20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

Programmable Unijunction Transistor

Programmable Unijunction Transistor Triggers

Designed to enable the engineer to "program" unijunctio, characteristics such as RBB, η , IV, and IP by merely selecting two resistor values. Application includes thyristor-trigger, oscillator, pulse and timing circuits. These devices may also be used in special thyristor applications due to the availability of an anode gate. Supplied in an inexpensive TO-92 plastic package for high-volume requirements, this package is readily adaptable for use in automatic insertion equipment.

- Programmable R_{BB}, η, I_V and I_P
- Low On-State Voltage 1.5 Volts Maximum @ IF = 50 mA
- Low Gate to Anode Leakage Current 10 nA Maximum
- High Peak Output Voltage 11 Volts Typical
- Low Offset Voltage 0.35 Volt Typical (RG = 10 k ohms)
- Device Marking: Logo, Device Type, e.g., 2N6027, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
*Power Dissipation Derate Above 25°C	Ρ _F ^{1/θ} JA	300 4.0	mW mW/°C
*DC Forward Anode Current Derate Above 25°C	ŀŢ	150 2.67	mA mA/°C
*DC Gate Current	١G	±50	mA
Repetitive Peak Forward Current 100 µs Pulse Width, 1% Duty Cycle *20 µs Pulse Width, 1% Duty Cycle	ITRM	1.0 2.0	Amps
Non–Repetitive Peak Forward Current 10 µs Pulse Width	ITSM	5.0	Amps
*Gate to Cathode Forward Voltage	VGKF	40	Volts
*Gate to Cathode Reverse Voltage	VGKR	-5.0	Volts
*Gate to Anode Reverse Voltage	VGAR	40	Volts
*Anode to Cathode Voltage ⁽¹⁾	VAK	±40	Volts
Operating Junction Temperature Range	τJ	-50 to +100	°C
*Storage Temperature Range	T _{stg}	–55 to +150	°C

(1) Anode positive, R_{GA} = 1000 ohms

Anode negative, R_{GA} = open

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

PUTs

40 VOLTS

300 mW

TO-92

PIN ASSIGNMENT				
1	Anode			
2	Gate			
3	Cathode			

2N6027, 2N6028

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	75	°C/W
Thermal Resistance, Junction to Ambient	R _{0JA}	200	°C/W
Maximum Lead Temperature for Soldering Purposes (<1/16" from case, 10 secs max)	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic		Fig. No.	Symbol	Min	Тур	Max	Unit
*Peak Current (V _S ≂ 10 Vdc, R _G = 1 MΩ) (V _S = 10 Vdc, R _G = 10 k ohms)	2N6027 2N6028 2N6027 2N6028	2,9,11	lΡ	_	1.25 0.08 4.0 0.70	2.0 0.15 5.0 1.0	μА
*Offset Voltage (V _S = 10 Vdc, R _G = 1 MΩ) (V _S = 10 Vdc, R _G = 10 k ohms)	2N6027 2N6028 (Both Types)	1	VT	0.2 0.2 0.2	0.70 0.50 0.35	1.6 0.6 0.6	Volts
*Valley Current (V _S = 10 Vdc, R _G = 1 MΩ) (V _S = 10 Vdc, R _G = 10 k ohms) (V _S = 10 Vdc, R _G = 200 ohms)	2N6027 2N6028 2N6027 2N6028 2N6027 2N6028	1,4,5	Ιγ	 70 25 1.5 1.0	18 18 150 150 —	50 25 	μA mA
*Gate to Anode Leakage Current (V _S = 40 Vdc, T _A = 25°C, Cathode Open) (V _S = 40 Vdc, T _A = 75°C, Cathode Open)		—	IGAO		1.0 3.0	10 —	nAdc
Gate to Cathode Leakage Current (V _S = 40 Vdc, Anode to Cathode Shorted)		—	IGKS		5.0	50	nAdc
*Forward Voltage (I _F = 50 mA Peak) ⁽¹⁾		1,6	VF		0.8	1.5	Volts
*Peak Output Voltage (V _G = 20 Vdc, C _C = 0.2 μF)		3,7	Vo	6.0	11		Volt
Pulse Voltage Rise Time (V _B = 20 Vdc, C _C = 0.2 μF)		3	tr	—	40	80	ns

*Indicates JEDEC Registered Data

(1) Pulse Test: Pulse Width \leq 300 µsec, Duty Cycle \leq 2%.