SF215

Typ tranzystora: tranzystor krzemowy Firma: RFT			
w obudowie plastykowej, cieżar około 0,1 G			
Zastosowanie: wzmacniacze i oscylatory w.cz.			
do 100 MHZ $\rightarrow 25$			
(Mot), BF194 (Tel. Sie, Ph) KF124 (Tesla) Rvs 1-931 SF215			
Wartosci charakterystyczne'			
7	min typ max	nΑ	$przy H_{-} - 20 V$
ICBO	15	V	$przy \ L_{cB} = 10 \ mA$
U(BR)CE0	5.9	V	$p_{IZY} I_C = 10 \text{ mA}$
U(BR)EB0	28 71	Ŷ	pizy $I_E = 10 \ \mu A$
$n_{21E}(\mathbf{D})$	56 140		
(C) (D)	112 280		przy $U_{CE} = 6$ V, $I_C = 2$ mA, $f = 1$ kHz
(E) (F)	224 560		
f (L)	100 400	MH7	$przy U_{-} = 10 V I_{-} = 5 m A_{-} f = 100 MHz$
	8	dR	$p_{LZ} = 10 \text{ V}, T_C = 5 \text{ mA}, J = 100 \text{ MHz}$
1	0	ub	f = 100 MHz P = 60 O
			$J = 100$ MHz, $R_g = 00.22$
<u> <i>n</i></u> _{12b}	80	ps	przy $U_{CB} = 10$ V, $I_C = 5$ mA, $f = 30$ MHz
ω	2.2	"Е	
-C _{12e}	2,3	pr pF	przy $U_{CE} = 10$ V, $I_C = 5$ mA, $f = 500$ kHz
C _{22b}	3,5 4,5	dP	przy $U_{CE} = 10$ v, $I_E = 0$, $f = 20$ MHz
Gp	4 5,2	ЦD	przy $U_{CE} = 8$ V, $I_C = 1$ mA, $f = 100$ MHz,
	Doropotry y y		$K_g = 00.22, \ K_L = 1.822$
	układzie OF		
	6 9 1 ;7 25	mS	
<i>y</i> 11e	0,0+17,55	mS	
<i>y</i> 12 <i>e</i>	-0,1-1,0	mS	$Przy U_{CE} = 10 \text{ V}, I_C = 5 \text{ mA}, f = 100 \text{ MHz}$
<i>Y</i> 21e	$1.65 \pm i2.75$	mS	
<i>y</i> ₂₂	1,05+12,75	mS	
<i>y</i> 11e	-0.08-i0.9	mS	
y12e	34 5 - 144 5	mS	przy $U_{CE} = 10$ V, $I_C = 5$ mA, $f = 50$ MHz
y21e	1 35 + i1 75	mS	
y22	1.4 + i1.55	mS	
J'11e	74.0-i43	mS	przy $U_{CE} = 10$ V, $I_C = 5$ mA,
V21e	$0.5 \pm i0.89$	mS	f = 10,7 MHz
J22	Parametry v w	1110	5
	układzie OB		
Ver	31,5-i31	mS	
V 11b	1.56 - i1.17	mS	
Vall	-25 + i36.5	mS	$\int \text{przy } U_{CB} = 10 \text{ V}, I_C = 5 \text{ mA}, f = 100 \text{ MHz}$
V210	1,65 + i2.75	mS	
V 22	40.5 - i37.5	mS	
Via	-1,45-i0.95	mS	przy $U_{CB} = 10$ V, $I_C = 5$ mA.
Valle	$-38.5 \pm i43$	mS	f = 50 MHz
V216	1.35 + i1.75	mS	
1 22	, , , , , , , , , , , , , , , , , , , ,		1

przy $U_{CB} = 10$ V, $I_C = 5$ mA, $f = 10,7 \,\,{
m MHz}$ MHz przy $U_{CE} = 10$ V, $I_C = 5$ mA Wartości graniczne 200 mW P_{tot} max +1252) $^{\circ}\mathrm{C}$ $t_{j \max}$ °C $-40 \div +100$ t_{amb} 0,5 $R_{th\,j-a}$ °C/mW

 y_{11b}

y21b

y22 f_{\max}

U_{CB0 max}

 $U_{CE0 \max}$

 $U_{EB0 \max}$

¹⁾ $t_{amb} = 25^{\circ}C (-5^{\circ}C)$ ²⁾ $t_{amb} = 25^{\circ}C$

 $I_{C \max}$

 $I_{B \max}$

84-j37,5

-85+j37,5

0,5+j0,89

430

20

15

5

100

10

mS

mS

mS

V

V

V

mA

mA

SF215

Rys. 1-938. Zależność współczynnika szumów od prądu kolektora

Rys. 1-939. Zależność stałej τ od prądu kolektora

od napięcia U_{CE}

Rys. 1-941. Zależność admitancji wejściowej y_{11b} od prądu kolektora i częstotliwości

Rys. 1-942. Zależność stałej τ od napięcia kolektor-baza

Rys. 1-943. Zależność admitancji wejściowej y_{11b} od prądu kolektora i częstotliwości

Rys. 1-945. Zależność admitancji wejściowej y_{11e} od prądu kolektora i częstotliwości

Rys. 1-946. Zależność admitancji wejściowej y_{11b} od prądu kolektora i częstotliwości

Rys. 1-947. Zależność admitancji wejściowej y_{11e} od prądu kolektora i częstotliwości

Rys. 1-949. Zależność admitancji przejściowej y_{21e} od prądu kolektora i częstotliwości

Rys. 1-950. Zależność admitancji wejściowej y_{11e} od prądu kolektora i częstotliwości

Rys. 1-951. Zależność admitancji zwrotnej y_{12b} od prądu kolektora i częstotliwości

Rys. 1-953. Zależność admitancji zwrotnej y_{12e} od prądu kolektora i częstotliwości

Rys. 1-954. Zależność admitancji zwrotnej y_{12e} od prądu kolektora i częstoliwości

Rys. 1-955. Zależności admitancji przejściowej y_{21b} od prądu kolektora i częstotliwości

Rys. 1-956. Zależność admitancji przejściowej y_{21b} od prądu kolektora i częstotliwości

Rys. 1-957. Zależność admitancji przejściowej y_{21e} od prądu kolektora i częstotliwości

Rys. 1-958. Zależność admitancji przejściowej y_{21e} od prądu kolektora i częstotliwości

Rys. 1-959. Zależność admitancji wyjściowej y_{22e} od prądu kolektora i częstotliwości

Rys. 1-961. Zależność admitancji wyjściowej y_{22} od prądu kolektora i częstotliwości

Rys. 1-962. Zależność admitancji przejściowej y_{21e} od prądu kolektora i częstotliwości

Rys. 1-963. Zależność admitancji wyjściowej y_{22e} od prądu kolektora i częstotliwości

Rys. 1-964. Zależność mocy strat od temperatury otoczenia