20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 TELEPHONE: (973) 376-2922 (212) 227-6005

FAX: (973) 376-8960

2N3004

P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTOR

mechanical data

The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate weight is 0.35 grams.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	2N3004	UNIT
*Static Off-State Voltage, Vp (See Note 1)	200	V
*Repetitive Peak Off-State Voltage, VDRM (See Note 1)	200	V
*Static Reverse Voltage, VB (See Note 2)	200	V
*Repetitive Peak Reverse Voltage, VRRM (See Note 2)	200	V
*Continuous or RMS On-State Current at (or below) 55°C Free-Air Temperature (See Note 3)	350	mΑ
*Average On-State Current (180° Conduction Angle) at (or below) 55°C Free-Air Temperature (See Note 4)	250	mΛ
Surge On-State Current (See Note 5)	6	Α
Peak Negative Gate Voltage	8	V
*Peak Positive Gate Current (Pulse Width < 8 ms)	250	mΛ
*Average Gate Power Dissipation	100	mΨ
	-65 to 150	^C
	-65 to 200	°C
*Lead Temperature 1/16 Inch from Case for 10 Seconds	300	

NOTES: 1. These values apply when the gate-cathode resistance $R_{GK} \le 1~k\Omega$.

 These values apply when the gate-cathode resistance RGK ≤ m.
 This value applies for continuous d-c or single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, decate according to Figure 1.

4. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, derate according to Figure 1.

5. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium,

*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

	PARAMETER	TEST CONDITIONS				MIN	TYP	MAX	UNIT
םו	Static Off-State Current	VD = Rated VD	, R _{GK} = 1 kΩ					0,1	μА
		VD = Rated VD	, A _{GK} = 1 kΩ,				100	1 "	
I _R	Static Reverse Current	VR = Rated VR, RGK = ∞						0.1	μА
		VR = Rated VR	, RGK = ∞,		T _A = 150°C			100	
1G	Gate Current	VG = -5 V,	IA = 0					-5	μА
1 _{GT}	Gate Trigger Current	VAA = 5 V,	RL = 12 11,	t _{p(g)} > 10 μs			5	20	μА
V _{GT}	Gate Trigger Voltage	VAA = 5 V.	R _L = 12 Ω,	$t_{p(g)} \ge 10 \mu s$,	TA = -65"C	"		0,9	V
		VAA = 5 V,	RL = 12 11,	τ _D (g) = 10 μs			0.55	0.7	
		VAA = 5 V,	R _L = 12 Ω,	$t_{p(g)} \ge 10 \mu s$,	TA = 150°C	0.2			
ТН	Holding Current	R _{GK} = 1 kΩ,	H _L = 2 kΩ				1.2	3	mΛ
		RGK * 1 kΩ,	8L = 2k11,		TA = -65"C	<u> </u>		4	
Vτ	On-State Voltage	1 _T = 350 mA,	$R_{GK} > 1 k\Omega$,	See Note 6				1.2	V
dv/dt	Critical Rate of Rise of Off-State Voltage	VD = 1 V				ł	400		V/µs

NOTE 6: The initial instantaneous value is measured using pulse techniques. On-state pulse width = 300 µs, PRR = 100 pps.

