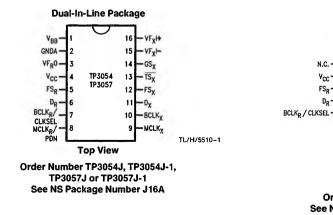
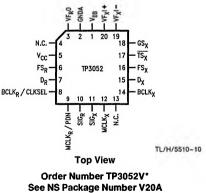
National Semiconductor

TP3052, TP3053, TP3054 TP3054-1, TP3057, TP3057-1 "Ruggedized" Serial Interface CODEC/Filter COMBO® Family

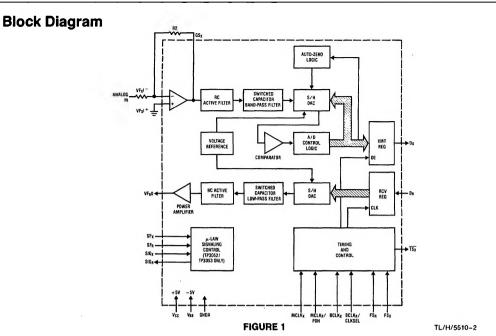
General Description


The TP3052, TP3053, TP3054, TP3057 family consists of μ -law and A-law monolithic PCM CODEC/filters utilizing the A/D and D/A conversion architecture shown in *Figure 1*, and a serial PCM interface. The devices are fabricated using National's advanced double-poly CMOS process (micro-CMOS).

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a companding coder which samples the filtered signal and encodes it in the companded µ-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded μ -law or A-law code, a low-pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz followed by a single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous: transmit and receive bit clocks, which may vary from 64 kHz to 2.048 MHz; and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.


Features

- Complete CODEC and filtering system (COMBO) including:
 - Transmit high-pass and low-pass filtering
 - Receive low-pass filter with sin x/x correction
 - Active RC noise filters
 - μ -law or A-law compatible COder and DECoder
 - Internal precision voltage reference
 - Serial I/O interface
 - Internal auto-zero circuitry
- □ μ-law with signaling, TP3020 or TP5116A timing— TP3052
- □ µ-law with signaling, TP5116A family timing—TP3053
- μ-law without signaling, 16-pin-TP3054
- A-law, 16-pin-TP3057
- Meets or exceeds all D3/D4 and CCITT specifications
- ±5V operation
- Low operating power—typically 60 mW
- Dever-down standby mode-typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes line interface card circuit density
- Dual-In-Line or PCC surface mount packages


Connection Diagrams

Plastic Chip Carriers

Available mid 1990

Pin Description

Symbol	Function
V _{BB}	Negative power supply pin. $V_{BB} = -5V \pm 5\%$.
GNDA	Analog ground. All signals are referenced to this pin.
VF _R O	Analog output of the receive power ampli- fier.
V _{CC}	Positive power supply pin. V _{CC} = $+5V \pm 5\%$.
FS _R	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into D_R , FS _R is an 8 kHz pulse train. See <i>Figures 2</i> and 3 for timing details.
D _R	Receive data input. PCM data is shifted into D_R following the FS _R leading edge.
BCLK _R /CLKSEL	The bit clock which shifts data into D_R after the FS _R leading edge. May vary from 64 kHz to 2.048 MHz. Alternatively, may be a logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master clock in synchronous mode and BCLK _X is used for both transmit and receive directions (see Table 1).
MCLK _R /PDN	Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _X , but should be synchronous with MCLK _X for best performance. When MCLK _R is connected continuously low, MCLK _X is selected for all internal timing. When MCLK _R is connected continuously high, the device is powered down.

Symbol	Function
SFR	When high during FS _R , this input indicates a receive signal frame.
SIG _R	The eighth bit of the PCM data appears at this output after each receive signalling frame.
SIG _X	Signal data input. Data at this input is in- serted into the 8th bit of the PCM word during transmit signaling frames.
SFX	When high during FS_X , this input indicates a transmit signaling frame.
MCLKX	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _R . Best performance is realized from synchronous operation.
FS _X	Transmit frame sync pulse input which en- ables $BCLK_X$ to shift out the PCM data on D_X . FS _X is an 8 kHz pulse train, see <i>Fig-</i> <i>ures 2</i> and <i>3</i> for timing details.
BCLK _X	The bit clock which shifts out the PCM data on D_{X} . May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCLK _X .
DX	The TRI-STATE® PCM data output which is enabled by FS _X .
TSX	Open drain output which pulses low during the encoder time slot.
GS _X	Analog output of the transmit input amplifi- er. Used to externally set gain.
VF _X I-	Inverting input of the transmit input amplifi- er.
VF _X I+	Non-inverting input of the transmit input amplifier.

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and places it into a power-down state. All non-essential circuits are deactivated and the D_X and VF_RO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin and FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first S_X or FS_R pulse. The TRI-STATE PCM data output, D_X, will remain in the high impedance state until the second FS_X pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_X and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLK_X will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_X and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BCLK_X will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}.

TABLE I. Selection of Master Clock Frequencies									
		r Clock y Selected							
BCLK _R /CLKSEL	TP3057	TP3052 TP3053 TP3054							
Clocked	2.048 MHz	1.536 MHz or							
		1.544 MHz							
0	1.536 MHz or	2.048 MHz							
	1.544 MHz								
1 (or Open Circuit)	2.048 MHz	1.536 MHz or							
		1.544 MHz							

TABLE I. Selection of Master Clock Frequencies

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. $MCLK_X$ and $MCLK_B$ must be 2.048

MHz for the TP3057, or 1.536 MHz, 1.544 MHz for the TP3052, 53, 54, and need not be synchronous. For best transmission performance, however, MCLK_R should be synchronous with MCLK_X, which is easily achieved by applying only static logic levels to the MCLK_R/PDN pin. This will automatically connect MCLK_X to all internal MCLK_R functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with MCLK_X and BCLK_X. FS_R starts each decoding cycle and must be synchronous with BCLK_R. BCLK_R must be a clock, the logic levels shown in Table 1 are not valid in asynchronous mode. BCLK_X and BCLK_R may operate for 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse (the same as the TP3020/21 CODECs) or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_R, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_X high during a falling edge of BCLK_X, the next rising edge of BCLK_X enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Dx output. With FSR high during a falling edge of BCLKR (BCLKX in synchronous mode), the next falling edge of BCLKe latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All four devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the TP5116A/56A long frame mode, both the frame sync pulses, FS_X and FS_B, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_x, the COMBO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of BCLK_X, whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLKx rising edges clock out the remaining seven bits. The D_X output is disabled by the falling BCLK_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_R, will cause the PCM data at D_R to be latched in on the next eight falling edges of BCLK_R (BCLK_X in synchronous mode). All four devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

SIGNALING

The TP3052 and TP3053 μ -law COMBOs contain circuitry to insert and extract signaling information in the PCM data stream. The TP3052 is intended for short frame sync applications, and the TP3053 for long frame sync applications, although the TP3053 may also be used in short frame sync applications. The TP3054 and TP3057 have no provision for signaling.

Functional Description (Continued)

Signaling for the TP3052 is accomplished by applying a frame sync pulse two bit clock periods long, as shown in Figure 2. With FS_X two bit clock periods long, the data present at SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With FS_R two bit clock periods long, the LSB of the PCM data read into the D_R input will be latched and appear on the SIG_R output pin until updated following the next signaling frame. The decoder will then interpret the lost LSB as " $\frac{1}{2}$ " to minimize noise and distortion. This short frame signaling may also be implemented using the TP3053, providing SF_R and SF_X are left open circuit or tied low. The TP3052 is not capable of inserting or extracting signaling information in the long frame mode.

Signaling for the TP3053 may be accomplished in either short or long frame sync mode. The short mode signaling is the same as the TP3052. For long frame signaling, two additional frame sync pulses are required, SF_X and SF_R, which indicate transmit and receive signaling frames, respectively. With an SF_X signaling frame sync, the data present at the SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With an SF_R signaling frame sync, the LSB of the PCM data at D_R will be latched and appear on the SIG_R output pin until the next signaling frame. The decoder will also do the "½" step interpretation to compensate for the loss of the LSB.

TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC

active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -law (TP3052, TP3053, TP3054) or A-law (TP3057) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see table of Transmission Characteristics). The FS_x frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_x at the next FS_x pulse. The total encoding delay will be approximately 165 us (due to the transmit filter) plus 125 µs (due to encoding delay), which totals 290 us. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3057) or μ -law (TP3052, TP3053, TP3054) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifer capable of driving a 600 Ω load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FSR, the data at the DR input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) periods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is ~ 10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s ($\frac{1}{2}$ frame), which gives approximately 180 μ s.

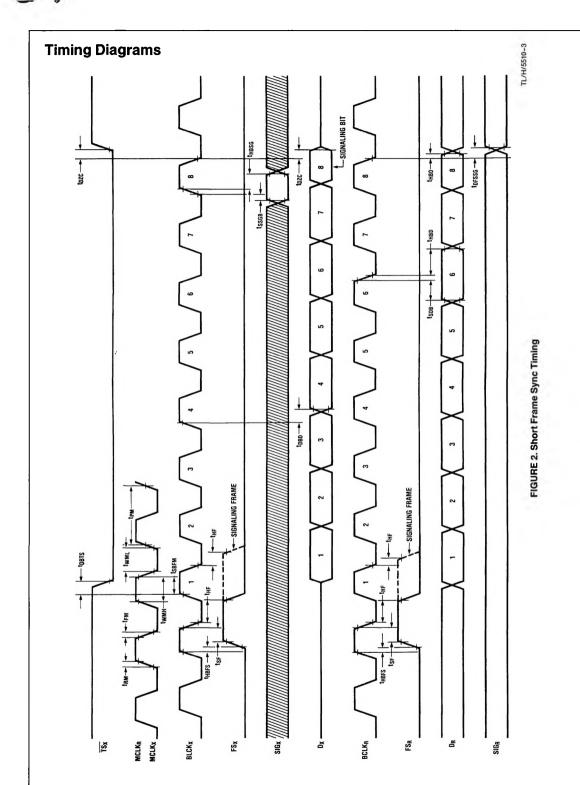
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V _{CC} to GNDA	7V
V _{BB} to GNDA	-7V
Voltage at any Analog Input	
or Output	V_{CC} + 0.3V to V_{BB} – 0.3V
	$V_{CC}\!+\!0.3V$ to $V_{BB}\!-\!0.3V$

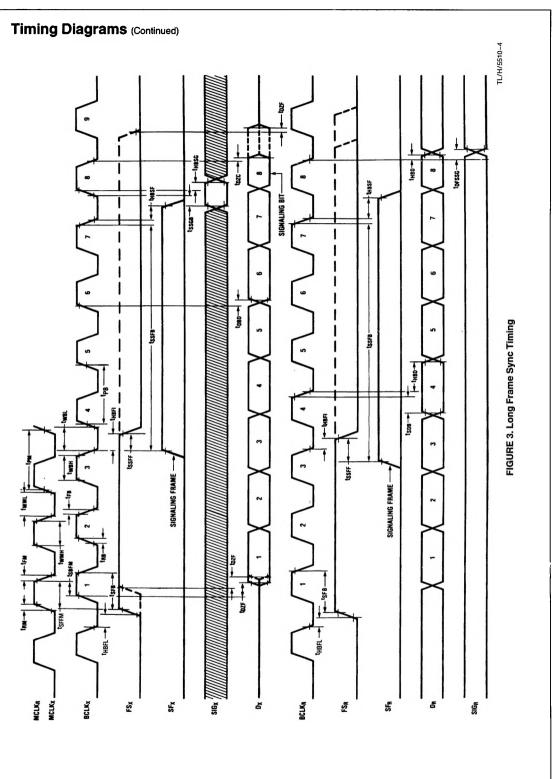
Voltage at any Digital Input or Output	V _{CC} +0.3V to GNDA-0.3V
Operating Temperature Range	-25°C to + 125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 1	0 seconds) 300°C
ESD (Human Body Model)	2000V
Latch-Up Immunity = 100 mA	on anv Pin

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.


Parameter	Conditions	Min	Тур	Max	Units
TERFACE					
Input Low Voltage				0.6	V
Input High Voltage		2.2			V
Output Low Voltage	D_X , $I_L = 3.2 \text{ mA}$ SIG _R , $I_L = 1.0 \text{ mA}$ TS _X , $I_L = 3.2 \text{ mA}$, Open Drain			0.4 0.4 0.4	>>>
Output High Voltage	D_X , I _H = -3.2 mA SIG _R , I _H = -1.0 mA	2.4 2.4			v v
Input Low Current	GNDA ≤ VIN ≤ VIL, All Digital Inputs	-10		10	μΑ
Input High Current	V _{IH} ≤V _{IN} ≤V _{CC}	-10		10	μΑ
Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	-10		10	μΑ
ITERFACE WITH TRANSMIT INPUT	AMPLIFIER (ALL DEVICES)				
Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200		200	nA
Input Resistance	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	10			MΩ
Output Resistance	Closed Loop, Unity Gain		1	3	Ω
Load Resistance	GS _X	10			kΩ
Load Capacitance	GS _X			50	рF
Output Dynamic Range	$GS_X, R_L \ge 10 k\Omega$	-2.8		2.8	v
Voltage Gain	VF _X I ⁺ to GS _X	5000			V/V
Unity Gain Bandwidth		1	2		MHz
Offset Voltage		-20		20	mV
Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V
Common-Mode Rejection Ratio	DC Test	60			dB
Power Supply Rejection Ratio	DC Test	60			dB
ITERFACE WITH RECEIVE FILTER (A	ALL DEVICES)				
Output Resistance	Pin VF _R O		1	3	Ω
Load Resistance	$VF_{R}O = \pm 2.5V$	600			Ω
Load Capacitance				500	рF
Output DC Offset Voltage		-200		200	m۷
SSIPATION (ALL DEVICES)					
Power-Down Current	No Load (Note)		0.5	1.5	mA
Power-Down Current	No Load (Note)		0.05	0.3	mA
Power-Up Active Current	No Load		6.0	9.0	mA
Power-Up Active Current	No Load		6.0	9.0	mA
	TERFACE Input Low Voltage Input High Voltage Output Low Voltage Output Low Voltage Input Low Voltage Input Low Current Output Resistance Load Capacitance Output DC Offset Voltage SIPATION (ALL DEVICES) Power-Down Current Power-Down Current	TERFACEInput Low VoltageInput High VoltageOutput Low VoltageDutput Low VoltageOutput Low VoltageDutput High VoltageDutput Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$ All Digital InputsInput Low Current in High ImpedanceState (TRI-STATE)ITERFACE WITH TRANSMIT INPUT AMPLIFIER (ALL DEVICES)Input Leakage Current $-2.5V \leq V \leq \pm 2.5V$, VFx1+ or VFx1-Input ResistanceClosed Loop, Unity GainLoad ResistanceGSxOutput Dynamic RangeGSx, RL $\geq 10 k\Omega$ Voltage GainVFx1+ to GSxUnity Gain BandwidthOffset VoltageCommon-Mode Rejection RatioDC TestITERFACE WITH RECEIVE FILTER (ALL DEVICES)Output ResistanceGSxOutput Dynamic RangeCommon-Mode Rejection RatioDC TestITERFACE WITH RECEIVE FILTER (ALL DEVICES)Output ResistancePower Supply Rejection RatioDC TestITERFACE WITH RECEIVE FILTER (ALL DEVICES)Output Coffset VoltageSIPATION (ALL DEVICES)Power-Down CurrentNo Load (Note)Power-Down CurrentNo Load (Note)Power-Up Active CurrentNo LoadPower-Up Active CurrentNo Load	TERFACEInput Low Voltage2.2Input High VoltageDX, IL = 3.2 mA SIGR, IL = 1.0 mA TSX, IL = 3.2 mA, Open DrainOutput High VoltageDX, IH = -3.2 mA SIGR, IH = -1.0 mAOutput High VoltageDX, IH = -3.2 mA SIGR, IH = -1.0 mAInput Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$, All Digital InputsOutput High CurrentVIH $\leq V_{IN} \leq V_{CC}$ Output Current in High Impedance State (TRI-STATE)ITERFACE WITH TRANSMIT INPUT AMPLIFIER (ALL DEVICES)Input Leakage Current $-2.5V \leq V \leq + 2.5V, VF_XI^+ \text{ or } VF_XI^-$ Input ResistanceClosed Loop, Unity GainLoad ResistanceGSXOutput Dynamic RangeGSX, RL $\geq 10 \ k\Omega$ Voltage GainVF_XI^+ to GSXVoltage GainVF_XI^+ to GSXVoltage GainDC TestOnmon-Mode Rejection RatioDC TestOutput ResistancePin VF _R OLoad ResistanceVF _R O $\pm 2.5V$ Common-Mode Rejection RatioDC TestOutput ResistanceOC TestOutput ResistanceVF _R O $\pm 2.5V$ Common-Mode Rejection RatioDC TestOutput ResistanceVF _R O $\pm 2.5V$ Common-Mode Rejection RatioDC TestOutput ResistanceVF _R O $\pm 2.5V$ Output ResistanceV-2.0VPower-Supply Rejection RatioDC TestOutput ResistanceVF _R O $\pm 2.5V$ Common-Mode Rejection RatioDC TestOutput ResistanceVF _R O $\pm 2.5V$ Rout ResistanceVF _R O $\pm 2.5V$ Rout Resi	TERFACEInput Low VoltageDx, IL = 3.2 mAOutput Low VoltageDx, IL = 3.2 mA, Open DrainOutput High VoltageDx, IL = 3.2 mA, Open DrainOutput High VoltageDx, IL = -1.0 mATSx, IL = 3.2 mA, Open Drain2.4Input High CurrentGNDA $\leq V_{IN} \leq V_{IL}$. All Digital InputsInput High CurrentGNDA $\leq V_{IN} \leq V_{IL}$. All Digital InputsOutput Current in High ImpedanceDx, GNDA $\leq V_{OC}$ Dutput Current in High ImpedanceDx, GNDA $\leq V_{OC}$ State (TRI-STATE)Dx, GNDA $\leq V_{S} < 2.5V, VF_{X} ^+$ or $VF_{X} ^-$ Input Leakage Current $-2.5V \leq V \leq +2.5V, VF_{X} ^+$ or $VF_{X} ^-$ Input ResistanceClosed Loop, Unity GainOutput ResistanceGSxOutput Dynamic RangeGSx, RL $\geq 10 \ k\Omega$ Voltage Gain $VF_{X} ^+$ to GS_X Voltage GainVF_{X} ^+ to GSCommon-Mode Rejection RatioDC TestOutput ResistanceDC TestCommon-Mode Rejection RatioDC TestOutput ResistanceVF _R O = $\pm 2.5V$ 600Incard ResistanceUnity Gain Bandwidth112Otfset VoltageCMRRXA > 60 dBCommon-Mode Rejection RatioDC Test0Output ResistanceVF _R O = $\pm 2.5V$ 600Load ResistanceVF _R O = $\pm 2.5V$ Output DC Offset VoltageOutput ResistanceVF _R O = $\pm 2.5V$ Output DC Offset VoltageOutput DC Offset VoltageOutput DC Offset Voltage <td< td=""><td>TERFACE0.6Input Low VoltageDx, IL = 3.2 mA SIGR, IL = 1.0 mA TSx, IL = 3.2 mA, Open Drain0.4Output Low VoltageDx, It = -3.2 mA SIGR, It = -1.0 mA TSx, IL = 3.2 mA, Open Drain0.4Output High VoltageDx, It = -3.2 mA SIGR, It = -1.0 mA2.4Input Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$ All Digital inputs-10Input Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$ All Digital inputs-10Output High Current in High ImpedanceDx, It = -3.2 mA State (TRI-STATE)2.4Input Leakage CurrentVIH $\leq V_{IN} \leq V_{CC}$-1010Output ResistanceDx, GNDA $\leq V_{O} \leq V_{CC}$-1010Input Leakage Current-2.5V $\leq V \leq +2.5V$, VFxI⁺ or VFxI⁻-200200Input ResistanceClosed Loop, Unity Gain13Load ResistanceGSx1010Load CapacitanceGSx5001Unity Gain Bandwidth1220Offset VoltageCMRRXA > 60 dB-2.52.5Common-Mode Rejection RatioDC Test601Dutput ResistanceVFxQ = ±2.5V6001Unity Gain BandwidthDC Test601Output Dynamic RanceVFxRO13Load ResistanceVFxRO13Load ResistanceVFxRO13Output BandwidthDC Test601Dutput ResistanceVFxRO13Load ResistanceVFxRO13Load Resis</td></td<>	TERFACE0.6Input Low VoltageDx, IL = 3.2 mA SIGR, IL = 1.0 mA TSx, IL = 3.2 mA, Open Drain0.4Output Low VoltageDx, It = -3.2 mA SIGR, It = -1.0 mA TSx, IL = 3.2 mA, Open Drain0.4Output High VoltageDx, It = -3.2 mA SIGR, It = -1.0 mA2.4Input Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$ All Digital inputs-10Input Low CurrentGNDA $\leq V_{IN} \leq V_{IL}$ All Digital inputs-10Output High Current in High ImpedanceDx, It = -3.2 mA State (TRI-STATE)2.4Input Leakage CurrentVIH $\leq V_{IN} \leq V_{CC}$ -1010Output ResistanceDx, GNDA $\leq V_{O} \leq V_{CC}$ -1010Input Leakage Current-2.5V $\leq V \leq +2.5V$, VFxI ⁺ or VFxI ⁻ -200200Input ResistanceClosed Loop, Unity Gain13Load ResistanceGSx1010Load CapacitanceGSx5001Unity Gain Bandwidth1220Offset VoltageCMRRXA > 60 dB-2.52.5Common-Mode Rejection RatioDC Test601Dutput ResistanceVFxQ = ±2.5V6001Unity Gain BandwidthDC Test601Output Dynamic RanceVFxRO13Load ResistanceVFxRO13Load ResistanceVFxRO13Output BandwidthDC Test601Dutput ResistanceVFxRO13Load ResistanceVFxRO13Load Resis

Note: I_{CC0} and I_{BB0} are measured after first achieving a power-up state.

.


Timing Specifications Unless otherwise noted, limits printed in BOLD characters are guaranteed for $V_{CC} = 5.0V$
$\pm 5\%$, V _{BB} = $-5.0V \pm 5\%$; T _A = 0°C to 70°C by correlation with 100% electrical testing at T _A = 25°C. All other limits are
assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA.
Typicals specified at V_{CC} = 5.0V, V_{BB} = -5.0V, T_A = 25°C. All timing parameters are measured at V_{OH} = 2.0V and V_{OL} =
0.7V. See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clocks	Depends on the Device Used and the BCLK _R /CLKSEL Pin. MCLK _X and MCLK _R		1.536 1.544 2.048		MHz MHz MHz
t _{RM}	Rise Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{FM}	Fall Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{PB}	Period of Bit Clock		485	488	15725	ns
t _{RB}	Rise Time of Bit Clock	BCLK _X and BCLK _R			50	ns
FB	Fall Time of Bit Clock	BCLK _X and BCLK _R			50	ns
twмн	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
twmL	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
SBFM	Set-Up Time from $BCLK_X$ High to $MCLK_X$ Falling Edge	First Bit Clock after the Leading Edge of FS _X	100			ns
^t SFFM	Set-Up Time from FS _X High to MCLK _X Falling Edge	Long Frame Only	100			ns
wвн	Width of Bit Clock High	V _{IH} =2.2V	160			ns
^t WBL	Width of Bit Clock Low	V _{IL} =0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
t _{HBFS}	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	80			ns
t _{DBD}	Delay Time from BCLK _X High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		140	ns
t _{DBTS}	Delay Time to TS _X Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _X Low to Data Output Disabled	C _L =0 pF to 150 pF	50		165	ns
t _{DZF}	Delay Time to Valid Data from FS_X or BCLK _X , Whichever Comes Later	$C_L = 0 pF$ to 150 pF	20		165	ns
tSSFF	Set-Up Time from $SF_{X/R}$ High to $FS_{X/R}$	TP3053 Only	60			ns
tSSFB	Set-Up Time from Signal Frame Sync High to BCLK _{X/R} Clock	TP3053 Only	60			ns
tssgb	Set-Up Time from SIG_X to $BCLK_X$	TP3052 and TP3053	100			ns
^t HBSG	Hold Time from $BCLK_X$ High to SIG_X	TP3052 and TP3053	50			ns
^t SDB	Set-Up Time from D_R Valid to $BCLK_{R/X}$ Low		50			ns
^t HBD	Hold Time from $BCLK_{R/X}$ Low to D_R Invalid		50			ns
t _{HBSF}	Hold Time from BCLK _{X/R} Low to Signaling Frame Sync	TP3053 Only	100			ns
t _{SF}	Set-Up Time from $FS_{X/R}$ to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
^t HF	Hold Time from $BCLK_{X/R}$ Low to $FS_{X/R}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
tWFL	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

TP3052, TP3053, TP3054, TP3054-1, TP3057, TP3057-1

1-36

-

Transmission Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unite
	IDE RESPONSE					
	Absolute Levels (Definition of Nominal Gain)			1.2276		Vrms
t _{MAX}		Max Overload Level TP3052, TP3053, TP3054 (3.17 dBm0) TP3057 (3.14 dBm0)		2.501 2.492		V _{PK} V _{PK}
G _{XA}	Transmit Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input at $GS_X = 0$ dBm0 at 1020 Hz TP3052/53/54/57 TP3054-1/57-1	~0.15 ~0.20		0.15 0.20	dB dB
G _{XR}	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz (TP3054-1/57-1) f = 60 Hz (TP3054/57) f = 200 Hz f = 300 Hz - 3000 Hz f = 3300 Hz f = 3400 Hz (TP3052/53/54/57) f = 3400 Hz (TP3054-1/57-1) f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 1.8 - 0.15 - 0.35 - 0.7 - 0.95		-40 -30 -22 -0.1 0.15 0.05 0.05 -14 -32	dB dB dB dB dB dB dB dB dB dB dB dB dB d
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1		0.1	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G _{XRL}	Transmit Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I ⁺ = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I ⁺ = -50 dBm0 to -40 dBm0 VF _X I ⁺ = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz TP3052/53/54/57 TP3054-1/57-1	-0.15 -0.20		0.15 0.20	dB dB
G _{RR}	Receive Gain, Relative to G _{RA}	f = 0 Hz to 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz	-0.15 -0.35 -0.7		0.15 0.05 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level = $-40 \text{ dBm0 to } + 3 \text{ dBm0}$ = $-40 \text{ dBm0 to } + 3 \text{ dBm0}$ (TP3054-1/57-1 only) = $-50 \text{ dBm0 to } -40 \text{ dBm0}$ = $-55 \text{ dBm0 to } -50 \text{ dBm0}$	-0.2 -0.25 -0.4 -1.2		0.2 0.25 0.4 1.2	dB dB dB
		= - 55 0BmU to - 50 0BmU	- 1.2		1.2	l dB

TP3052, TP3053, TP3054, TP3054-1, TP3057, TP3057-1

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

WeightedTP3054-1 (Note 1)16NXPTransmit Noise, P Message WeightedTP3057 TP3057-1 (Note 1)-74-67 -66NRCReceive Noise, C Message WeightedPCM Code is Alternating Positive and Negative Zero — TP3052/53/54 TP3054-18811 13NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero —-82-79	Symbol	Parameter	Conditions	Min	Тур	Max	Units
DxR Transmit Delay, Relative to DxA f = 500 Hz = 600 Hz 195 220 f = 600 Hz = 000 Hz 120 145 50 75 f = 600 Hz = 2600 Hz 50 75 50 75 f = 600 Hz = 2600 Hz 80 105 120 145 f = 1000 Hz = 2600 Hz 80 105 120 130 155 DRA Receive Delay, Absolute f = 1600 Hz 100 125 100 125 DRR Receive Delay, Relative to DRA f = 500 Hz = 1000 Hz -40 -25 -20 70 90 125 145 175 NOISE Transmit Noise, C Message TP3052, TP3053, TP3054 121 16 100 125 16 175 NRC Transmit Noise, C Message TP3057.1 (Note 1) -74 -67 -66 Ngc Receive Noise, C Message TP3057.1 (Note 1) -74 -66 13 Ngc Receive Noise, P Message TP3057.1 (Note 1) -74 -66 -77 -67 -	ENVELOP	E DELAY DISTORTION WITH FREQU	JENCY				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DXB	Transmit Delay, Relative to DXA	f=500 Hz-600 Hz		195	220	μs
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$,		f=600 Hz-800 Hz		120	145	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			f=800 Hz-1000 Hz		50	75	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			f= 1000 Hz-1600 Hz		20	40	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			f=1600 Hz-2600 Hz		55	75	μs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			f=2600 Hz-2800 Hz		80	105	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			f=2800 Hz-3000 Hz		130	155	μs
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	D _{RA}	Receive Delay, Absolute	f=1600 Hz		180	200	μs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D _{BB}	Receive Delay, Relative to D _{BA}	f=500 Hz-1000 Hz	-40	-25		μS
$\begin{tabular}{ c c c c c c } \hline f = 2600 Hz - 2800 Hz \\ f = 2800 Hz - 3000 Hz \\ \hline 145 \\ \hline 175 \\ \hline 175 \\ \hline 175 \\ \hline 175 \\ \hline 185 \\ \hline 1$			f= 1000 Hz-1600 Hz	-30	-20		μs
Image: Noise in the im			f= 1600 Hz-2600 Hz		70	90	μs
Image: Noise in the im)	1		μs
N _{XC} Transmit Noise, C Message Weighted TP3052, TP3053, TP3054 TP3054-1 (Note 1) 12 15 16 N _{XP} Transmit Noise, P Message Weighted TP3057-1 (Note 1) -774 -67 -66 N _{RC} Receive Noise, C Message Weighted PCM Code is Alternating Positive and Negative Zero — TP3052/53/54 TP3057-1 8 11 N _{RP} Receive Noise, P Message Weighted TP3057 PCM Code Equals Positive Zero — TP3057-1 -82 -79 N _{RS} Noise, Single Frequency f = 0 kHz to 100 kHz, Loop Around Measurement, VF _X I ⁺ = 0 Vrms -53 PPSR _X Positive Power Supply Rejection, Transmit VF _X I ⁺ = -50 dBm0 V _{CC} = 5.0 V _{DC} + 100 mVrms f = 0 kHz = 50 kHz (Note 2) 40 NPSR _X Negative Power Supply Rejection, Receive VF _X I ⁺ = -50 dBm0 V _{GC} = 5.0 V _{DC} + 100 mVrms f = 0 kHz = 50 kHz (Note 2) 40 PPSR _R Positive Power Supply Rejection, Receive VF _X I ⁺ = -50 dBm0 V _{GC} = 5.0 V _{DC} + 100 mVrms f = 0 kHz = 50 kHz (Note 2) 40 PPSR _R Negative Power Supply Rejection, Receive VF _X I ⁺ = -50 dBm0 V _{GC} = 5.0 V _{DC} + 100 mVrms Measure VF _R 0 40 f = 0 kHz = 50 kHz (Note 2) 40 1 1 NPSR _R Negative Power Supply Rejection, R							μs
WeightedTP3054-1 (Note 1)16NXPTransmit Noise, P Message WeightedTP3057 TP3057-1 (Note 1) -74 -67 -66 NRCReceive Noise, C Message WeightedPCM Code is Alternating Positive and Negative Zero — TP3052/53/54 TP3057-1 8 11 13NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero — TP3057-1 -82 -79 -82 NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, VFXI + $= 0$ Vrms -82 -79 -777 NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, VFXI + $= 0$ Vrms -53 PPSRxPositive Power Supply Rejection, Transmit $VF_XI^+ = -50$ dBm0 $V_{CC} = 5.0$ VDC + 100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive $VF_XI^+ = -50$ dBm0 $V_{CC} = 5.0$ VDC + 100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ VDC + 100 mVrms $f=0$ kHz-50 kHz40PPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ VDC + 100 mVrms $f=0$ Hz-4000 Hz40Image: NPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ VDC + 100 mVrms $f=0$ Hz-4000 Hz40Image: NPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{DC} = 5.0$ VDC + 100 mVrms $f=0$ Hz-4000 Hz40Image: NPSRRNegative Power Supp	NOISE		· · · · · · · · · · · · · · · · · · ·	1			
WeightedTP3054-1 (Note 1)16NXPTransmit Noise, P Message WeightedTP3057 TP3057-1 (Note 1) -74 -67 -66 NRCReceive Noise, C Message WeightedPCM Code is Alternating Positive and Negative Zero — TP3052/53/54 TP3057-11 8 11 13 NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero — TP3057-1 -82 -79 -77 NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, VFXI + = 0 Vrms -82 -77 PSRxPositive Power Supply Rejection, Transmit $VF_XI + = -50$ dBm0 $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRxNegative Power Supply Rejection, Transmit $VF_XI + = -50$ dBm0 $V_{BB} = -5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRAPositive Power Supply Rejection, Transmit $VF_XI + = -50$ dBm0 $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRANegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz40PPSRAPositive Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz40PPSRANegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $Measure VF_RD40PPSRANegative Power Supply Rejection,ReceivePCM Code Equals Positive ZeroV_{CC} = 5.0 V_{DC} + 100 mVrmsMeasure VF_RD40NP$		Transmit Noise, C Message	TP3052, TP3053, TP3054		12	15	dBrnCC
MeightedTP3057-1 (Note 1)-66NRCReceive Noise, C Message WeightedPCM Code is Alternating Positive and Negative Zero — TP3052/53/54811NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero — TP3057 1811NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero — TP3057.1-82-79NRsNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, VFxI+ = 0 Vrms-82-79PPSRxPositive Power Supply Rejection, Transmit $VF_XI^+ = -50$ dBm0 $V_{CC} = 5.0 V_{DC} + 100 mVrms$ $f=0$ kHz-50 kHz (Note 2)40-53PPSRxNegative Power Supply Rejection, Transmit $VF_XI^+ = -50$ dBm0 $V_{BB} = -5.0 V_{DC} + 100 mVrms$ $f=0$ kHz-50 kHz (Note 2)40-PPSRxPositive Power Supply Rejection, Receive $VF_XI^+ = -50$ dBm0 $V_{GC} = 5.0 V_{DC} + 100 mVrms$ $f=0$ kHz-50 kHz (Note 2)40-PPSRRPositive Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0 V_{DC} + 100 mVrms$ $f=0$ Hz-4000 Hz $f=0$ Hz-25 kHz40PPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0 V_{DC} + 100 mVrms$ $f=2 5 kHz-50 kHz$ 38NPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0 V_{DC} + 100 mVrms$ $f=4 - 50 kHz$ (TP3054-1/57-1) gB 38NPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC} = 5.0 V_{DC} + 100 mVrms$ $f=6 -$							dBrnC0
$ \begin{array}{ c c c c c c } \hline Weighted & TP3057-1 (Note 1) & & & & -66 \\ \hline Weighted & TP3057-1 (Note 1) & & & & -66 \\ \hline N_{RC} & Receive Noise, C Message \\ Weighted & & and Negative Zero - \\ TP3052/53/54 & & & 8 \\ \hline 11 \\ TP30557-1 & & & & 8 \\ \hline TP3057-1 & & & & 8 \\ \hline TP3057-1 & & & & -82 \\ \hline PSR_X & Positive Power Supply Rejection, \\ Transmit & & & & & & \\ \hline VF_X ^+ & = -50 \ MEx & Message \\ \hline PSR_X & Negative Power Supply Rejection, \\ Transmit & & & & & & \\ \hline PSR_X & Negative Power Supply Rejection, \\ Transmit & & & & & \\ \hline PSR_X & Positive Power Supply Rejection, \\ Receive & & & & & \\ \hline PPSR_X & Positive Power Supply Rejection, \\ Receive & & & & & \\ \hline PSR_X & Negative Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_X & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_X & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_X & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline PPSR_A & Positive Power Supply Rejection, \\ Receive & & & & \\ \hline POM Code Equals Positive Zero \\ V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms \\ f = 0 \ Hz - 25 \ kHz - 50 \ kHz \\ f = 0 - 4 \ kHz - 25 \ kHz \\ f = 0 - 4 \ kHz - 25 \ kHz \\ \hline f = 4 - 50 \ kHz \\ \hline F = 0 - 4 \ kHz - 25 \ kHz \\ \hline F = 0 - 4 \ kHz - 25 \ kHz \\ \hline F = 0 - 4 \ kHz \\ \hline F = 0 \ kHz \\ \hline F = 0 \ k$	Nxp	Transmit Noise, P Message	TP3057		-74	-67	dBm0p
$\begin{tabular}{ c c c c c c } \hline Weighted & and Negative Zero — TP3052/53/54 TP3057+2CM Code Equals Positive & 8 & 11 & 13 \\ \hline TP3054-1 & P3057+2CM Code Equals Positive & -82 & -79 & -77 & -82 & -79 & -77 & -$			TP3057-1 (Note 1)			-66	dBm0p
$\begin{tabular}{ c c c c c } \hline Weighted & and Negative Zero — TP3052/53/54 TP305742 & 8 & 11 \\ TP3054-1 & 8 & 11 \\ TP3054-1 & -82 & -79 \\ \hline TP3057 PCM Code Equals Positive Zero — -82 & -79 \\ \hline TP3057-1 & -82 & -79 \\ \hline TP305-1 & -82 & -79 \\ \hline TP305-1 & -82 & -79 \\ \hline TP305-1 & -79 & -77 \\ \hline TP305-1 & -70 & -70 \\ \hline TP305-1 & -70 & -70 \\ \hline TP305-1 & -70 & -70 & -70 \\ \hline TP305-1 & $	N _{RC}	Receive Noise, C Message	PCM Code is Alternating Positive				
$\begin{tabular}{ c c c c c } \hline TP3052/53/54 \\ TP3054-1 \\ \hline TP3057+1 \\ \hline TP3057+1 \\ \hline TP3057+1 \\ \hline TP3057-1 $		Weighted	and Negative Zero —				
TP3054-113NRPReceive Noise, P Message WeightedTP3057 PCM Code Equals Positive Zero — TP3057-1 -82 -79 -77 NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, $VF_XI^+=0$ Vrms -53 PPSRxPositive Power Supply Rejection, Transmit $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ VDC+100 mVrms $f=0$ kHz-50 kHz (Note 2)40NPSRxNegative Power Supply Rejection, Transmit $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ VDC+100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRxNegative Power Supply Rejection, Transmit $VF_XI^+=-50$ dBm0 $V_{BB}=-5.0$ VDC+100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ VDC+100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ VDC+100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{CC}=5.0$ VDC+100 mVrms $f=0$ Hz-4000 Hz $f=4$ kHz-25 kHz $f=0-4$ kHz (TP3054-1/57-1) 38 $f=0-4$ kHz (TP3054-1/57-1) 38 40NPSRRNegative Power Supply Rejection, Receive PCM Code Equals Positive Zero $V_{BB}=-5.0$ VDC+100 mVrms $Measure VF_{R0}$ 40			TP3052/53/54		8	11	dBrnC
WeightedZero — TP3057-1-82-79 -77NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, VFx1 = 0 Vrms-53PPSRxPositive Power Supply Rejection, TransmitVFx1 = -50 dBm0 VCC = 5.0 VDC + 100 mVrms $f=0$ kHz-50 kHz (Note 2)40NPSRxNegative Power Supply Rejection, TransmitVFx1 = -50 dBm0 VBB = -5.0 VDC + 100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceiveVFx1 = -50 dBm0 VBB = -5.0 VDC + 100 mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceivePCM Code Equals Positive Zero VCC = 5.0 VDC + 100 mVrms Measure VFR0 $f=0$ Hz-25 kHz40PPSRRPositive Power Supply Rejection, ReceivePCM Code Equals Positive Zero VGC = 5.0 kHz40NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero VGC = 5.0 kHz40NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero VBB = -5.0 VDC + 100 mVrms Measure VFR040NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero VBB = -5.0 VDC + 100 mVrms Measure VFR040							dBrnC
TP3057-177NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, $VF_XI^+ = 0$ Vrms-53PPSRxPositive Power Supply Rejection, Transmit $VF_XI^+ = -50$ dBm0 $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40NPSRxNegative Power Supply Rejection, Transmit $VF_XI^+ = -50$ dBm0 $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, Receive $VF_XI^+ = -50$ dBm0 $V_{BB} = -5.0$ $V_{DC} + 100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceivePCM Code Equals Positive Zero $V_{CC} = 5.0$ $V_{DC} + 100$ mVrms $f=0$ Hz-4000 Hz40f=4 kHz-25 kHz f=0 + kHz-50 kHz (TP3054-1/57-1) f=4-50 kHz (TP3054-1/57-1)36NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero $V_{BB} = -5.0$ $V_{DC} + 100$ mVrms $f=4-50$ kHz (TP3054-1/57-1)40NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero $V_{BB} = -5.0$ $V_{DC} + 100$ mVrms Measure VFR040	NRP	Receive Noise, P Message	TP3057 PCM Code Equals Positive				
TP3057-177NRSNoise, Single Frequency $f=0$ kHz to 100 kHz, Loop Around Measurement, $VF_XI^+=0$ Vrms-53PPSRxPositive Power Supply Rejection, Transmit $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ $V_{DC}+100$ mVrms $f=0$ kHz-50 kHz (Note 2)40NPSRxNegative Power Supply Rejection, Transmit $VF_XI^+=-50$ dBm0 $V_{CC}=5.0$ $V_{DC}+100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceiveVF_XI^+=-50 dBm0 $V_{BB}=-5.0$ $V_{DC}+100$ mVrms $f=0$ kHz-50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceivePCM Code Equals Positive Zero $V_{CC}=5.0$ $V_{DC}+100$ mVrms $f=0$ Hz-4000 Hz40f=0 kHz-50 kHz100 f=0 Hz-4000 Hz40f=2 kHz-50 kHz36 f=0-4 kHz (TP3054-1/57-1) 3538NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero $V_{BB}=-5.0$ $V_{DC}+100$ mVrms $f=4-50$ kHz (TP3054-1/57-1) 3540		Weighted	Zero —		-82	-79	dBm0p
NPSRxPositive Power Supply Rejection, TransmitVF_XI + = -50 dBm0 V_{CC} = 5.0 V_{DC} + 100 mVrms f = 0 kHz - 50 kHz (Note 2)40NPSRxNegative Power Supply Rejection, TransmitVF_XI + = -50 dBm0 V_{CC} = 5.0 V_{DC} + 100 mVrms f = 0 kHz - 50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceiveVF_XI + = -50 dBm0 V_{BB} = -5.0 V_{DC} + 100 mVrms f = 0 kHz - 50 kHz (Note 2)40PPSRRPositive Power Supply Rejection, ReceivePCM Code Equals Positive Zero V_{CC} = 5.0 V_{DC} + 100 mVrms Measure VFR0 f = 0 Hz - 4000 Hz40f = 0 Hz - 4000 Hz40 f = 4 kHz - 25 kHz40 f = 25 kHz - 50 kHz (TP3054-1/57-1)NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero V_{BB} = -5.0 V_{DC} + 100 mVrms Measure VFR0NPSRRNegative Power Supply Rejection, ReceivePCM Code Equals Positive Zero V_{BB} = -5.0 V_{DC} + 100 mVrms Measure VFR0			TP3057-1			-77	dBm0p
$\begin{tabular}{ c c c c c } \hline Measurement, VF_XI^+ = 0 Vrms & & & & & & & & & & & & \\ \hline PPSR_X & Positive Power Supply Rejection, Transmit & VF_XI^+ = -50 dBm0 & V_{CC} = 5.0 V_{DC} + 100 mVrms & f = 0 kHz - 50 kHz (Note 2) & 40 & & & & & & & & & & & & & & & & & & &$	Nes	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around			-53	dBm0
$\begin{tabular}{ c c c c c } \hline Transmit & V_{CC}=5.0 \ V_{DC}+100 \ mVrms \\ f=0 \ kHz-50 \ kHz \ (Note 2) & \textbf{40} \\ \hline \end{tabular} \\ \hline NPSR_X & Negative Power Supply Rejection, \\ Transmit & Teo \ hHz-50 \ kHz \ (Note 2) & \textbf{40} \\ \hline \end{tabular} \\ \hline PPSR_R & Positive Power Supply Rejection, \\ Receive & Power \ Supply Rejection, \\ Receive & V_{CC}=5.0 \ V_{DC}+100 \ mVrms \\ Measure \ VF_R0 & f=0 \ Hz-4000 \ Hz & \textbf{40} \\ f=0 \ Hz-400 \ Hz & \textbf{40} & f=0 \ Hz-50 \ kHz & \textbf{40} & f=0 \ Hz-50 \ kHz & \textbf{40} & f=0 \ Hz-400 \ Hz & \textbf{40} & f=0 \ Hz-400 \ Hz & \textbf{40} & f=0 \ Hz-400 \ Hz & \textbf{40} & f=0 \ Hz-50 \ kHz & \textbf{36} & f=0-4 \ kHz \ (TP3054-1/57-1) & \textbf{38} & f=0-4 \ kHz \ (TP3054-1/57-1) & \textbf{35} & f=0 \ NPSR_R & Negative Power \ Supply Rejection, \\ Receive & PCM \ Code \ Equals \ Positive \ Zero & V_{BB} & =-5.0 \ V_{DC}+100 \ mVrms & Measure \ VF_R0 & f=0 \ Hz \ (TP3054-1/57-1) & \textbf{35} & f=0 \ Hz \ (TP3054-1/57-1) & \textbf{36} & f=$			Measurement, $VF_XI^+ = 0$ Vrms				
$\begin{tabular}{ c c c c c } \hline f = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 & & & & & & & \\ \hline NPSR_X & Negative Power Supply Rejection, Transmit & VF_XI + = -50 \ dBm0 & V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms & f = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 & & & & & & \\ \hline PPSR_R & Positive Power Supply Rejection, Receive & PCM Code Equals Positive Zero & V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms & Measure \ VF_R0 & f = 0 \ Hz - 400 \ Hz & 40 & & & & & \\ \hline f = 0 \ Hz - 25 \ kHz & 40 & & & & & \\ \hline f = 0 \ Hz - 25 \ kHz & 36 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 400 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & & & & & & & \\ \hline NPSR_R & Negative Power Supply Rejection, Receive & PCM Code Equals Positive Zero \ V_{BB} = -5.0 \ V_{DC} \ H0 \ mVrms \ Measure \ VF_R0 & & & & & & & & & & & & & & & & & & &$	PPSRX	Positive Power Supply Rejection,					
$\begin{tabular}{ c c c c c } \hline f = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 & & & & & & & \\ \hline NPSR_X & Negative Power Supply Rejection, Transmit & VF_XI + = -50 \ dBm0 & V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms & f = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 & & & & & & \\ \hline PPSR_R & Positive Power Supply Rejection, Receive & PCM Code Equals Positive Zero & V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms & Measure \ VF_R0 & f = 0 \ Hz - 400 \ Hz & 40 & & & & & \\ \hline f = 0 \ Hz - 25 \ kHz & 40 & & & & & \\ \hline f = 0 \ Hz - 25 \ kHz & 36 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 400 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & \\ \hline f = 0 \ Hz - 400 \ Hz & 40 & & & & & & & & & & & & & & & \\ \hline NPSR_R & Negative Power Supply Rejection, Receive & PCM Code Equals Positive Zero \ V_{BB} = -5.0 \ V_{DC} \ H0 \ mVrms \ Measure \ VF_R0 & & & & & & & & & & & & & & & & & & &$		Transmit	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$				
$\begin{tabular}{ c c c c c } \hline Transmit & V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms \\ f = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 \end{tabular} \\ \hline PPSR_R & Positive Power Supply Rejection, Receive & PCM Code Equals Positive Zero \\ V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms \\ Measure \ VF_R0 & f = 0 \ Hz - 4000 \ Hz & 40 & f = 4 \ kHz - 25 \ kHz & 40 & f = 25 \ kHz - 50 \ kHz & 36 & f = 0 - 4 \ kHz \ (TP3054 - 1/57 - 1) & 38 & f = 4 - 50 \ kHz \ (TP3054 - 1/57 - 1) & 35 & f = 4 - 50 \ kHz \ measure \ V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms & Measure \ VF_R0 & f = 4 \ Schematrix \ Schematr$				40			dBC
$\begin{tabular}{ c c c c c } \hline F = 0 \ kHz - 50 \ kHz \ (Note 2) & 40 & & & & & & & & & & & & & & & & & $	NPSRX	Negative Power Supply Rejection,					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Transmit	$V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$				
$\begin{tabular}{ c c c c c c } \hline Receive & V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms & Measure \ VF_R0 & f = 0 \ Hz - 4000 \ Hz & 40 & f = 0 \ Hz - 4000 \ Hz & 40 & f = 25 \ kHz - 25 \ kHz & 40 & f = 25 \ kHz - 50 \ kHz & 36 & f = 0 - 4 \ kHz \ (TP3054 - 1/57 - 1) & 38 & f = 4 - 50 \ kHz \ (TP3054 - 1/57 - 1) & 35 & f = 4 - 50 \ kHz \ (TP3054 - 1/57 - 1) & 35 & f = 4 - 50 \ kHz \ Measure \ V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms & Measure \ VF_R0 & kesure \ VF_R0 & ke$			f=0 kHz-50 kHz (Note 2)	40			dBC
$\begin{tabular}{ c c c c c c } \hline NPSR_R & Negative Power Supply Rejection, Receive & VF_R0 & & & & & & & & & & & & & & & & & & &$	PPSRR	Positive Power Supply Rejection,	PCM Code Equals Positive Zero				
$\begin{tabular}{ c c c c c c } \hline f = 0 & Hz - 4000 & Hz & 40 & & & & & & & & & & & & & & & & & $		Receive	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$		1		
$\begin{tabular}{ c c c c c c } \hline f = 4 \ kHz - 25 \ kHz & \mbox{40} \\ f = 25 \ kHz - 50 \ kHz & \mbox{36} \\ f = 0 - 4 \ kHz \ (TP3054 - 1/57 - 1) & \mbox{38} \\ f = 4 - 50 \ kHz \ (TP3054 - 1/57 - 1) & \mbox{35} \\ \hline \end{tabular} tabu$			Measure VF _B 0	-			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			f=0 Hz-4000 Hz	40			dBC
f=25 kHz-50 kHz 36 f=0-4 kHz (TP3054-1/57-1) 38 f=4-50 kHz (TP3054-1/57-1) 35 NPSR _R Negative Power Supply Rejection, Receive PCM Code Equals Positive Zero V _{BB} = -5.0 V _{DC} + 100 mVrms Measure VF _R 0 4			f=4 kHz-25 kHz	40			dB
$ \begin{array}{ c c c c c c c } \hline f = 0 - 4 \ \text{kHz} \ (\text{TP3054-1}/57-1) & \textbf{38} \\ \hline f = 4 - 50 \ \text{kHz} \ (\text{TP3054-1}/57-1) & \textbf{35} \\ \hline \end{array} \\ \hline \text{NPSR}_{\text{R}} & \begin{array}{l} \text{Negative Power Supply Rejection,} & \text{PCM Code Equals Positive Zero} \\ \hline V_{\text{BB}} = -5.0 \ V_{\text{DC}} + 100 \ \text{mVrms} & \\ \hline \end{array} \\ \hline \text{Measure VF}_{\text{R}0} & \hline \end{array} \\ \end{array} $				36	l		dB
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							dBC
Receive $V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ Measure VF _R 0							dB
Receive $V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ Measure VF _R 0	NPSRR	Negative Power Supply Rejection,	PCM Code Equals Positive Zero				
Measure VF _R 0						l	l
					1		
				40			dBC
f= 4 kHz-25 kHz 40					1		dB
f=25 kHz-50 kHz 36		- 20					dB

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Paramete	er					Cond	itions			Mir	1	Гур	Max		Units
SOS	Spurious Out-of-Ba at the Channel Outp	•								-30 -30		dB dB				
				7600 Hz-8400 Hz					1		-40		dB			
							,000 H	łz						-30		dB
DISTORT	ION															
STDX	Signal to Total Disto	ortion		Sinu	isoida	l Test	Metho	od (No	te 3)							
STDR	Transmit or Receive	Э		Leve		0 dBn					33					dBC
	Half-Channel						to -:				36					dBC
			_		= -	-40 dE	3m0	XMI			29					dBC
					_			RC\ XM1			30					dBC dBC
						-55 dE	smu	RC\			14					dBC
SFD _X	Single Frequency D Transmit	istortion	,											-46		dB
SFDR	Single Frequency D Receive	istortion	stortion,								-46		dB			
IMD Intermodulation Distortion				Loop Around Measurement, $VF_X^+ = -4 dBm0$ to $-21 dBm0$, Two Frequencies in the Range 300 Hz-3400 Hz							-41		dB			
CROSST	ALK							_				_	-			
CT _{X-R} Transmit to Receive Crosstalk, f=300 Hz-3400 Hz 0 dBm0 Transmit Level D _R = Quiet PCM Code								-	-90	-75		dB				
CT _{R-X}	Receive to Transmi 0 dBm0 Receive Le									-	-90	-70		dB		
			E		DING	FORM		TDX	Ουτρι	л						
			т	P3052	•		'P3054	4			_		93057 •Law		-	
					μ -L	aw					(Includ			Inversi	on)	
V _{IN} (at G	iS _X) = + Full-Scale	1	0	0	0	0	0	0	0_	1	01	0	1	0	1	0
$V_{\text{IN}} (\text{at GS}_{X}) = 0V \qquad \begin{cases} 1 & 1 \\ 0 & 1 \end{cases}$			1 1	1	1	1	1	1 1	1	1 0 1 0	1 1	0 0		0 0	1	

 V_{IN} (at GS_X) = - Full-Scale
 0
 0
 0

 Note 1: Measured by extrapolation from the distortion test result at -50 dBm0.

Note 2: PPSR_X, NPSR_X, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_XI+.

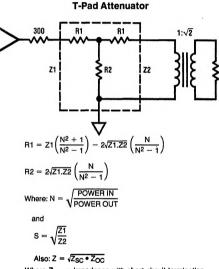
Note 3: Devices are measured using C message weighted filter for µ-Law and psophometric weighted filter for A-Law.

0 0 0

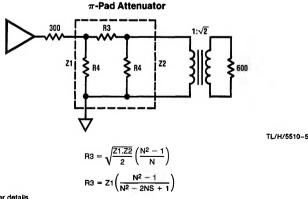
0 0 1 0 1 0 1 0

POWER SUPPLIES

While the pins of the TP3050A family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.


All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB}, as close to the device as possible.

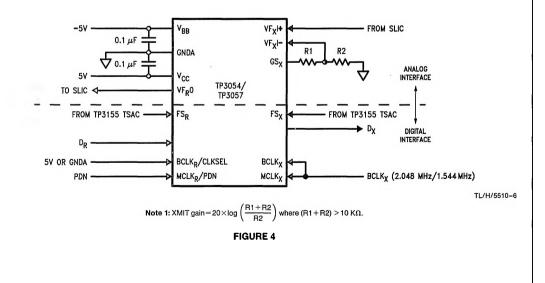
For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.


RECEIVE GAIN ADJUSTMENT

For applications where a TP3050A family CODEC/filter receive output must drive a 600 Ω load, but a peak swing lower than ± 2.5 V is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. Table II lists the required resistor values for 600 Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600 Ω is obtained if the output impedance of the attenuator is in the range 282 Ω to 319 Ω (assuming a perfect transformer).

600

Also: $Z = \sqrt{Z_{SC} \bullet Z_{OC}}$ Where $Z_{SC} =$ impedance with short circuit termination and $Z_{OC} =$ impedance with open circuit termination


Note: See Application Note 370 for further details.

Applications Information (Continued)

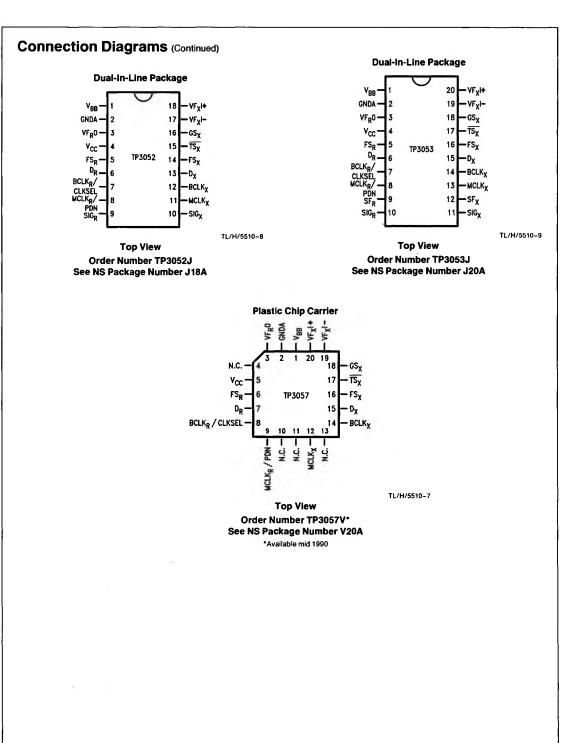

	r			
dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.61	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

TABLE II. Attentuator Tables for Z1 = Z2 = 300 Ω (All Values in Ω)

Typical Synchronous Application

ŝ

