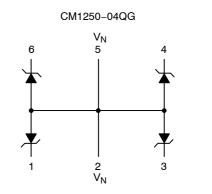
CM1250-04QG

Low Capacitance Transient Voltage Suppressors / ESD Protectors

Features

- Low I/O Capacitance at 5 pF at 0 V
- In-System ESD Protection to ±8 kV Contact Discharge, per the IEC 61000-4-2 International Standard
- Compact SMT Package Saves Board Space and Facilitates Layout in Space–Critical Applications
- Each I/O Pin Can Withstand over 1000 ESD Strikes*
- These Devices are Pb-Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

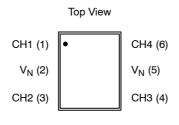
UDFN-6 QG SUFFIX CASE 517BM

BLOCK DIAGRAM

MARKING DIAGRAM

LS = CM1250-04QG

ORDERING INFORMATION


	Device	Package	Shipping [†]			
ſ	CM1250-04QG	UDFN6 (Pb-Free)	3000/Tape & Reel			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*Standard test condition is IEC61000-4-2 level 4 test circuit with each pin subjected to ±8 kV contact discharge for 1000 pulses. Discharges are timed at 1 second intervals and all 1000 strikes are completed in one continuous test run. The part is then subjected to standard production test to verify that all of the tested parameters are within spec after the 1000 strikes.

CM1250-04QG

PACKAGE / PINOUT DIAGRAM

6-Lead uDFN (0.4mm)

Table 1. PIN DESCRIPTIONS

Pins	Name	Description	
(Refer to package / pinout diagram)	CHx	The cathode of the respective TVS diode, which should be connected to the node requiring transient voltage protection.	
(Refer to package / pinout diagram) V _N		The anode of the TVS diodes.	

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units	
Storage Temperature Range	-65 to +150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
C _{IN}	Channel Input Capacitance	$T_A = 25^{\circ}C$, 0 VDC, 1 MHz; (Note 2)		5	7	pF
		$T_A = 25^{\circ}C$, 2.5 VDC, 1 MHz; (Note 2)		3		pF
ΔC_{IN}	Differential Channel I/O to GND Capacitance	$T_A = 25^{\circ}C$, 2.5 VDC, 1 MHz; (Note 2)		0.14		pF
I _{LEAK}	Leakage Current	V_{IN} = 3.5 VDC, T_A = 25°C			0.10	μA
V _{SIG}	Small Signal Clamp Voltage Positive Clamp Negative Clamp	I = 5 mA, T _A = 25°C I = –5 mA, T _A = 25°C	6.1 -1.5		8.5 -0.4	V
V _{ESD}	ESD Withstand Voltage Contact Discharge per IEC 61000-4-2 standard Human Body Model, MIL-STD-883, Method 3015	T _A = 25°C; (Notes 2, 4 and 5) T _A = 25°C; (Notes 2, 3 and 5)	±8 ±15			kV
R _D	Diode Dynamic Resistance Forward Conduction Reverse Conduction	T _A = 25°C (Note 2)		0.7 2.1		Ω

All parameters specified at T_A = $-40^\circ C$ to $+85^\circ C$ unless otherwise noted. 1.

2. These parameters guaranteed by design and characterization.

3. Human Body Model per MIL-STD-883, Method 3015, $C_{\text{Discharge}} = 100 \text{ pF}$, $R_{\text{Discharge}} = 1.5 \text{ K}\Omega$, V_{N} grounded. 4. Standard IEC 61000-4-2 with $C_{\text{Discharge}} = 150 \text{ pF}$, $R_{\text{Discharge}} = 330 \Omega$, V_{N} grounded. 5. These measurements performed with no external capacitor on CH_{X} .

CM1250-04QG

PERFORMANCE INFORMATION

Diode Capacitance

Typical diode capacitance with respect to positive TVS cathode voltage (reverse voltage across the diode) is given in Diode Capacitance vs. Reverse Voltage.

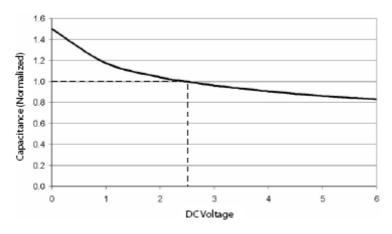


Figure 1. Diode Capacitance vs. Reverse Voltage

Typical High Current Diode Characteristics

Measurements are made in pulsed mode with a nominal pulse width of 0.7 ms.

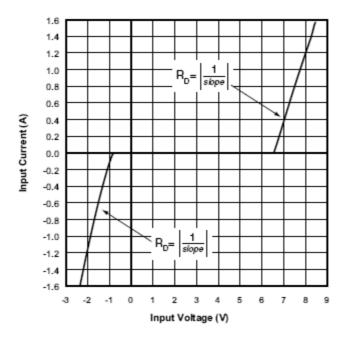
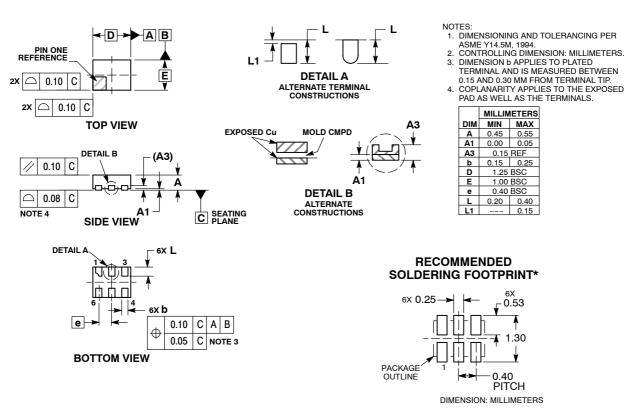



Figure 2. Typical Input VI Characteristics (Pulse-mode Measurements, Pulse Width = 0.7 ms nominal)

PACKAGE DIMENSIONS

UDFN6, 1.25x1, 0.4P CASE 517BM-01 ISSUE O

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421-33-700-2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative