08 for an 800V device.

Note: Please use the complete part number when ordering and quote this number in any future correspondance relating to your order.

CURRENT RATINGS

 $T_{case} = 60^{\circ}C$ unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units			
Double Sic	Double Side Cooled						
I _{T(AV)}	Mean on-state current	Half wave resistive load	1850	А			
I _{T(RMS)}	RMS value	-	2900	А			
I _T	Continuous (direct) on-state current	-	2668	А			
Single Side	Single Side Cooled (Anode side)						
I _{T(AV)}	Mean on-state current	Half wave resistive load	1190	А			
I _{T(RMS)}	RMS value	-	1870	А			
I _T	Continuous (direct) on-state current	-	1550	А			

CURRENT RATINGS

 $T_{case} = 80$ °C unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units				
Double Sic	Double Side Cooled							
I _{T(AV)}	Mean on-state current	Half wave resistive load	1430	А				
I _{T(RMS)}	RMS value	-	2245	Α				
I _T	Continuous (direct) on-state current	-	1780	Α				
Single Side Cooled (Anode side)								
I _{T(AV)}	Mean on-state current	Half wave resistive load	900	А				
I _{T(RMS)}	RMS value	-	1414	Α				
I _T	Continuous (direct) on-state current	-	1065	А				

SURGE RATINGS

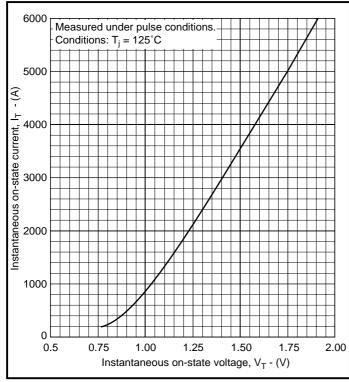
Symbol	Parameter	Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	26	kA
l²t	I ² t for fusing	$V_R = 50\% V_{RRM} - 1/4 \text{ sine}$	3.38 x 10 ⁶	A²s
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	32.5	kA
l²t	I ² t for fusing	$V_R = 0$	5.28 x 10 ⁶	A²s

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
	Thermal resistance - junction to case	Double side cooled	dc	-	0.018	°C/W
$R_{th(j-c)}$		Single side cooled	Anode dc	-	0.036	°C/W
			Cathode dc	-	0.036	°C/W
Б	Thermal resistance - case to heatsink	Clamping force 20kN with mounting compound	Double side	-	0.003	°C/W
$R_{th(c-h)}$			Single side	-	0.006	°C/W
_	Virtual junction temperature	On-state (conducting)		-	135	°C
$T_{v_{j}}$		Reverse (blocking)		-	125	°C
T _{stg}	Storage temperature range			-55	125	°C
-	Clamping force			18	22	kN

3/9

DYNAMIC CHARACTERISTICS


Symbol	Parameter	Conditions		Max.	Units
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C		100	mA
dV/dt	Maximum linear rate of rise of off-state voltage	To 67% $V_{DRM} T_j = 125^{\circ}C$.		1000	V/μs
		From 67% V _{DRM} to 1000A	Repetitive 50Hz	500	A/μs
dl/dt	Rate of rise of on-state current	Gate source 20V, 10Ω $t_r \le 0.5 \mu s$ to 1A, $T_j = 125 ^{\circ} C$.	Non-repetitive	1000	A/μs
V _{T(TO)}	Threshold voltage	At T _{vj} = 125°C		0.9	V
r _T	On-state slope resistance	At T _{vj} = 125°C		0.17	mΩ
t _{gd}	Delay time	$V_D = 67\% V_{DRM}$, Gate source 30V, 15Ω $t_r \le 0.5 \mu s$, $T_j = 25$ °C		2	μs
t _q	Turn-off time	$I_T = 800A$, $t_p = 1$ ms, $T_j = 125$ °C, $V_{RM} = 50$ V, $dI_{RR}/dt = 20$ A/ μ s, $V_{DR} = 67\%$ V_{DRM} , $dV_{DR}/dt = 20$ V/ μ s linear		200	μs
I _L	Latching current	$T_{j} = 25^{\circ}C, V_{D} = 5V$		1000	mA
I _H	Holding current	$T_{j} = 25^{\circ}C, R_{g-k} = \infty$		300	mA

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Conditions	Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 5V$, $T_{case} = 25^{\circ}C$	3.5	٧
I _{GT}	Gate trigger current	$V_{DRM} = 5V, T_{case} = 25^{\circ}C$	200	mA
V _{GD}	Gate non-trigger voltage	At 67% V _{DRM} T _{case} = 125°C	0.25	V
V_{FGM}	Peak forward gate voltage	Anode positive with respect to cathode	30	٧
V _{FGN}	Peak forward gate voltage	Anode negative with respect to cathode	0.25	٧
V _{RGM}	Peak reverse gate voltage		5	V
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	30	А
P _{GM}	Peak gate power	See table, gate characteristics curve	150	W
$P_{G(AV)}$	Mean gate power		10	W

CURVES

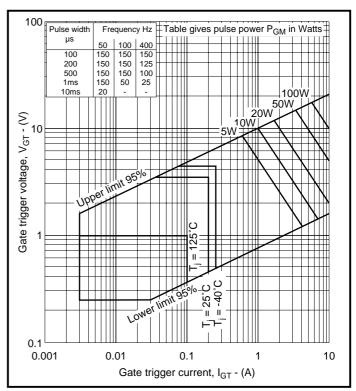


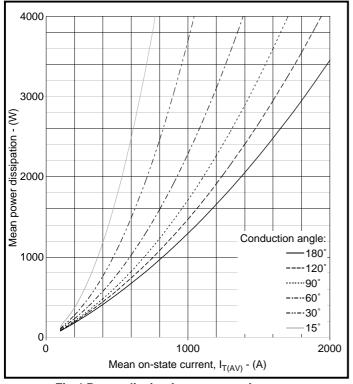
Fig.2 Maximum (limit) on-state characteristics

Fig.3 Gate characteristics

 V_{TM} Equation:-

$$V_{TM} = A + Bln (I_T) + C.I_T + D.\sqrt{I_T}$$

Where A = -0.6475


A = -0.6475B = 0.3079

C = 0.0002787

D = -0.02311

These values are valid for $T_i = 125^{\circ}C$ for $I_T 500A$ to 6000A.

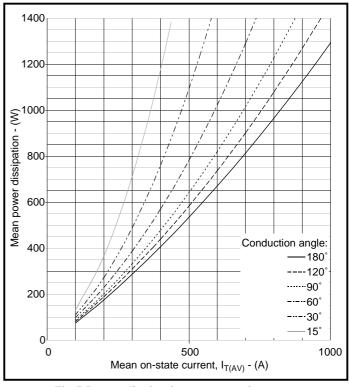
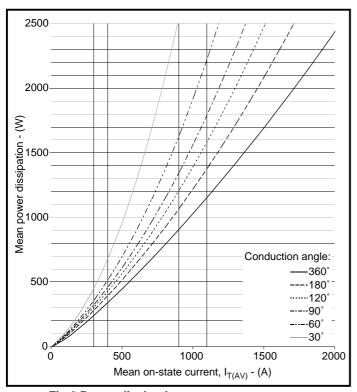



Fig.4 Power dissipation curves - sine wave

Fig.5 Power dissipation curves - sine wave

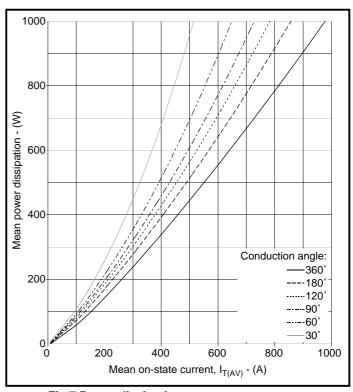


Fig.7 Power dissipation curves - square wave

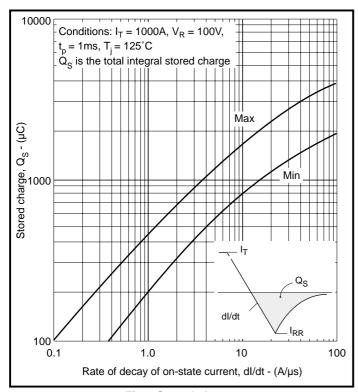


Fig.8 Stored charge

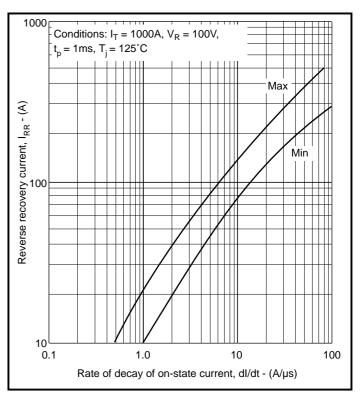


Fig.9 Reverse recovery current

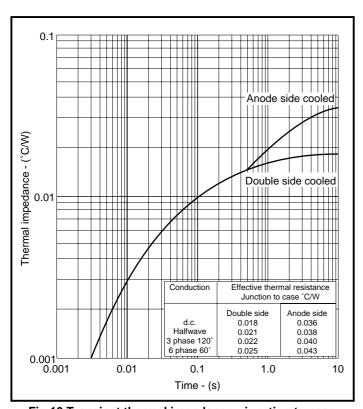


Fig.10 Transient thermal impedance - junction to case

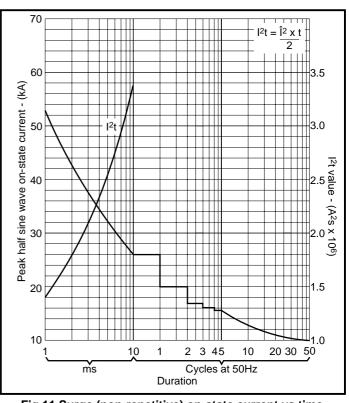


Fig.11 Surge (non-repetitive) on-state current vs time (with 50% V_{RRM} at $T_{case} = 125$ °C)

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

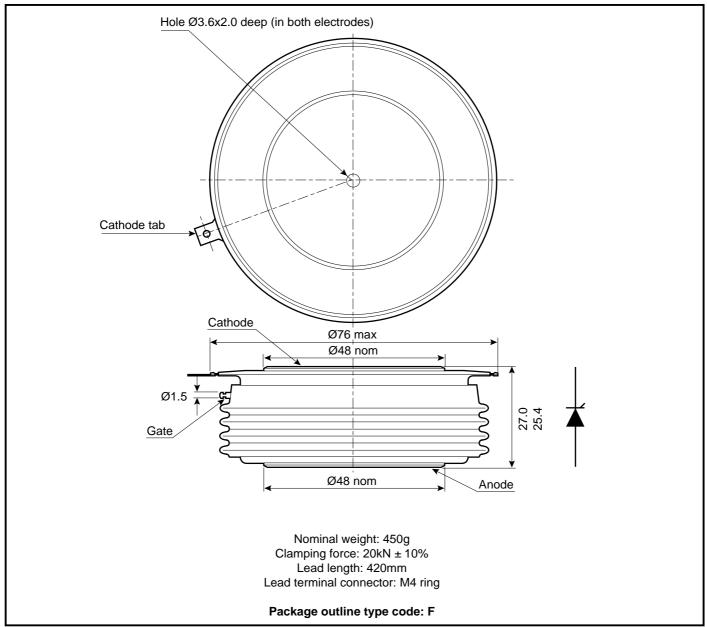


Fig.12 Package details

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LTD

Deddington Bond Lincoln

Doddington Road, Lincoln. Lincolnshire. LN6 3LF. United Kingdom.

Tel: +44-(0)1522-500500 Fax: +44-(0)1522-500550 CUSTOMER SERVICE

Tel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020

SALES OFFICES

Benelux, Italy & Switzerland: Tel: +33 (0)1 64 66 42 17. Fax: +33 (0)1 64 66 42 19.

France: Tel: +33 (0)2 47 55 75 52. Fax: +33 (0)2 47 55 75 59.

Germany, Northern Europe, Spain & Rest Of World: Tel: +44 (0)1522 502753 / 502901.

Fax: +44 (0)1522 500020

North America: Tel: (949) 733-3005. Fax: (949) 733-2986.

These offices are supported by Representatives and Distributors in many countries world-wide. © Dynex Semiconductor 2002 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOM

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.

Advance Information: The product design is complete and final characterisation for volume production is well in hand.

No Annotation: The product parameters are fixed and the product is available to datasheet specification

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners