

MULTI MODE MODEM ANALOG FRONT-END

ADVANCE DATA

- 12 BIT A/D AND D/A CONVERTERS WITH PROGRAMMABLE SAMPLING FREQUENCY : 7.2, 8.0, OR 9.6 kHz
- 6 TH ORDER SWITCHED CAPACITOR TRANSMIT FILTER
- TRANSMIT ATTENUATOR PROGRAMMABLE FROM 0 dB TO 22 dB WITH 2 dB STEP
- DUPLEXER OUTPUT AVAILABLE WITH PRO-GRAMMABLE ATTENUATION
- 15 TH ORDER SWITCHED CAPACITOR Rx FILTER (PROGRAMMABLE)
- TWO PROGRAMMABLE GAIN RX AMPLI-FIERS : FROM 0 dB TO 9 dB WITH 3 dB STEP BEFORE RX FILTER AND FROM 0 dB TO 46.5 dB WITH 1.5 dB STEP AFTER RX FILTER
- PROGRAMMABLE CARRIER LEVEL DETECTOR
- ON CHIP ANTI-ALIASING CELLS (TRANSMIT AND RECEIVE)
- TWO INDEPENDANT TRANSMIT AND RE-CEIVE DIGITAL PHASE LOCKED LOOPS (DPLLS)
- TERMINAL CLOCK INPUT FOR TRANSMIT SYNCHRONIZATION
- THREE AVAILABLE OUTPUT CLOCKS : BIT, BAUD AND CONVERSION CLOCKS
- DSP INTERFACE THROUGH 8 BIT STAN-DARD BUS FOR BOTH SIGNAL SAMPLES AND CONTROL REGISTER ACCESS
- AUTOMATIC RESET ON POWER-ON
- ± 5 V POWER SUPPLY
- 250 mW TYPICAL POWER CONSUMPTION

ORDERING INFORMATION

Part Number	Temperature Range	Package
TS7542CP	0 to 70 °C	DIP 40
TS7542CFN	0 to 70 °C	PLCC 44

DESCRIPTION

The TS7542 is a single-chip analog front-end designed to implement high-performance voice-grade MODEMS. Associated with a Digital Signal Processor such as TS68930/31 or ST18930/31, it provides a cost-effective and powerful solution for implementation of multi-mode modems including CCITT V.21, V.22, V.22bis, V.23, V.26, V.27, V.29, V.33 and BELL 103, 202 and 212 A standards.

August 1988

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DESCRIPTION

N°	Name	Description
1-4	D4-D7	Bidirectional Data Bus
5	CLKINI	Clock Initialization Input. Must be tied to V ⁺ during normal operation.
6	R/W	Read/Write Selection Input. This input indicates whether the current bus cycle is a read (high) or write (low) cycle.
7-8	CS1-CS0	Chip Select Inputs. The chip is selected when $\overline{CS0} = 0$ and $\overline{CS1} = 1$.
9-10	RS0-RS1	Register Select Inputs. Select the register involved in a read or write operation.
11	Ē	Enable Input. Enables selection inputs. Active on a low level for read operation. Active on a positive-going edge for write operation.
12	V -	Negative Supply Voltage. V $$ = - 5 V ± 5 %
13	V *	Positive Supply Voltage. V $^+$ = + 5 V \pm 5 %
14	RFO	Receive Filter Analog Output. Designed to be connected to AGC1 input through a $1\mu F$ non polarized capacitor.
15	LAO	Line Attenuator Output. Duplexer analog output useful for line monitoring during call progress.
16	DxI	Duplexer Input. Signal on that analog input will be subtracted from the receive anti-aliasing filter output to implement duplexer function.
17	RAI	Receive Analog Input. Analog input tied to the transmission line.
18	AGC2	This pin must be connected to the analog ground through a $1\mu F$ non polarized capacitor, in order to cancel the offset voltage of the AGC amplifier.
19	AGC1	Analog input of the AGC amplifier and of the carrier level detector.

20	CD1	This pin must be connected to the analog ground through a $1\mu F$ non polarized capacitor, in order to remove the offset voltage of the carrier level detector amplifier.
21	V *	Positive Power Supply Voltage
22	AGND	Analog Ground. All analog signals are referenced to this pin.
23	V -	Negative Supply Voltage
24	V *	Positive Supply Voltage
25	ATO	Analog Transmit Output. Capable of driving 1200 Ω load with 5 V peak to peak amplitude.
26	EXI	External Transmit Input. Can be programmed to be connected to the transmit filter or to the transmit attenuator input.
27	RxCCLK	Receive Conversion Clock Output
28	RxRCLK	Receive Baud Rate Clock Output
29	RxCLK	Receive Bit Rate Clock Output
30	TxCCLK	Transmit Conversion Clock Output
31	TxRCLK	Transmit Baud Rate Clock Output
32	TxCLK	Transmit Bit Rate Clock Output
33	XTAL2	Crystal Oscillator Output. Nominal Frequency = 5.76 MHz.
34	XTAL1	Crystal Oscillator or External Master Clock Input
35	TxSCLK	Transmit Synchronization Clock Input. Can be connected to an external terminal clock to phase lock the internal transmit clocks. When this pin is tied to a permanent logical level the transmit DPLL free-runs or can be phase locked on the receive clock system.
36-39	D0-D3	Bidirectional Data Bus
40	DGND	Digital Ground. All digital signals are referenced to this pin.

PIN DESCRIPTION (continued)

FUNCTIONAL DESCRIPTION

The TS7542 is generally used in conjunction with a DSP to realize the "data-pump" function of a highspeed modem. The circuit communicates with the DSP via an 8-bit bidirectional bus and mainly includes the following functions :

- the transmit analog channel with the D/A Converter, the transmit filter and the transmit attenuator.
- the receive analog channel with the local echo subtractor, the receive filter, the AGC amplifier, the A/D converter and the carrier level detector.
- the two independent transmit and receive clock generators using Digital Phase Locked Loops (DPLL).
- the 15 registers used to store the 12-bit transmit and receive digital samples, digital information for the DSP like the clock and the carrier level detector status, and the data needed to control the programmable functions or to synchronize the DPLLS.

TRANSMIT CHANNEL

The transmit channel converts the digital transmit signal coming from the DSP into the analog signal to be transmitted on the phone line. It includes a 12 bit digital to analog converter (DAC) operating at 7200, 8000 or 9600 samples per second according to the supported standard and the signal processing compromises made in the DSP. The maximum analog output signal amplitude is 5 V peak to peak . defined by the internal ± 2.5 V voltage reference. The DAC is monotonic and provides a guaranteed integral linearity better than 9 bit.

The transmit filter is a 6 th order low-pass switched capacitor filter (SCF) sampled at 288 kHz, whose cut-off frequency is 3.2 kHz. As the Sin x/x correction depends on the DAC sampling frequency, it has not been included in the tansmit filter and must be performed by the DSP. The transmit filter is followed by a second order, continuous time low-pass filter

that removes the residual high frequency parasitic signals.

The transmit attenuator allows the transmit signal gain to be programmed from 0 dB to -22 dB with 2 dB steps. Infinite attenuation is also programmable. The output amplifier can directly drive a 1200 Ω load. For special applications, the EXI input can be programmed to give access to the input of the transmit filter or to the input of the attenuator.

RECEIVE CHANNEL

The receive channel begins with a second order continuous time anti- aliasing filter followed by a subtractor used to implement the two-wire to fourwire conversion with few external components. The receive signal is then directed to the receive filter input and also, after programmable attenuation, to the LAO output for line monitoring purpose during call progress. Attenuation can be 0 dB, 6 dB, 12 dB or infinite. The receive switched capacitor bandpass filter is composed of three programmable sections : A 5 th order low-pass section, a 4 th order optional 1800 Hz notch section and a 6 th order high-pass section. It also includes an input pre-filtering gain programmable from 0 dB to 9 dB with 3 dB steps. This feature is useful to optimize the dynamic range of the signal by setting the maximum receive level value close to 5 V peak to peak. The transfer function of the receive low-pass and high-pass filter sections can be translated by changing their sampling clock frequencies to support different communication standards. Ten modes are programmable to comply with CCITT V.21, V.22, V.22 bis, V.23, V.26,

V.27, V.29 or V.33 as well as BELL 103, 202 or 212A. The typical curves obtained are given in the TRANSMISSION CHARACTERISTICS section of the data sheet. The receive filter output is smoothed in a continuous time low-pass filter and then directed to the automatic gain control (AGC) amplifier programmable from 0 dB to 46.5 dB with 1.5 dB steps. The same signal is also connected to the carrier level detector input. Three external capacitors are needed to eliminate the offset voltage as indicated in Fig.1. The residual DC level at the analog to digital converter (ADC) input is kept low and independent of the selected gain.

The carrier level detector performs the comparison between the full wave rectified receive signal and programmable threshold voltage nominally equivalent to - 45.5 dBm, - 34.4 dBm or -28.6dBm with a 2.5 dB hysteresis. The binary result of the comparison can be read by the DSP. The nominal response time of the carrier level detector to a signal settlement or removal is 1.78 ms. The receive signal delivered by the AGC amplifier is sampled and converted from analog to digital by a 12-bit monotonic A/D converter whose integral linearity is guaranteed better than 9 bit. The sampling frequency is the same as that programmed for the transmit DAC i.e. 7200, 8000,or 9600 samples per second.

CLOCK GENERATION

The 5.76 MHz master clock is obtained from either a crystal tied between XTAL1 and XTAL2 pins or an external generator connected to the XTAL1 pin. In the latter case the XTAL2 pin should be left open.

Figure 1 : AGC and Carrier Level Detector Amplifier Structure.

To meet the CCITT recommandation, the frequency tolerance requirement of the master clock must be better than \pm 100 ppm. The different transmit (Tx) and receive (Rx) clocks are derived from the master clock via two independent digital phase locked loops (DPLL).

TRANSMIT CLOCKS

As shown in Fig.2 the transmit DPLL operates by adding or subtracting pulses to a 2.88 MHz internal clock at a rate of 600 Hz. Consequently the frequency capture range equals ± 600 Hz/2.88 MHz, i.e. ± 208 ppm, a value consistent with the worst case synchronization of two independent signals having ± 100 ppm of frequency accuracy. When V.27 clocks are selected, the DPLL up-dating rate is increased to 800 Hz which is a submultiple of the 1600 baud rate of that particular mode. In this case the frequency capture range is ± 278 ppm.

The transmit DPLL can be synchronized on an external terminal clock connected to the TxSCLK input or on the receive bit clock R x CLK internally generated from the receive DPLL. It can also free-run without any phase shift.

The TS7542 delivers three synchronous transmit clocks :

- a bit clockT x CLK whose frequency equals the bit rate of the MODEM
- a baud clock T x RCLK whose frequency equals the baud rate of the MODEM
- a conversion clock T x CCLK that gives the samplinfrequency of the transmit D/A converter

The frequencies of these three clocks are programmable to support the different MODEM modes. Their duty cycle is exactly 1 : 2. These clocks are available on three dedicated pins. Their status can also be read by the DSP from an internal register. TCR. Resetting of ail the transmit clock generator counters on the next negative transition of T x SCLK or R x CLK can be controlled from the data bus.

RECEIVE CLOCKS

The receive DPLL phase shifts are performed in two wavs :

- a coarse phase lag is obtained by suppressing several 5.76 MHz master clock pulses from the input of the receive clock generator under the control of the DSP. The number of suppressed pulses is programmable from 20 to 4800 with a step value of 20 or 300. That feature will be used to quickly synchronize the receive DPLL on the recovered receive rate.
- a fine phase lead or lag is obtained by adding or suppressing two master clock pulses from the receive clock generator input, like for the transmit DPLL. But in that case the shifts are controlled by the DSP that also implements the phase comparator of the phase locked loop.

The TS7542 delivers three receive clocks with the same nominal frequency values as their transmit counterparts :

- a bit clock R x CCLK
- a baud clock R x RCLK
- a conversion clock R x CCLK

The status of these clocks can also be read from an internal register, RCR.

The receive and transmit clocks are plesiochronous.

INTERNAL REGISTERS

The 8-bit bidirectional data bus allows to access 15 internal registers as detailed in Fig.3. The data transfers are controlled by the six following signals :

- two chip select inputs CS0 and CS1 that must be put respectively to 0 and 1 to allow a data transfer.
- The read/write input R/W that defines the transfer direction
- Two register select input that address one out of four registers for a read or a write operation. Actually indirect addressing is used to extend to eight the number of the control registers.

MICROELECTROMICS

Figure 2 : DPLL Lead and Lag.

 The enable input E that strobes on its positive going transition the data to be written, or that enables on its low level state the output buffers when a data is to be read from a register.

The timing diagram of the data transfers is given in the TIMING SPECIFICATIONS section of the data sheet.

The four registers only accessible in a write operation are :

- TR1a that stores the 8 most significant bit (MSB) of the 12-bit transmit signal digital samples.
- TR1b that stores the 4 least significant bit (LSB) of the transmit signal digital samples.
- ARC that stores the 3-bit address of one out of eight control registers.

 The control register whose address is stored in the ARC register. The content of ARC is automatically incremented after each access to a control register. This allows cyclical access to these registers.

The four registers only accessible in a read operation are :

- RR1a that stores the 8 MSB of the 12-bit receive signal digital samples
- RR1b that stores the 4 LSB of the 12-bit receive signal digital samples
- RČR that stores the receive clock and the carrier level detector status
- TCR that stores the transmit clock status

The addresses of the internal registers are given in table 1. Table 2 shows the formats used for the digital signal samples stored in the TR1a/b registers, the RR1a/b registers and for the status data stored in the TCR and RCR registers. Table 3 summarizes the address and data format of the 8 control registers whose function is detailed in the PROGRAM-MABLE FUNCTIONS section.

Table 1.

R/W	RS0	RS1	AccessedRegister	Comment
0	0	0	TR1b	
0	0	1	TR1a	1
0	1	0	ARC	Write Only Registers
0	1	1	The Control Register Addressed by ARC	
1	0	0	RR1b	
1	0	1	RR1a	
1	1	0	RCR	Read Only Registers
1	1	1	TCR	

Table 2.

Register			Comment						
Name	D7	D6	D5	D4	D3	D2	D1	DO	
TR1a	Tx11	Tx10	Tx9	Tx8	Tx7	Tx6	Tx5	Tx4	
TR1b	Tx3	Tx2	Tx1	Tx0	×	Х	Х	Х	
RR1a	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	
RR1b	Rx3	Rx2	Rx1	Rx0	0	0	0	0	_
TCR	Х	TxRCLK	TxCCLK	TxCLK	Х	X	Х	Х	
RCR	CDL	RxRCLK	RxCCLK	RxCLK	Х	Х	X	X	CDL = 1 if Rx signal is greater than the programmed level.

X = Don't care.

Note 1 :D0 to D7 refer to the data bus pins and gives the bit position in the read or written data

Table 3.

Control Register	ARC (addre	C Cont ess) (no	tent ote 1)			Regist	Programmed					
Name	D7	D6	D 5	D7	D 6	D 5	D 4	D3	D2	D1	DO	Function
RC1	0	0	0	НВЗ	HB2	HB1	HR2	HR1	×	×	×	Bit/Baud Rate for Tx and Rx Clocks
RC2	0	0	1	x	x	x	HS2	HS1	HTHR	FCLK	x	Conversion Frequency. Tx Synchronization Selection
RC3	0	1	0	RF3	RF2	RF1	REJ	RFG2	RFG1	LAT2	LAT1	Rx Filter and 1800Hz Notch. LAO Attenuation
RC4	0	1	1	ATT4	ATT3	ATT2	ATT1	×	EM2	EM1	x	Tx Attenuation. EXI Input.
RC5	1	0	0	RG5	RG4	RG3	RG2	RG1	x	x	x	AGC Amplifier Gain
RC6	1	0	1	CDG2	CDG1	СDН	x	x	x	x	x	Carrier Level Detector Gain and Hysteresis
RC7	1	1	0	SP5	SP4	SP3	SP2	SP1	x	x	x	RxDPLL Coarse Phase Shift
RC8	1	1	1	MPE	SPR	AVRE	VAL	x	x	x	x	TxDPLL Reset. Rx DPLL Fine Phase Shifts.

X = Don't care value. Note 2 : D0 to D7 refers to the data bus pins and gives the bit position in the loaded address or data.

POWER-ON INITIALIZATION

Internal power-on circuitry (Fig.4) automatically resets the DPLL and the clock generators counters, and initializes the RC1 to RC8 control registers. The initial status of these registers are given in the PRO-GRAMMABLE FUNCTIONS section. The transmit attenuator is initialized to an infinite attenuation in order to avoid the transmission of indesirable signals on the phone line.

Access to the control registers is desabled during power-on reset until the clock oscillator starting. The

reset time duration can be increased by connecting the CLKINI input to an external RC timer as indicated in Fig.4. That feature will prevent, in particular applications, possible problems due to incontrolled signals coming from the DSP during power-on. In normal operation the CLKINI input can be used to reset the DPLL and clock generator counters and the RC8 control register. When that pin as not used, it must be tied to V⁺

Figure 4 : Power-on Initialization Circuitry.

PROGRESSION OF SIGNAL SAMPLES

Fig.5 shows the progression in the TS7542 of the digital and analog signal samples. It appears that the transfers of the data representing the transmit and the receive signals have to be synchronized on

the TxCCLK or the RxCCLK conversion clock, respectively. This is the reason why the DSP needs to receive these clock signals or to read their status from the dedicated registers.

Notes: Txi = ith analog or digital sample of the Tx signal. Rxi = ith analog or digital sample of the Rx signal.

(°)

Data can be written (read) six master clock periods after the T x CCLK (R x CCLK) negative-going transition respectively

PROGRAMMABLE FUNCTIONS

Table 4 : Bit Clock Frequency Programming (Tx and Rx).

				RC1 R	egiste	r			TYCLK or BYCLK	-
	D7	D6	D5	D4	D3	D2	D1	DO	Bit Clock Nominal	Communication
	HB3	HB2	HB1	HR2	HR1	_	-	-	Frequency (Hz)	Standard
	0	0	0						9600	V.29
	0	0	1						4800	V.27
	0	1	0						2400	V.22 bis, V.26
	0	1	1						1200	V.22, BELL 212A
	1	0	0						600	V.22 Fall-back
	1	0	1						600	м
	1	1	0						2400	V.22 bis, V.26
2/0	1	1	1						1200	V.22, BELL 212A

P/O : Power on status.

Table 5 : Baud Rate Clock Frequency Programming (Tx and Rx).

				RC1 R	legister	r			TxRCLK or RxBCLK	
	D7	D6	D5	D4	D3	D2	D1	D0	Baud Rate	Communication
	нвз	HB2	HB1	HR2	HR1	-	_	_	Frequency(Hz)	Standard (note 3)
				0	0				2400	V.29, V.33
				0	1				1600°	V.27*
				1	0				1200	V.26
P/O				1	1				600	V.22, V.22 Bis, BELL 212A

Note 3 : The phase shift frequency of the transmit DPLL is 600 Hz, excepted for (*) 800 Hz.

Table 6 : Conversion Clock Frequency Programming (Tx and Rx).

				RC2 R	egister				TxCCLK or RxCCLK	
	D7	D6	D5	D4	D3	D2	D1	D0	Conversion	Communication
	-	_	_	HS2	HS1	HTHR	FCLK	-	Nominal Frequency(Hz)	Standard
				0	0				9600	
				0	1				8000	V.27
				1	0				7200	
P/O				1	1				7200	

Table	7	•	Tx	S	/nchro	nizatio	n Signal	Progra	mmina
Tubic		٠		0	1101110	mzano	n oignaí	i iogia	unning.

				RC2 R	egister				
	D7	D6	D5	D4	D3	D2	D1	D0	Selected Synchronisation Signal
	-	-	-	HS2	HS1	HTHR	FCLK	-	
						0	0		RxCLK
						1	0		TxSCLK (note 4)
P/O						Х	1		Transmit DPLL free-runs

Note 4 : The Tx DPLL free runs if there is no transistion on this pin in that case.

X = Don't care value

Table 8 : Tx Clock General Reset.

		RC	8 Regis	ter(note	e 5)			
D7	D6	D5	D4	D3	D2	D1	DO	ResettingTransition
MPE	SPR	AVRE	VAL	-	-	-	-	
1	0	0	0					Next Negative-going Transition of Synchronizing Signal

Note 5 : RC8 register is cleared after the programmed control operation is completed and on power-on.

 Table 9 : Rx Clock Phase Shift Programming.

		RC8 Re	egister (note 5)								
D7	D6	D5	D4	D3	D2	D1	Actionon RxDPLL					
MPE	SPR	AVRE	VAL	-	-	-						
0	1	0	0				Phase Lag of Programmed Amplitude					
0	0	0	1				Phase Lag of Two 5.76 MHz Master Clock Periods					
0	0	1	1				Phase Lead of Two 5.76 MHz Master Clock Periods					

Note 5 : RC8 register is cleared after the programmed control operation is completed and on power-on.

			RC	7 Regi	ster					Number of Master
	D7	D6	D5	D4	D3	D2	D1	Phase Shin	In Degrees	Clock Pulses
	SP5	SP4	SP3	SP2	SP1	-	-	1200 Bauds*	1600 Bauds	Suppressed
	0	0	0	0	0			1.5	2	20
	0	0	0	1	0			3	4	40
	0	0	0		1			4.5	8	80
	0	0	1		0			7.5	10	100
	0	0	1	0	1			9	12	120
	0	ő	1	1	Ó			10.5	14	140
	ñ	ő	1		1			12	16	160
	ñ	1	Ó	Ó	0			13.5	18	180
	Ő	1	0	Ő	1			15	20	200
	ŏ	1	0	1	0			16.5	22	220
	Ō	1	Ō	1	1			18	24	240
	Ō	1	1	0	0			19.5	26	260
	0	1	1	0	1			21	28	280
	0	1	1	1	0			22.5	30	300
	0	1	1	1	1			24	32	320
	1	0	0	0	0			22.5	30	300
	1	0	0	0	1			45	60	600
	1	0	0	1	0			67.5	90	900
	1	0	0	1	1			90	120	1200
	1	0	1	0	0			112.5	150	1500
	1	0	1	0	1			135	180	1800
	1	0	1	1	0			157.5	210	2100
	1	0	1	1	1			180	240	2400
	1	1	0	0	0			202.5	270	2700
	1		0	0	1			225	300	3000
	1		0		U			247.5	330	3300
	1		4		0			2/0	300	3600
	4				1			292.5		3900
	4		4					313		4200
P/O	1		1		1			337.5		4500
F/O	1							300		4600

Table 10 : Rx Clock Phase Shift Amplitude Programming.

(*) 2400 bauds : multiply by two. 600 bauds : divide by two.

				RC4 R	egiste				
	D7	D 6	D 5	D4	D 3	D 2	D1	D0	Attenuation (dB)
	ATT4	ATT3	ATT2	ATT1	-	EM2	EM1	-	
	0	0	0	0					0
	0	0	0	1					2
	0	0	1	0					4
	0	0	1	1					6
	0	1	0	0					8
	0	1	0	1					10
	0	1	1	0					12
	0	1	1	1					14
	1	0	0	0					16
	1	0	0	1					18
	1	0	1	0					20
	1	0	1	1					22
0	- 1	1	Х	Х					Infinite

 Table 11 : Tx
 Attenuator Programming.

X = Don't care value.

Table 12 : EXI and AGC1 Inputs Programming.

			R	C4 R	egiste	er				
	D7	D6	D 5	D4	D 3	D2	D1	D 0	EXI Input Status	AGC1 Input Status
	ATT4	ATT3	ATT2	ATT1	-	EM2	EM1	-		
						0	0		Disabled	Tied to AGC Amplifier Input
						0	1		Tied to Tx Filter Input	11
						1	0		Tied to Tx Attenuator Input	19
P/O						1	1		Disabled	Tied to A/DC Input

		RC3 R	legiste	r	Sampl	ing (Fs) a Frequenc	and Cut-o ies (note 6)	ff (Fc)	Communication	Saa
	D7	D 6	D 5	D4	Low Pass	s Section	High Pas	s Section	Standard	Figure N°
	RF3	RF2	RF1	RF0	Fs(kHz)	Fc(Hz)	Fs(kHz)	Fc(Hz)		
P/0	0	0	0	×	288	3200	144	1820	V.22, V.22 bis, BELL 212A and BELL 103 High Channels	7
	0	0	1	Х	192	2133	115.2	1456	V.21 High Channel	8
	0	1	0	Х	288	3200	82.3	1040	V.27 ter 2400 bps	9
	0	1	1	Х	288	3200	72	910	V.27 ter 4800 bps, V.23, V.26 and BELL 202	10
	1	0	0	0	144	1600	64	809	V.22, V.22 bis, .BELL 212A and BELL 103 Low Channels	11
	1	0	0	1	144	1600	64	809	V.22, V.22 bis Low Channels with 1800 Hz Tone Rejection (*)	12
	1	0	1	Х	115.2	1280	64	809	V.21 Low Channel	13
	1	1	0	Х	288	3200	36	455	V.29, V.33	14
	1	1	1	Х	288	3200	18	228	Full Channel Bandwidth	15
	1	1	1	X	48	533	27.4	347	75 bps Back Channel	16

Table 13 : Rx Filter Programming.

(*) In this mode the 1800 Hz notch filter section is enabled.

X = Don't care values. The notch section is disabled in all these cases.

Note 6 : The sampling clocks used by the Rx switched capacitor filters are straightly derived from the crystal oscillator. The Tx switched capacitor filter is driven from the Tx DPLL.

Table 14.

				RC3 R	egister				
	D7	D 6	D 5	D 4	D 3	D 2	D1	D 0	Rx Filter Gain (dB)
	RF3	RF2	FR1	RF0	RFG2	RFG1	LAT2	LAT1	
P/O					0	0			0
					0	1			3
					1	0			6
					1	1			9

 Table 15 : Line Output Attenuator Programming.

				RC3 R	egister				
	D7	D6	D 5	D4	D 3	D 2	D1	D0	LAO Output Attenuation (dB)
	RF3	RF2	RF1	RF0	RFG2	RFG1	LAT2	LAT1	
P/O							0	0	Infinite
							0	1	0
							1	0	6
							1	1	12

				RC6 R	egister				Corriert qual Datastar
	D7	D6	D5	D4	D3	D2	D1	DO	Threshold(dBm) (note 7)
	CDG2	CDG1	CDH	-	_	-	-	-	
P/O	0	0	0						- 29.85
	0	0	1						- 27.35
	0	1	0						- 36.65
	0	1	1						- 34.15
	1	0	0						- 46.75
	1	0	1						- 44.25
	1	1	0						- 46.75
	1	1	1						- 44.25

Table 16 : Carrier Level Detector Programming.

Note 7 : These values applies when the total Rx gain from the phone line to the Rx filter output is 0 dB.

			RC5 Registe	er		100 1	
	D7	D6	D5	D4	D3	AGC Amplit	lerGain (dB)
	RG5	RG4	RG3	RG2	RG1	AGC1 Input	AGC2 Input
P/O	0	0	0	0	0	0	- 00
	0	0	0	0	1		1.5
	- 00	0	0	0	1	0	3
	- 00	0	0	0	1	1	4.5
	- 00	0	0	1	0	0	6
	- 00	0	0	1	0	1	7.5
	- 00	0	0	1	1	0	9
	- 00	0	0	1	1	1	10.5
		0	1	0	0	0	12
	- 00	0	1	0	0	1	13.5
	- 20	0	1	0	1	0	15
	- ∞	0	1	0	1	1	16.5
	- ~~	0	1	1	0	0	18
	- 00	0	1	1	0	1	19.5
	- ~~	0	1	1	1	0	21
	- 00	0	1	1	1	1	22.5
	- 00	1	0	0	0	0	24
	- 14.5	1	0	0	0	1	25.5
	- 7.7	1	0	0	1	0	27
	- 3.4	1	0	0	1	1	28.5
	0	1	0	1	0	0	30
	2.7	1	0	1	0	1	31.5
	5.2	1	0	1	1	0	33
	7.4	1	0	1	1	1	34.5
	9.5	1	1	0	0	0	36
	11.4	1	1	0	0	1	37.5
	13.3	1	1	0	1	0	39
	15.1	1	1	0	1	1	40.5
	16.8	1	1	1	0	0	42
	18.5	1	1	1	0	1	43.5
	20.2	1	1	1	1	0	45
	21.8	1	1	1	1	1	46.5

 Table 17 : AGC Amplifier Gain Programming.

ELECTRICAL SPECIFICATIONS

Unless otherwise noted, electrical characteristics are specified over the operating range. Typical values are given for V⁺ = + 5 V, V⁻ = - 5 V and t_{amb} = 25 °C.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
	DGND Digital Ground to AGND Analog Ground	- 0.3 to + 0.3	V
	V ⁺ Supply Voltage to DGND or AGND Ground	- 0.3 to + 7	V
	V ⁻ Supply Voltage to DGND or AGND Ground	- 7 to + 0.3	V
VI	Voltage at any Digital Input or Output	DGND - 0.3 to V* + 0.3	V
- I _I	Digital Output Current	- 20 to + 20	mA
Vin	Voltage at any Input or Output	V ⁻ − 0.3 to V ⁺ + 0.3	V
lout	Analog Output Current	- 10 to + 10	mA
Ptot	Power Dissipation	500	mW
tamb	Operating Temperature Range	0 to + 70	°C
t _{stot}	Storage Temperature Range	- 65 to + 150	°C
tsold	Pin Temperature (soldering 10 s.)	+ 260	°C

POWER SUPPLIES DGND = AGND = 0 V

Symbol	Parameter	Min.	Тур.	Max.	Unit
V ⁺	Positive Power Supply	4.75		5.25	V
V	Negative Power Supply	- 5.25		- 4.75	V
*	Positive Supply Current (receive signal level 0 dBm)			35	mA
-	Negative Supply Current (receive signal level 0 dBm)	- 35			mA

DIGITAL INTERFACE

Control Inputs, Data Bus and Clock Outputs. Voltages referenced to DGND = 0 V

Symbol	Parameter		Min.	Тур.	Max.	Unit
VIL	Low Level Input Voltage				0.8	V
VIH	High Level Input Voltage		2.2			V
I _{IL}	Low Level Input Current	$DGND < V_1 < 0.8 V$	- 10		10	μA
I _{IH}	High Level Input Current	$2.2 V < V_{\parallel} < V^{+}$	- 10		10	μA
Vol	Low Level Output Voltage (I _{OL} = 2.5 mA)				0.4	V
V _{OH}	High Level Output Voltage (I _{OH} = - 2.5 m	A)	2.4			V
loz	High Impedance Output Current (when E is high and DGND < $V_{\rm O}$ < $V^*)$		- 50		50	μА
Crystal	Oscillator Interface (XTAL1 input)					
VIL	Low Level Input Voltage				1.5	V
VIH	High Level Input Voltage		3.5			V
I _{IL}	Low Level Input current	$DGND \le V_1 \le V_{1Lmax}$	- 15			μA
Lih	High Level Input Current	$V_{IHmin} \leq V_{I} \leq V^{*}$			15	μA

ELECTRICAL SPECIFICATIONS (continued)

ANALOG INTERFACE All voltages referenced to AGND = 0 V

Symbol	Paramete	r	Min.	Тур.	Max.	Unit
Vin	Input Voltage EXI, DxI, RAI		- 2.5		2.5	V
tin	Input Current EXI, DxI, RAI (- 2.5 V <	< V _{in} < 2.5 V)	- 1		1	μA
Rin	Input Resistance AGC1, AGC2		1.5			kΩ
Rin	Input Resistance CD1		0.7			kΩ
Vout	Output Voltage ATO, LAO, RFO	RL = 1 kΩ, CL = 50 pF	- 2.5		2.5	V
Rout	Output Resistance	ATO LAO RFO			4 50 15	Ω
RL	Load Resistance ATO, RFO		1			kΩ
CL	Load Capacitance ATO, RFO				50	рF
RL	Load Resistance LAO		10			kΩ
CL	Load Capacitance LAO				20	рF

TIMING SPECIFICATIONS

TIMING SPECIFICATIONS Clock Timing Characteristics (XTAL1 input)

Symbol	Paramete	er	Min.	Тур.	Max.	Unit
PC	Master Clock Period			173.6		ns
twcL	Master Clock Width Low Level		50			ns
twch	Master Clock Width High Level		50			ns
t _{RC}	Master Clock Rise Time				50	ns
tFC	Master Clock Fall Time				50	ns
toc	Clock Output Delay Time	C _L = 50 pF			500	ns
t _{TC}	Clock Output Transition Time	C _L = 50 pF			100	ns

ELECTRICAL SPECIFICATIONS (continued)

BUS TIMING CHARACTERISTICS (see foot notes 1 and 2 on timing diagrams)

Symbol	Parameter		Min.	Тур.	Max.	Unit
toyo	Cycle Time	(1)	320			ns
twel	Pulse Width E Low Level	(2)	180			ns
twen	Pulse Width E High Level	(3)	100			ns
t _r , t _g	Clock Rise and Fall Time	(4)			20	ns
t _{HCE}	Control Signal Hold Time	(5)	10			ns
tsce	Control Signal Set-up Time	(6)	40			ns
tsDI	Input Data Set-up Time	(7)	120			ns
tHDI	Input Data Hold Time	(8)	10			ns
tsdo	Output Data Set-up Time (1 TTL load and CL = 50 pF)	(9)			150	ns
t _{dz}	Output High Impedance Delay Time (1 TTL load and CL = 50 pF)	(10)			80	ns

WRITE OPERATION

Note 1 : Voltage levels shown are VIL < 0.4 V, VIH > 2.4 V, unless otherwise specified. Note 2 : Measurement points shown are 0.8 V and 2.2 V, unless otherwise specified.

READ OPERATION

Note 1 : Voltage levels shown are VIL < 0.4 V, VIH > 2.4 V, unless otherwise specified. Note 2 : Measurement points shown are 0.8 V and 2.2 V, unless otherwise specified.

TRANSMISSION CHARACTERISTICS

PERFORMANCES OF THE WHOLE TRANSMISSION CHAIN (Input TR1, Output ATO)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Gabs	ATO Absolute Gain at 1 kHz	- 0.5	0	0.5	dB
N	ATO Psophometric Noise			100	μV
PSRR⁺	ATO Positive Power Supply Rejection Ratio V _{ac} = 200 mV _{pp} f = 1 kHz		40		dB
PSRR-	ATO Negative Power Supply Rejection Ratio V _{ac} = 200 mV _{pp} f = 1 kHz		40		dB
THD	Total Harmonic Distortion			- 54	dB

DAC TRANSFER CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Converter Resolution		12		Bit
V _{out} (max)	Nominal Output Peak to Peak Amplitude		5.0		V
LSB	Least Significant Bit Amplitude		1.2		mV
Eit	Integral Linearity Error Relative to Best Fit Line		± 4	± 8	LSB
Edi	Differential Linearity Error			± 0.7	LSB

TRANSMISSION CHARACTERISTICS

TRANSMIT FILTER TRANSFER CHARACTERISTICS (input EXI, output ATO) (see figure 6)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Gabs	Absolute Gain at 1 kHz	- 0.3	0	0.3	dB
Grel	Gain Relative to G _{abs} without Sin x/x Correction of DAC Sampling Below 3100 Hz 3200 Hz 4000 Hz 5000 Hz to 12000 Hz 12000 Hz and Above	- 0.4 - 3		0.3 - 36 - 46 - 50	dB dB dB dB dB
T _{gp}	Group Propagation Delay Time (f = 1800 Hz)		250		μs
Tgpd	Group Propagation Delay Time Distortion (600 Hz < f < 3000 Hz)		430		

Tx ATTENUATOR TRANSFER CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit
ATabs	Absolute Attenuation at 0 dB Nominal Value	- 0.3	0	0.3	dB
ATrei	Attenuation Relative to Nominal Value	- 0.5		0.5	dB
ATmax	Maximum Attenuation	50			dB

RECEPTION CHARACTERISTICS

PERFORMANCE OF THE WHOLE RECEPTION CHAIN (input RAI or Dxl, output RR1)

Symbol	Parameter	Min.	Тур.	Max.	Unit
G _{abs}	Absolute Gain (AGC gain = 0 dB, RxCCLK = 9600 Hz, V _{in} = 775 mVrms, f = 2000 Hz)	- 0.5	0	1.5	dB
ΗD _T	Total Harmonic Distortion (AGC gain = 0 dB, RxCCLK = 9600 Hz, V _{in} = 775 mVrms, f = 2000 Hz, programmed band = 475 Hz - 3200 Hz)			- 54	dB
N	Equivalent RMS Noise (see note) (AGC gain = 0 dB, RAI, DxI tied to AGND, frequency band = 228 Hz - 3200 Hz)			800	μVrms

Note : Noise depends on AGC gain value.

RECEPTION CHARACTERISTICS (continued)

RECEIVE BAND-PASS FILTER AND REJECTION FILTER (input RAI or DxI, output RFO)

The characteristics and specifications (templates) of the ten programmable transfer functions are given on figures 7 to 16.

RECEIVE FILTER INPUT GAIN CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Grei	Relative Gain to Programmed Gain	- 0.5		0.5	dB

LINE MONITORING ATTENUATOR CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit
ATabs	Absolute Attenuation at 0 dB Nominal Value	- 0.3	0	0.3	dB
ATrel	Attenuation Relative to Nominal Value (2 dB \leq AT \leq 22 dB)	- 0.5		0.5	dB
ATmax	Maximum Attenuation (AT = ∞)	50			dB

AGC AMPLIFIER AND A/D CONVERTER (input AGC1, output RR1)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Grei	Relative Gain to Programmed Gain 0 dB \leq AGC \leq 24 dB 25.5 \leq AGC \leq 46.5 dB	- 0.5 - 1		0.5 1	dB dB
Vos	Offset Voltage	- 70		70	LSB

CARRIER LEVEL DETECTOR (input AGC1, output CDR)

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{rel}	Relative Threshold to Programmed Value T - 36.65 < T \leq - 27.35 dBm - 46.75 \leq T \leq - 36.65 dBm	0.5 1		0.5	dB dB
Hyst	Hysteresis	2		3	dB
Vos	Input Offset Voltage 1st Threshold Pair (see table 16 and fig. 2) 2nd Threshold Pair 3rd Threshold Pair	- 1 - 2 - 3		1 2 3	mV mV mV
T _{dd}	Detection Delay Time 0 mVrms to 775 mVrms Transition or 775 mVrms to 0 mVrms Transition	1		3	ms

PERFORMANCE OF THE A/D CONVERTER (input AGC1, output RR1)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{in(max)}	Input Voltage (peak to peak)			5	V
Resh	A/D Converter Resolution			12	Bit
LSB	Analog Increment		1.2		mV
Eii	Integral Linearity Error Relative to Best Fit Line		± 4	± 8	LSB
Edi	Differential Linearity Error			± 0.7	LSB
Vos	Offset Voltage	- 100		100	LSB

Figure 6 : Tx Filter Frequency Response.

Figure 7 : Rx Filter Frequency Response for V.22, V.22bis, BELL212A and BELL103 High Channels (see table 13).

Figure 8 : Rx Filter Frequency Response for V.21 High Channel (see table 13).

Figure 9 : Rx Filter Frequency Response for V.27ter 2400bps (see table 13).

SGS-THOMSON MICROELECTROMICS M88TS7542-12

27/35

Figure 10 : Rx Filter Frequency Response for V.27ter 4800bps, V.23, V.26 and BELL202 (see table 13).

Figure 11 :Rx Filter Frequency Response for V.22, V.22bis, BELL212A and BELL103 Low Channel (see table 13).

Figure 12 : Rx Filter Frequency Response for V.22 and V.22bis Low Channels with 1800Hz Tone Rejection (see table 13).

Figure 12 (continued) :Rx Filter Frequency Response for V.22 and V.22bis Low Channels with 1800Hz Tone Rejection (see table 13).

SGS-THOMSON

Figure 13 : Rx Filter Frequency Response for V.21 Low Channel (see table 13).

Figure 14 : Rx Filter Frequency Response for V.29 and V.33 (see table 13).

Figure 15 : Rx Filter Frequency Response with Full Channel Bandwidth (see table 13).

AMPTD 100.00mV

Figure 16 : Rx Filter Frequency Response for 75bps Back Channel (see table 13).

