20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

1N746 THRU 1N759 AND 1N4370 THRU 1N4372

500mW SILICON ZENER DIODES

FEATURES

- * Zener voltage 2.4V to 12.0V
- * Metallurgically bonded device types

MECHANICAL CHARACTERISTICS

- * CASE: Hermetically sealed glass case. DO = 35.
- * FINISH: All external surfaces are corrosion resistant and leads solderable.
- * THERMAL RESISTANCE: 200°C/W(Typical) junction to lead at 0.375 inches from body. Metallurgically bonded DO 35, exhibit less than 100°C/W at zero distance from body.
- * POLARITY: banded end is cathode.
- * WEIGHT: 0.2 grams
- * MOUNTING POSITIONS; Any

MAXIMUM RATINGS

Junction and Storage temperatures: -65°Cto + 175°C

DC Power Dissipation:500mW

Power Derating: 4.0mW/°Cabove 50°C

Forward Voltage @ 200mA:1.5 Volts

VOLTAGE RANGE 2.4 to 12.0 Volts

ELECTRICAL CHARCTERISTICS @ 25°C

JEDEC TYPE NO. (Note 1)	NOMINAL ZENER VOLTAGE Vz 0 Izt (Note 2)	ZENER TEST CURRENT	HADEDANCE	MAXIMOM REVERSE CURRENT © V _R = 1VOLT		MAXIMUM ZENER CURRENT ZM (Note 4)	TYPICAL TEMP COEFF. OF ZENER VOLTAGE
(,	VOLTS.	. mA	OHMS	9 25℃	Q + 150℃ µA	mA	ανz %/°C
1 N4370 1 N4371 1 N4372	2.4 2.7 3.0	20 20 20 20	30 30 29	100 75 50	200 150 100	150 136 120	- 0.086 - 0.080 - 0.075
1 N746 1 N747 1 N748	3.3 3.6 3.9	20 20 20	28 24 23	10 10 10	30 30 30	110 100 95	- 0.066 - 0.068 - 0.046
1 N749 1 N750 1 N761 1 N752	4.3 4.7 5.1 5.6	20 20 20 20 20	22 19 17 11	2 2 1	30 30 20 20	855 75 70 65	-0.033 -0.015 ±0.010 +0.030
1N753 1N754 1N755 1N756	6.2 6.8 7.5 8.2	20 20 20 20 20	7 5 6 8	1 1 1	20 20 20 20	80 55 50 45	+ 0.049 + 0.063 + 0.057 + 0.080
1 N757 1 N758 1 N759	9.1 10.0 12.0	20 20 20	10 17 30	1 1 1	20 20 20	40 35 30	+0.061 +0.062 +0.062

NOTE 1

Standard tolerance on JEDEC types shown is ± 10%. Suffix letter A denotes ± 5% tolerance; suffix letter C denotes ± 2%; and suffix letter D denotes ± 1% tolerance.

NOTE2

Voltage measurements to be performed 20 sec. after application of D.C. test current.

NOTE 3

Zener impedance derived by superimposing on I_{ZT}, a 60 cps, rms ac current equal to 10% I_{ZT}(2mA ac).

NOTE 4

Allowance has been made for the increase in V_Z due to Z_Z and for the increase in junction temperature as the unit approaches thermal equilibrium at the power dissipation of 400 mW.

