SLIS005A - APRIL 1993 - REVISED JANUARY 1995

- Low $r_{DS(on)} \dots 1 \Omega$ Typ
- Output Short-Circuit Protection
- Avalanche Energy . . . 75 mJ
- Eight 350-mA DMOS Outputs
- 50-V Switching Capability
- Devices Are Cascadable
- Low Power Consumption

description

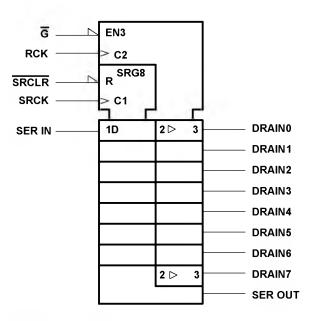
The TPIC6A595 is a monolithic, high-voltage, high-current power logic 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit, D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shiftregister clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shiftregister clear (SRCLR) is high. When SRCLR is low, the input shift register is cleared. When output

NE PACKAGE (TOP VIEW)						
DRAIN2 DRAIN3 SRCLR G PGND PGND RCK SRCK DRAIN4 DRAIN5	1 2 3 4 5 6 7 8 9 10	20 19 18 17 16 15 14 13 12 11	DRAIN1 DRAN0 SER IN V _{CC} PGND PGND LGND SER OUT DRAIN7 DRAIN6			
D	W PACI (TOP VI		E			
DRAIN2 [DRAIN3 [SRCLR] PGND [PGND [PGND [PGND [PGND [SRCK] DRAIN4 [DRAIN5 [1 2 3 4 5 6 7 8 9 10 11 12 	24 23 22 21 20 19 18 17 16 15 14 13	DRAIN1 DRAIN0 SER IN V _{CC} PGND PGND PGND LGND SER OUT DRAIN7 DRAIN6			

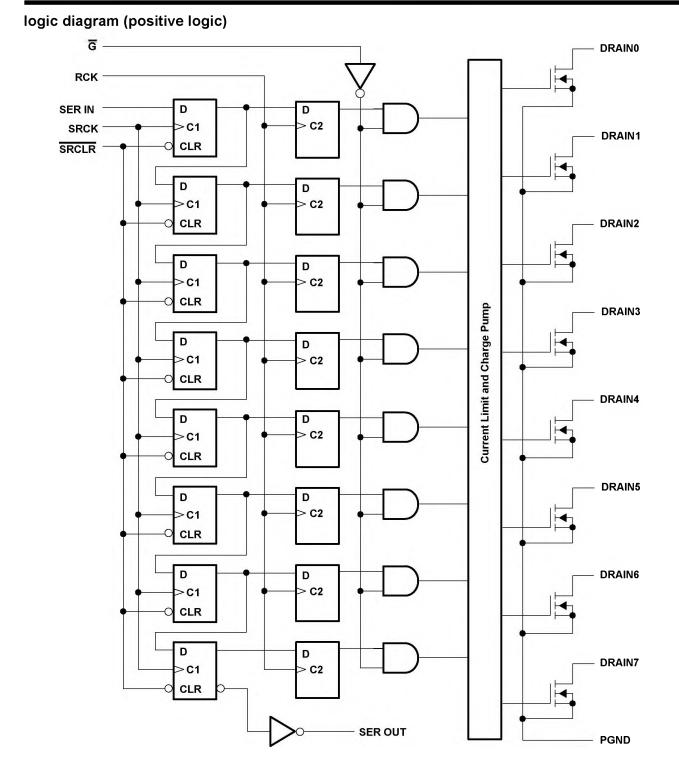
enable (\overline{G}) is held high, all data in the output buffers is held low and all drain outputs are off. When \overline{G} is held low, data from the storage register is transparent to the output buffers. The serial output (SER OUT) allows for cascading of the data from the shift register to additional devices.

Outputs are low-side, open-drain DMOS transistors with output ratings of 50 V and a 350-mA continuous sink current capability. When data in the output buffers is low, the DMOS-transistor outputs are off. When data is high, the DMOS-transistor outputs have sink current capability.

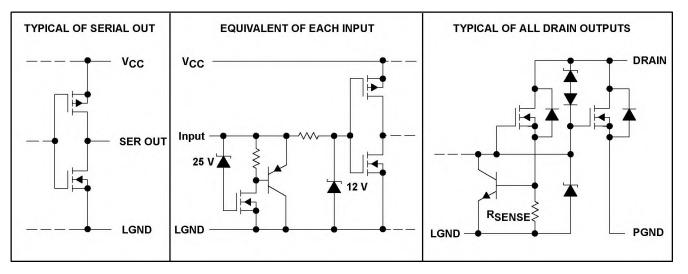

Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.

The TPIC6A595 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body surface-mount (DW) package. The TPIC6A595 is characterized for operation over the operating case temperature range of -40° C to 125° C.

SLIS005A - APRIL 1993 - REVISED JANUARY 1995


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SLIS005A - APRIL 1993 - REVISED JANUARY 1995

SLIS005A - APRIL 1993 - REVISED JANUARY 1995

schematic of inputs and outputs

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted)[†]

Logic supply voltage, V _{CC} (see Note 1) Logic input voltage range, V _I	
Power DMOS drain-to-source voltage, V _{DS} (see Note 2)	
Continuous source-drain diode anode current	
Pulsed source-drain diode anode current (see Note 3)	2 A
Pulsed drain current, each output, all outputs on, I_{Dn} , $T_A = 25^{\circ}C$ (see Note 3)	1.1 A
Continuous drain current, each output, all outputs on, I_{Dn} , $T_A = 25^{\circ}C$	350 mA
Peak drain current, single output, $T_A = 25^{\circ}C$ (see Note 3)	
Single-pulse avalanche energy, E _{AS} (see Figure 6)	75 mJ
Avalanche current, I _{AS} (see Note 4)	600 mA
Continuous total dissipation	See Dissipation Rating Table
Operating case temperature range, T _C	–40°C to 125°C
Operating virtual junction temperature range, T _J	–40°C to 150°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to LGND and PGND.

2. Each power DMOS source is internally connected to PGND.

- 3. Pulse duration \leq 100 μ s and duty cycle \leq 2 %.
- 4. DRAIN supply voltage = 15 V, starting junction temperature (T_{JS}) = 25°C, L = 210 mH, I_{AS} = 600 mA (see Figure 6).

DISSIPATION RATING TABLE

PACKAGE	T _C ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _C = 25℃	T _C = 125 [⊵] C POWER RATING
DW	1750 mW	14 mW/°C	350 mW
NE	2500 mW	20 mW/°C	500 mW

SLIS005A - APRIL 1993 - REVISED JANUARY 1995

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC}	4.5	5.5	V
High-level input voltage, VIH	0.85 V _{CC}	V _{CC}	V
Low-level input voltage, VIL	0	0.15 V _{CC}	V
Pulsed drain output current, T _C = 25°C, V _{CC} = 5 V (see Notes 3 and 5)	-1.8	0.6	А
Setup time, SER IN high before SRCK [↑] , t _{SU} (see Figure 2)	10		ns
Hold time, SER IN high after SRCK [↑] , t _h (see Figure 2)	10		ns
Pulse duration, t _w (see Figure 2)	20		ns
Operating case temperature, T _C	-40	125	°C

electrical characteristics, V_{CC} = 5 V, T_C = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
V _{(BR)DSX}	Drain-to-source breakdown voltage	I _D = 1 mA	50			V
V _{SD}	Source-to-drain diode forward voltage	I _F = 350 mA, See Note 3		0.8	1.1	V
Vau	High-level output voltage, SER OUT	I _{OH} = –20 μA	V _{CC} -0.1	Vcc		v
Vон		I _{OH} = –4 mA	V _{CC} -0.5	V _{CC} -0.2		v
Val	Low-level output voltage,	I _{OL} = 20 μA		0	0.1	V
VOL	SER OUT	I _{OL} = 4 mA		0.2	0.5	v
IIH	High-level input current	VI = VCC			1	μA
Ι _Ι	Low-level input current	VI = 0			-1	μΑ
I _{O(chop)}	Output current at which chopping starts	T _C = 25°C, See Note 5 and Figures 3 and 4	0.6	0.8	1.1	А
Icc	Logic supply current	I _O = 0, V _I = V _{CC} or 0		0.5	5	mA
^I CC(FRQ)	Logic supply current at frequency	f _{SRCK} = 5 MHz, I _O = 0, C _L = 30 pF, V _I = V _{CC} or 0, V _{CC} = 5 V, See Figure 7		1.3		mA
l _(nom)	Nominal current	$V_{DS(on)} = 0.5 V$, $I_{(nom)} = I_D$, $T_C = 85^{\circ}C$, $V_{CC} = 5 V$, See Notes 5, 6, and 7		350		mA
	Drain current off-state E	$V_{DS} = 40 V$, $T_{C} = 25^{\circ}C$		0.1	1	^
D		V _{DS} = 40 V, T _C = 125°C		0.2	5	μA
	Static drain-source on-state resistance	$I_D = 350 \text{ mA}, T_C = 25^{\circ}C$		1	1.5	
^r DS(on)		$I_D = 350 \text{ mA}, T_C = 125^{\circ}C$ See Notes 5 and 6 and Figures 10 and 11		1.7	2.5	Ω
,		$I_D = 350 \text{ mA}, T_C = 40^{\circ}\text{C}$				

NOTES: 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%

5. Technique should limit T_J-T_C to 10°C maximum.

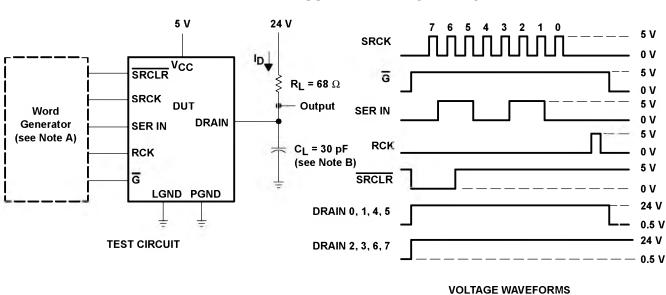
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at T_C = 85°C.

SLIS005A – APRIL 1993 – REVISED JANUARY 1995

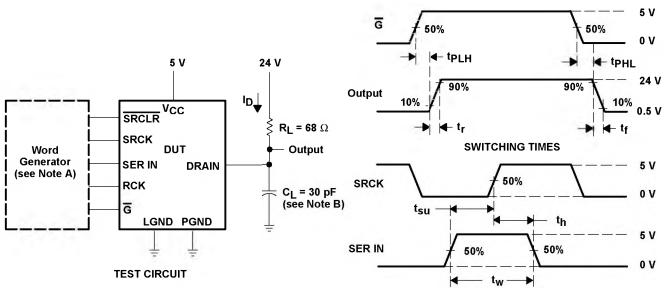
switching characteristics, V_{CC} = 5 V, T_C = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high-to-low-level output from \overline{G}	C _L = 30 pF, I _D = 350 mA, See Figures 1, 2, and 12		30		ns
tPLH	Propagation delay time, low-to-high-level output from \overline{G}			125		ns
tr	Rise time, drain output	See Figures 1, 2, and 12		60		ns
t _f	Fall time, drain output			30		ns
ta	Reverse-recovery-current rise time	I _F = 350 mA, di/dt = 20 A/µs. See Notes 5 and 6 and Figure 5		100		ns
t _{rr}	Reverse-recovery time			300		ns


NOTES: 5. Technique should limit T_J – T_C to 10°C maximum.
 6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal resistance

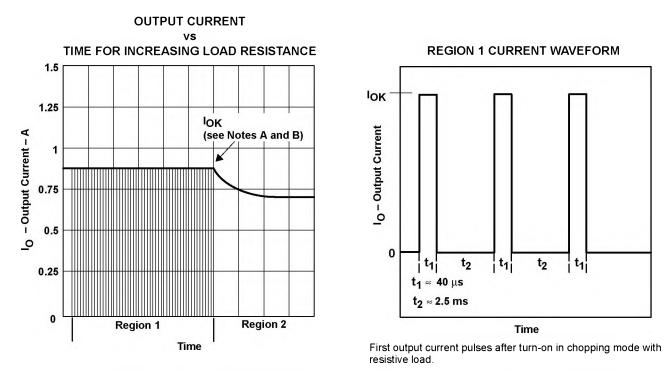
PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT	
R _{θJC} Thermal resistance, junction-to-case	DW	All eight outputs with equal power		10	∘c∕w	
	NE			10	0,00	
$R_{\theta JA}$ Thermal resistance,	Thermal resistance, junction-to-ambient	DW	All eight outputs with equal power		50	°C/W
	memarresistance, junction-to-ambient	NE			50	


SLIS005A - APRIL 1993 - REVISED JANUARY 1995

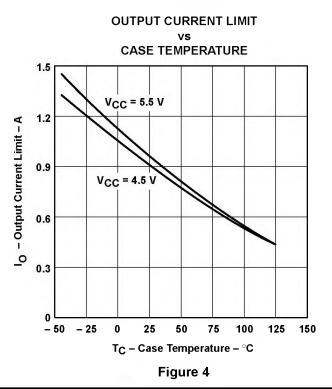
PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \ \Omega$.
 - B. CL includes probe and jig capacitance.

Figure 1. Resistive Load Operation

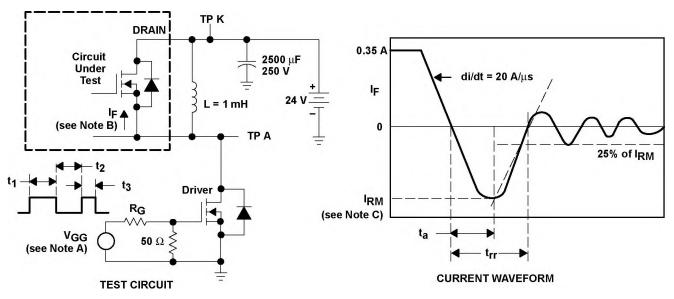

INPUT SETUP AND HOLD WAVEFORMS

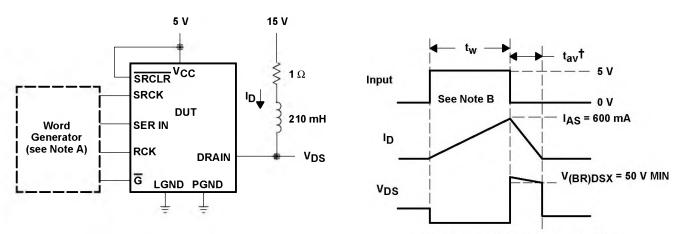
- NOTES: A. The word generator has the following characteristics: t_r ≤ 10 ns, t_f ≤ 10 ns, t_w = 300 ns, pulsed repetition rate (PRR) = 5 kHz, Z_O = 50 Ω.
 B. C_L includes probe and jig capacitance.
 - Figure 2. Test Circuit, Switching Times, and Voltage Waveforms


SLIS005A - APRIL 1993 - REVISED JANUARY 1995

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Figure 3 illustrates the output current characteristics of the device energizing a load having initially low, increasing resistance, e.g., an incandescent lamp. In region 1, chopping occurs and the peak current is limited to I_{OK}. In region 2, output current is continuous. The same characteristics occur in reverse order when the device energizes a load having an initially high, decreasing resistance.
 B. Region 1 duty cycle is approximately 2%.


Figure 3. Chopping-Mode Characteristics

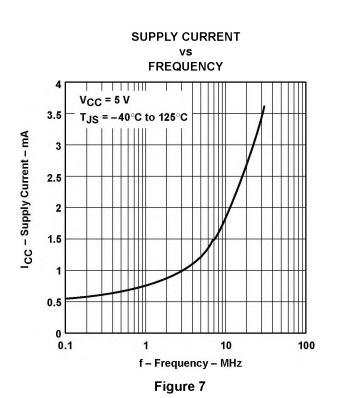

SLIS005A – APRIL 1993 – REVISED JANUARY 1995

- NOTES: A. The V_{GG} amplitude and R_G are adjusted for di/dt = 20 A/ μ s. A V_{GG} double-pulse train is used to set I_F = 0.35 A, where t₁ = 10 μ s, t₂ = 7 μ s, and t₃ = 3 μ s.
 - B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.
 - C. IRM = maximum recovery current

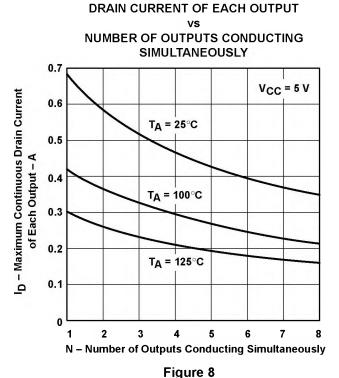
Figure 5. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT

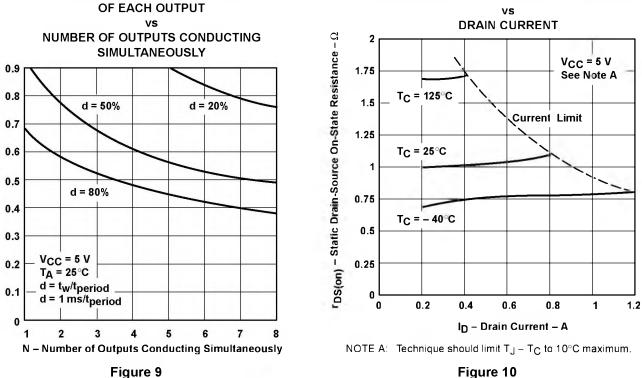
[†]Non JEDEC symbol for avalanche time.


NOTES: A. The word generator has the following characteristics: $t_f \le 10$ ns, $t_f \le 10$ ns, $Z_O = 50 \Omega$.

- B. Input pulse duration, t_W , is increased until peak current I_{AS} = 600 mA.
 - Energy test level is defined as $E_{AS} = (I_{AS} \times V_{(BR)DSX} \times t_{av})/2 = 75 \text{ mJ}.$

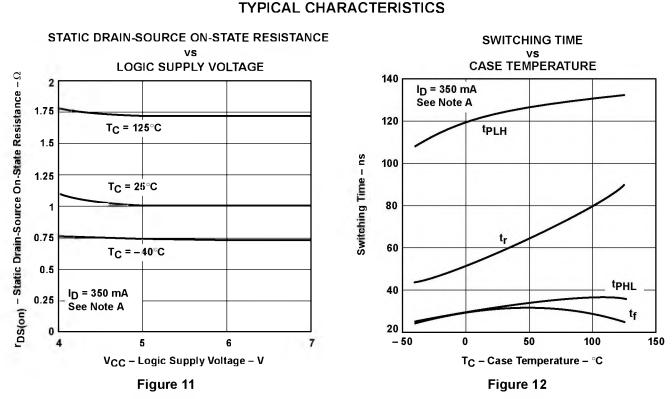


SLIS005A - APRIL 1993 - REVISED JANUARY 1995


MAXIMUM PEAK DRAIN CURRENT

TYPICAL CHARACTERISTICS

MAXIMUM CONTINUOUS


STATIC DRAIN-SOURCE ON-STATE RESISTANCE

IDM - Maximum Peak Drain Current of Each Output - A

SLIS005A - APRIL 1993 - REVISED JANUARY 1995

NOTE A: Technique should limit $T_J - T_C$ to 10°C maximum.

100

10

0.1

d = 50%

d = 20%

d = 10%

d = 2%

0.1

1

t – On Time – s

10

100

Single Pulse

0.01

d = 5%

 $Z_{\theta}JA$ – Transient Thermal Impedance – $^{\circ}C$ /W

The single-pulse curve represents measured data. The curves for various pulse durations are based on the following equation:

$$Z_{\theta JA} = \left| \frac{t_w}{t_c} \right| R_{\theta JA} + \left| 1 - \frac{t_w}{t_c} \right| Z_{\theta}(t_w + t_c) + Z_{\theta}(t_w) - Z_{\theta}(t_c)$$

Where:

- $Z_{\theta}(t_{W})$ = the single-pulse thermal impedance for t = t_W seconds
- $Z_{\theta}(t_c)$ = the single-pulse thermal impedance for t = t_c seconds
- $Z_{\theta}(t_w + t_c) =$ the single-pulse thermal impedance for t = t_w + t_c seconds

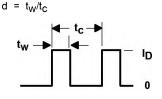


Figure 13

1000

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated