

TIC216A, TIC216B, TIC216D, TIC216M, TIC216N, TIC216S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- 6 A RMS
- · Glass Passivated Wafer
- 100 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1-3)
- Sensitive gate triacs
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Value					Unit
		Α	В	D	М	S	N	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	100	200	400	600	700	800	V
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)				Α			
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)	60				Α		
I _{TSM}	Peak on-state surge current half-sine-wave (see Note4)		70					Α
I _{GM}	Peak gate current		±1					Α
P _{GM}	Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤200 µs)						W	
$P_{G(AV)}$	Average gate power dissipation at (or below) 85°C case (see Note5)		0.9					W
T _C	Operating case temperature range		-40 to +110					°C
T_{stg}	Storage temperature range		-40 to +125				°C	
TL	Lead temperature 1.6 mm from case for 10 seconds		230				°C	

TIC216A, TIC216B, TIC216D, TIC216M, TIC216N, TIC216S

Notes:

- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

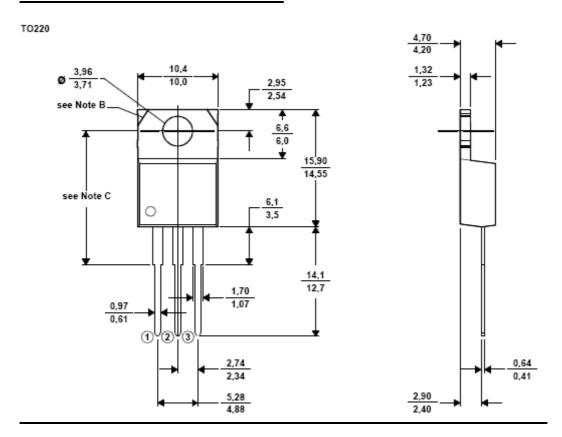
THERMAL CHARACTERISTICS

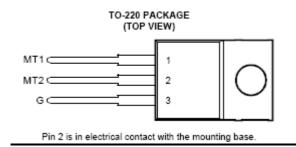
Symbol	Ratings	Value	Unit		
R _{∂JC}	Junction to case thermal resistance	≤ 2.5	°C/W		
R _{∂JA}	Junction to free air thermal resistance	≤ 62.5	C/VV		

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Mx	Unit
I _{DRM}	Repetitive peak off- state current	V_D = Rated V_{DRM} , , I_G = 0, T_C = 110°C	-	-	±2	mA
I _{GT}	Gate trigger current	$\begin{split} & V_{\text{supply}} = +12 \text{ V}\dagger, \text{ R}_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu\text{s} \\ & V_{\text{supply}} = +12 \text{ V}\dagger, \text{ R}_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu\text{s} \\ & V_{\text{supply}} = -12 \text{ V}\dagger, \text{ R}_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu\text{s} \end{split}$	- - -	- - -	5 -5 -5	mA
V _{GT}	Gate trigger voltage	$\begin{aligned} & V_{\text{supply}} = -12 \text{ V}^{\dagger}, \text{ R}_{L} = 10 \ \Omega, \ t_{p(g)} = > 20 \ \mu\text{s} \\ & V_{\text{supply}} = +12 \text{ V}^{\dagger}, \text{ R}_{L} = 10 \ \Omega, \ t_{p(g)} = > 20 \ \mu\text{s} \\ & V_{\text{supply}} = +12 \text{ V}^{\dagger}, \text{ R}_{L} = 10 \ \Omega, \ t_{p(g)} = > 20 \ \mu\text{s} \\ & V_{\text{supply}} = -12 \text{ V}^{\dagger}, \text{ R}_{L} = 10 \ \Omega, \ t_{p(g)} = > 20 \ \mu\text{s} \end{aligned}$		- - - -	10 2.2 -2.2 -2.2 3	V
I _H	Holding current	$\begin{aligned} & V_{\text{supply}} = -12 \text{ V}\dagger, \text{ R}_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu\text{s} \\ & V_{\text{supply}} = +12 \text{ V}\dagger, \text{ I}_{\text{G}} = 0, \\ & \text{initiating I}_{\text{TM}} = 100 \text{ mA} \end{aligned}$	-	-	30	mA
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}, I_{\text{G}} = 0,$ initiating $I_{\text{TM}} = -100 \text{ mA}$	-	-	-30	
I _L	Latching current	V_{supply} = +12 V† (seeNote7) V_{supply} = -12 V† (seeNote7)	-	50 -20	-	mA
V _{TM}	Peak on-state voltage	$I_{TM} = \pm 8.4 \text{ A}, I_G = 50 \text{ mA (see Note6)}$	-	_	±1.7	V
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±50	-	
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_{TRM} = ± 8.4A T_{C} = 70°C	±5 V/μ		V/µs	


[†] All voltages are whit respect to Main Terminal 1.



TIC216A, TIC216B, TIC216D, TIC216M, TIC216N, TIC216S

Note 6: This parameters must be measured using pulse techniques, $t_W = \le 1 \mu s$, duty cycle $\le 2 \%$, voltage-sensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body. Note 7: The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100\Omega$, $t_{t_{t_0}} = 20 \mu s$, $t_{t_0} = 15 \mu s$.

MECHANICAL DATA CASE TO-220

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3 :	Gate