SLIS043A - NOVEMBER 1994 - REVISED SEPTEMBER 1995

8

7

6

5

DRAIN1

GATE1

NC

SOURCE2

D PACKAGE (TOP VIEW)

- Low r_{DS(on)} . . . 0.38 Ω Typ
- Voltage Output . . . 60 V
- Input Protection Circuitry ... 18 V
- Pulsed Current . . . 3 A Per Channel
- Extended ESD Capability . . . 4000 V
- Direct Logic-Level Interface

description

NC - No internal connection

2

3

Δ

GND

GATE2


DRAIN2

SOURCE1

The TPIC5223L is a monolithic gate-protected logic-level power DMOS array that consists of two electrically isolated independent N-channel enhancement-mode DMOS transistors. Each transistor features integrated high-current zener diodes (Z_{CXa} and Z_{CXb}) to prevent gate damage in the event that an overstress condition occurs. These zener diodes also provide up to 4000 V of ESD protection when tested using the human-body model of a 100-pF capacitor in series with a 1.5-k Ω resistor.

The TPIC5223L is offered in a standard eight-pin small-outline surface-mount (D) package and is characterized for operation over the case temperature of -40° C to 125° C.

schematic

NOTE A: For correct operation, no terminal may be taken below GND.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLIS043A – NOVEMBER 1994 – REVISED SEPTEMBER 1995

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Drain-to-source voltage, V _{DS}	100 V
Drain-to-GND voltage	
Gate-to-source voltage range, V _{GS}	–9 V to 18 V
Continuous drain current, each output, T _C = 25°C	1 A
Continuous source-to-drain diode current, T _C = 25°C	
Pulsed drain current, each output, I _{max} , T _C = 25°C (see Note 1 and Figure 15)	3 A
Continuous gate-to-source zener diode current, T _C = 25°C	±50 mA
Pulsed gate-to-source zener-diode current, T _C = 25°C	±500 mA
Single-pulse avalanche energy, E _{AS} , T _C = 25°C (see Figures 4 and 16)	108 mJ
Continuous total power dissipation, T _C = 25°C (see Figure 15)	0.95 W
Operating virtual junction temperature range, T _J	40°C to 150°C
Operating case temperature range, T _C	40°C to 125°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Pulse duration = 10 ms, duty cycle = 2%

TPIC5223L 2-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL

POWER DMOS ARRAY SLIS043A – NOVEMBER 1994 – REVISED SEPTEMBER 1995

electrical characteristics, T_C = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _(BR) DSX	Drain-to-source breakdown voltage	I _D = 250 μA,	V _{GS} = 0	60			V
V _{GS(th)}	Gate-to-source threshold voltage	I _D = 1 mA, See Figure 5	V _{DS} = V _{GS,}	1.5	2.05	2.2	V
V _(BR) GS	Gate-to-source breakdown voltage	I _{GS} = 250 μA		18			V
V _(BR) SG	Source-to-gate breakdown voltage	I _{SG} = 250 μΑ		9			V
V _(BR)	Reverse drain-to-GND breakdown voltage (across D1, D2)	Drain-to-GND current = 250 μA		100			V
V _{DS(on)}	Drain-to-source on-state voltage	I _D = 1 A, V _{GS} = 5 V, See Notes 2 and 3			0.375	0.425	v
V _{F(SD)}	Forward on-state voltage, source-to-drain	$I_S = 1 A$, $V_{GS} = 0$ (Z1, Z2), See Notes 2 and 3 and Figure 12			0.85	1.2	v
VF	Forward on-state voltage, GND-to-drain	I _D = 1 A (D1, D2), See Notes 2 and 3			3		V
	Zero-gate-voltage drain current	V _{DS} = 48 V,	T _C = 25°C		0.05	1	μA
IDSS		V _{GS} = 0	T _C = 125°C		0.5	10	μ
IGSSF	Forward-gate current, drain short circuited to source	V _{GS} = 15 V,	V _{DS} = 0		20	200	nA
IGSSR	Reverse-gate current, drain short circuited to source	V _{SG} = 5 V,	V _{DS} = 0		10	100	nA
1	Leakage current, drain-to-GND	V _{DGND} = 48 V	T _C = 25°C		0.05	1	μA
likg	Leakage current, drain-to-GND	VDGND = 46 V	T _C = 125°C		0.5	10	μΑ
	Static drain-to-source on-state resistance	V _{GS} = 5 V, I _D = 1 A,	T _C = 25°C		0.38	0.43	Ω
^r DS(on)		See Notes 2 and 3 and Figures 6 and 7	T _C = 125°C		0.61	0.65	52
9fs	Forward transconductance	V_{DS} = 15 V, I_D = 500 mA, See Notes 2 and 3 and Figure 9		1.2	1.49		S
C _{iss}	Short-circuit input capacitance, common source				150	190	
C _{oss}	Short-circuit output capacitance, common source	V _{DS} = 25 V,	V _{GS} = 0,		100	125	pF
C _{rss}	Short-circuit reverse transfer capacitance, common source	f = 1 MHz, See Figure 1			40	50	۲ י

NOTES: 2. Technique should limit T_J-T_C to 10°C maximum.

3. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

source-to-drain and GND-to-drain diode characteristics, T_C = 25°C

	PARAMETER	TES	T CONDITIONS		MIN	TYP	MAX	UNIT
t _{rr} Reverse-recovery time		Z1 and Z2					ns	
	V_G_S = 0. di/dt = 100 A/us.	D1 and D2		210		115		
Q _{RR} Total diode charge		• •	Z1 and Z2		50		nC	
	Ů		D1 and D2		800		nc	

SLIS043A - NOVEMBER 1994 - REVISED SEPTEMBER 1995

resistive-load switching characteristics, T_C = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(on)}	Turn-on delay time			34	70	
t _{d(off)}	Turn-off delay time	$V_{DD} = 25 V$, $R_L = 50 \Omega$, $t_{r1} = 10 ns$,		20	40	ns
t _{r1}	Rise time	t _{f1} = 10 ns, See Figure 2		28	55	115
t _{f2}	Fall time			15	30	
Qg	Total gate charge			3.1	3.8	
Q _{gs(th)}	Threshold gate-to-source charge	$V_{DS} = 48 \text{ V}, I_{D} = 500 \text{ mA}, V_{GS} = 5 \text{ V},$ See Figure 3		0.5	0.6	nC
Q _{gd}	Gate-to-drain charge			1.9	2.3	
LD	Internal drain inductance			5		
LS	Internal source inductance			5		nH
Rg	Internal gate resistance			0.25		Ω

thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	See Notes 4 and 7		130		
$R_{\theta JB}$	Junction-to-board thermal resistance	See Notes 5 and 7		78.6		°C/W
$R_{\theta JP}$	Junction-to-pin thermal resistance	See Notes 6 and 7		34		

NOTES: 4. Package mounted on an FR4 printed-circuit board with no heatsink.

5. Package mounted on a 24 in², 4-layer FR4 printed-circuit board.

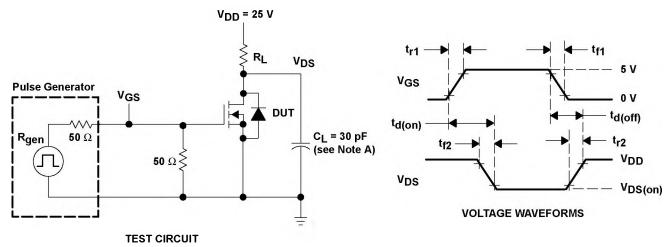
6. Package mounted in intimate contact with infinite heatsink.

7. All outputs with equal power

1.5 VDS = 48 V V_{GS} = 0 T_J = 25°C 1 Z1, and Z2‡ IS – Source-to-Drain Diode Current – A Reverse di/dt = 100 A/µs 0.5 0 - 0.5 25% of IRMT Shaded Area = QRR -1 - 1.5 **IRM**[†] -2 trr(SD) - 2.5 50 100 150 200 250 300 350 400 450 500 0 Time – ns [†]I_{RM} = maximum recovery current

PARAMETER MEASUREMENT INFORMATION

[‡] The above waveform is representative of D1 and D2 in shape only.


Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diode

TPIC5223L 2-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL

POWER DMOS ARRAY SLIS043A – NOVEMBER 1994 – REVISED SEPTEMBER 1995

PARAMETER MEASUREMENT INFORMATION

NOTE A: CL includes probe and jig capacitance.

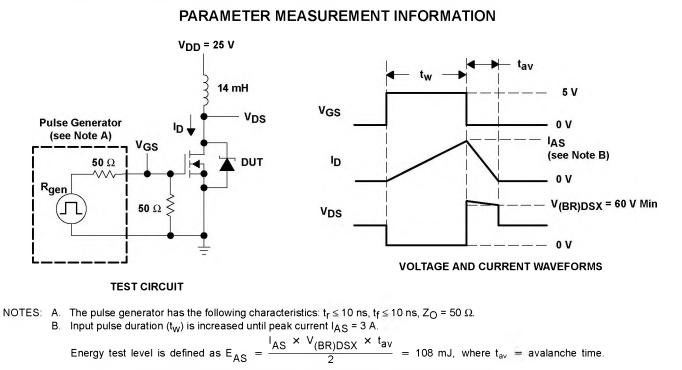
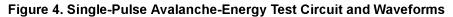
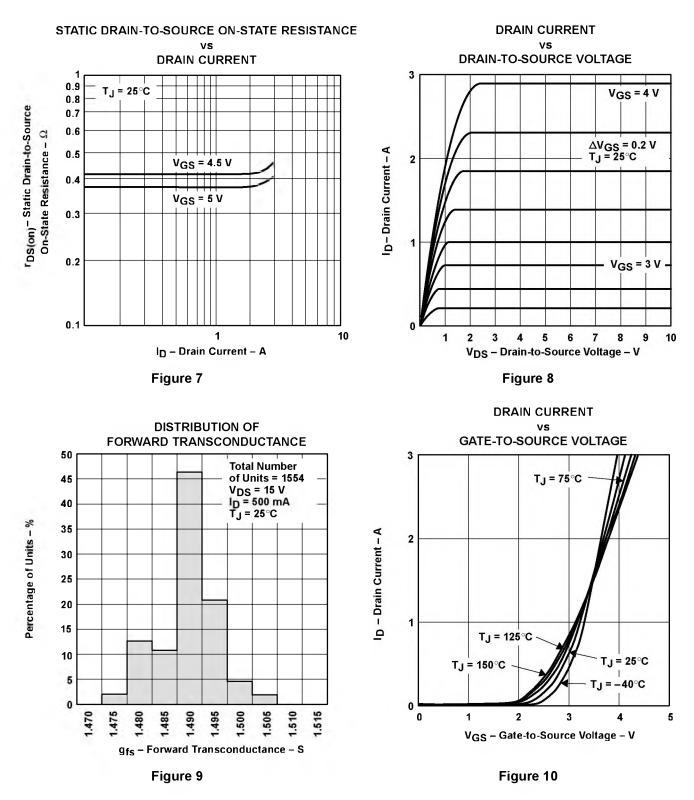




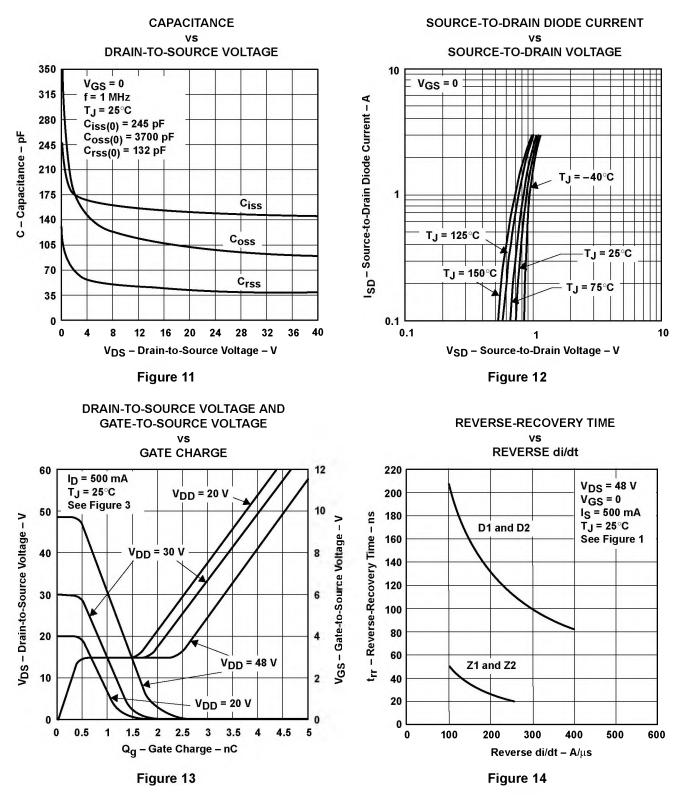
Figure 3. Gate-Charge Test Circuit and Voltage Waveform

SLIS043A - NOVEMBER 1994 - REVISED SEPTEMBER 1995



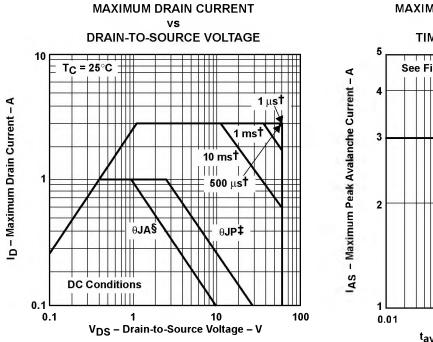
TYPICAL CHARACTERISTICS STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE GATE-TO-SOURCE THRESHOLD VOLTAGE vs ٧S JUNCTION TEMPERATURE JUNCTION TEMPERATURE 2.5 V_{GS(th)} – Gate-to-Source Threshold Voltage – V VDS = VGS $I_D = 1 A$ ^rDS(on) - Static Drain-to-Source $I_D = 1 mA$ 2 0.8 On-State Resistance – Ω ID = 100 μA 1.5 0.6 VGS = 4.5 V 1 0.4 VGS = 5 V 0.5 0.2 0 0 -40 -20 0 20 40 60 80 100 120 140 160 -40 -20 0 20 40 60 80 100 120 140 160 T_J – Junction Temperature – °C T_J – Junction Temperature – °C Figure 5 Figure 6

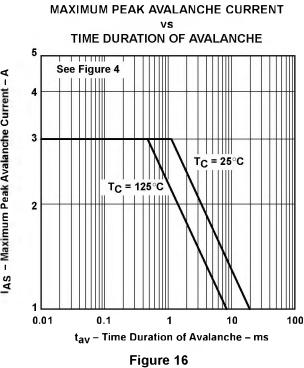
SLIS043A – NOVEMBER 1994 – REVISED SEPTEMBER 1995


TYPICAL CHARACTERISTICS

SLIS043A - NOVEMBER 1994 - REVISED SEPTEMBER 1995

TYPICAL CHARACTERISTICS





TPIC5223L 2-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL

POWER DMOS ARRAY SLIS043A – NOVEMBER 1994 – REVISED SEPTEMBER 1995

THERMAL INFORMATION

[†] Less than 2% duty cycle

[‡] Device mounted in intimate contact with infinite heatsink.

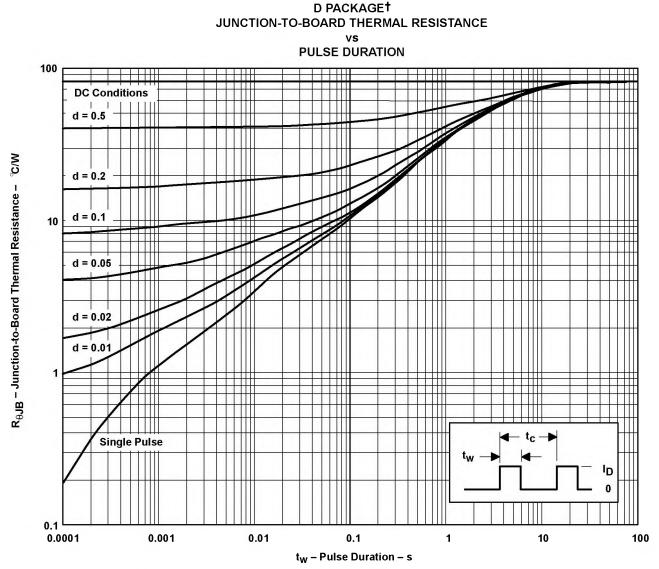

§ Device mounted on FR4 printed-circuit board with no heatsink.

Figure 15

SLIS043A - NOVEMBER 1994 - REVISED SEPTEMBER 1995

THERMAL INFORMATION

[†] Device mounted on 24 in², 4-layer FR4 printed-circuit board with no heatsink.

NOTE A: $Z_{\Theta B}(t) = r(t) R_{\Theta JB}$

 $t_W =$ pulse duration $t_C =$ cycle time

 $d = duty cycle = t_W/t_C$

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated