Low Voltage / Low Power CMOS 16-bit Micro-controller

TMP93PW40DF

1. **Outline and Device Characteristics**

TMP93PW40 is OTP type MCU which includes 128 Kbyte One-time PROM. Using the adapter-socket, you can write and verify the data for TMP93PW40. TMP93PW40 has the same pin-assignment with TMP93CW40 (Mask ROM type).

Writing the program to Built-in PROM, TMP93PW40 operates as the same way with TMP93CW40.

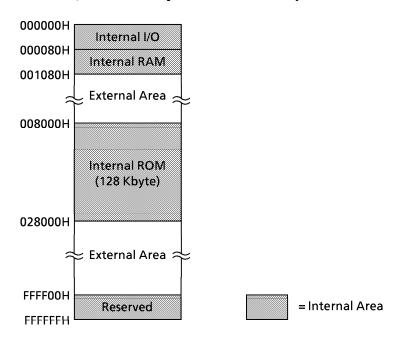


Figure 1.1 Memory map of TMP93CW40 / PW40

MCU	ROM	RAM	Package	Adapter Socket
TMP93PW40DF	OTP 128K-byte	4K-byte	P-LQFP100-1414-0.50D	BM11129

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments transportation instruments traffic signal instruments. transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

93PW40-1 2001-03-15

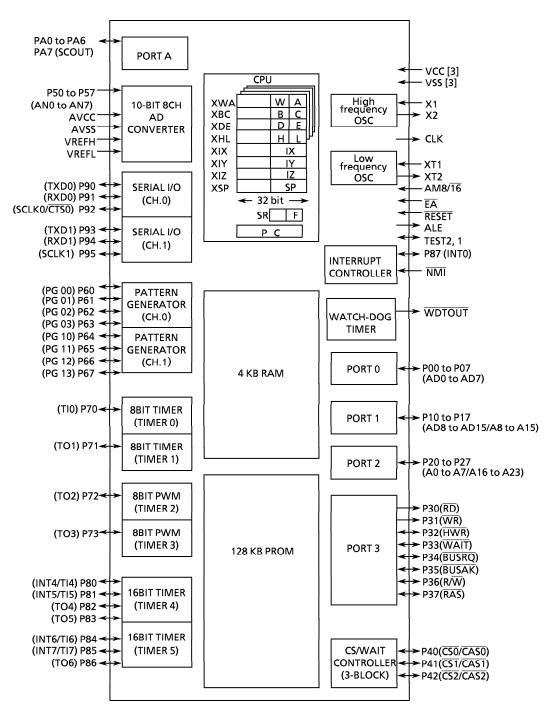


Figure 1.2 TMP93PW40 block diagram

2. Pin Assignment and Functions

The assignment of input / output pins for TMP93PW40, their name and outline functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of TMP93PW40.

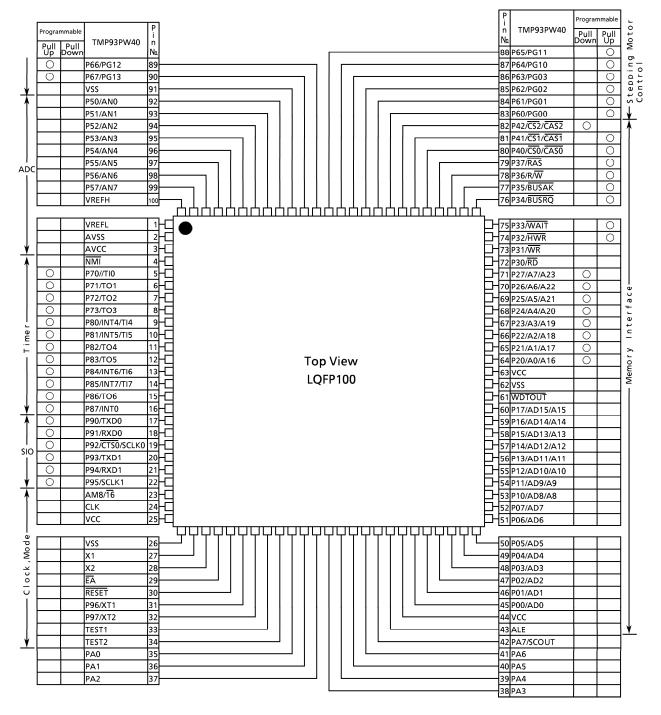


Figure 2.1.1 Pin Assignment (100-pin LQFP)

2.2 Pin Names and Functions

(1) Pin function of TMP93PW40 in MCU mode.

Table 2.2.1 Name and function MCU mode (1/4)

Pin name	Number of pins	I/O	Functions
P00 to P07 AD0 to AD7	8	I/O 3-state	Port 0: I/O port that allows I/O to be selected on a bit basis Address/data (lower): 0 to 7 for address/data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I/O 3-state Output	Port 1: I/O port that allows I/O to be selected on a bit basis Address data (upper): 8 to 15 for address/data bus Address: 8 to 15 for address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor) Address: 0 to 7 for address bus Address: 16 to 23 for address bus
P30 RD	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins AD0 to 7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to 15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	I/O Input	Port34: I/O port (with pull-up resistor) Bus request: Signal used to request high impedance for AD0 to 15, A0 to 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins. (For external DMAC)
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus acknowledge: Signal indicating that AD0 to 15, A0 to 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins are at high impedance after receiving BUSRQ. (For external DMAC)
P36 R/W	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0, write cycle.
P37 RAS	1	I/O Output	Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM.
P40 CS0	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area.
CAS0		Output	Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.

Note: With the external DMA controller, this device's built-in memory or built-in I/O cannot be accessed using the \overline{BUSRQ} and \overline{BUSAK} pins.

Table 2.2.1 Name and function MCU mode (2/4)

Pin name	Number of pins	I/O	Functions
P41 CS1 CAS1	1	I/O Output Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.
P42 CS2 CAS2	1	I/O Output Output	Port 42: I/O port (with pull-down resistor) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area.
P50 to P57 AN0 to AN7	8	Input Input	Port 5: Input port Analog input: Input to AD converter
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
P60 to P63 PG00 to PG03	4	I/O Output	Ports 60 to 63: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 00 to 03
P64 to P67 PG10 to PG13	4	I/O Output	Ports 64 to 67: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 10 to 13
P70 TI0	1	I/O Input	Port 70: I/O port (with pull-up resistor) Timer input 0: Timer 0 input
P71 TO1	1	I/O Output	Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or 1 output
P72 TO2	1	I/O Output	Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output
P73 TO3	1	I/O Output	Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output
P80 TI4 INT4	1	I/O Input Input	Port 80: I/O port (with pull-up resistor) Timer input 4: Timer 4 count / capture trigger signal input Interrupt request pin 4: Interrupt request pin with programmable rising / falling edge
P81 TI5 INT5	1	I/O Input Input	Port 81: I/O port (with pull-up resistor) Timer input 5: Timer 4 count / capture trigger signal input Interrupt request pin 5: Interrupt request pin with rising edge
P82 TO4	1	I/O Output	Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin
P83 TO5	1	I/O Output	Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin

Table 2.2.1 Name and function MCU mode (3/4)

Pin name	Number of pins	I/O	Functions
P84 TI6 INT6	1	I/O Input Input	Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count / capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising / falling edge
P85 TI7 INT7	1	I/O Input Input	Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count / capture trigger signal input Interrupt request pin 7: Interrupt request pin with rising edge
P86 TO6	1	I/O Output	Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin
P87 INT0	1	l/O Input	Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level / rising edge
P90 TXD0	1	I/O Output	Port 90: I/O port (with pull-up resistor) Serial send data 0
P91 RXD0	1	I/O Input	Port 91: I/O port (with pull-up resistor) Serial receive data 0
P92 CTS0 SCLK0	1	I/O Input I/O	Port 92: I/O port (with pull-up resistor) Serial data send enable 0 (Clear to Send) Serial Clock I/O 0
P93 TXD1	1	I/O Output	Port 93: I/O port (with pull-up resistor) Serial send data 1
P94 RXD1	1	I/O Input	Port 94: I/O port (with pull-up resistor) Serial receive data 1
P95 SCLK1	1	I/O I/O	Port 95: I/O port (with pull-up resistor) Serial clock I/O 1
PA0 to PA6	7	I/O	Port A: I/O ports
PA7 SCOUT	1	I/O Output	Port A7: I/O port System Clock Output: Outputs system clock or 1/2 oscillation clock for synchronizing to external circuit.
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program.
CLK	1	Output	Clock output: Outputs 「System Clock ÷ 2 」Clock. Pulled-up during reset. can be set to Output Disable for reducing noise.
EA	1	Input	External access: "1" should be inputted with TMP93PW40.

Table 2.2.1 Name and function MCU mode (4/4)

Pin name	Number of pins	I/O	Functions
AM8/16	1	Input	Address Mode: Selects external Data Bus width. "1" should be inputted. The Data Bus Width for external access is set by Chip Select / WAIT Control register, Port 1 Control register.
ALE	1	Output	Address Latch Enable Can be set to Output Disable for reducing noise.
RESET	1	Input	Reset: Initializes LSI. (With pull-up resistor)
X1/X2	2	I/O	High Frequency Oscillator connecting pin
XT1 P96	1	Input I/O	Low Frequency Oscillator connecting pin Port 96: I/O port (Open Drain Output)
XT2 P97	1	Output I/O	Low Frequency Oscillator connecting pin Port 97: I/O port (Open Drain Output)
TEST1/TEST2	2	Output /Input	TEST1 Should be connected with TEST2 pin.
vcc	3		Power supply pin
VSS	3		GND pin (0 V)
AVCC	1		Power supply pin for AD converter
AVSS	1		GND pin for AD converter (0 V)

Note: Pull-up/pull-down resistor can be released from the pin by software (except \overline{RESET} pin).

(2) PROM mode

Table 2.2.2 Name and function of PROM mode

Pin function	Pin number	Input / Output	Function	Pin name (MCU mode)				
A7 to A0	8	Input		P27 to P20				
A15 to A8	8	Input	Memory address of program P17 to P10					
A16	1	Input		P33				
D7 to D0	8	I/O	Memory data of pfogram	P07 to P00				
CE	1	Input	Chip enable	P32				
ŌĒ	1	Input	Output control	P30				
PGM	1	Input	Program control	P31				
VPP	1	Power supply Power	12.75 V / 5 V (Power supply of program)	ĒĀ				
vcc	4	supply	6.25 V / 5 V	VCC, AVCC				
VSS	4	Power supply	0 V	VSS, AVSS				
Pin function	Pin number	Input / Output	Disposal of pin					
P34	1	Input	Fix to low level (security pin)					
RESET	1	Input	5:					
CLK	1	Input	Fix to low level (PROM mode)					
ALE	1	Output	Open					
X1	1	Input	Constal					
X2	1	Output	Crystal					
P42 to P40 P37 to P35 AM8 / 16	7	Input	Fix to high level					
TEST1/TEST2	2	Input / Output	short					
P57 to P50 P67 to P60 P73 to P70 P87 to P80 P97 to P90 PA7 to PA0 VREFH VREFL NMI WDTOUT	48	I/O	open					

3. Operation

This section describes in blocks the functions and basic operations of TMP93PW40.

The TMP93PW40 has PROM in place of the mask ROM which is included in the TMP93CW40. The other configuration and functions are the same as the TMP93CW40. Regarding the function of the TMP93PW40, which is not described herein, see the TMP93CW40.

The TMP93PW40 has two operational modes: MCU mode and PROM mode.

3.1 MCU mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (Output status). In the MCU mode, the operation is same as TMP93CW40.

3.2 Memory Map

Figure 3.2.1 are memory map of the TMP93PW40.

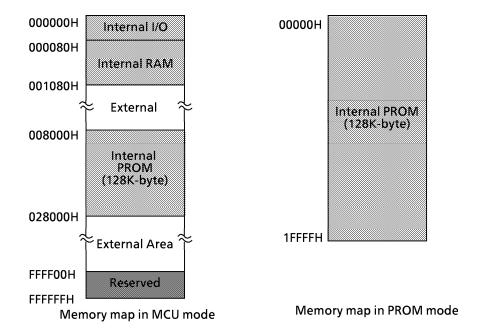


Figure 3.2.1 Memory map

4. Electrical Characteristics

4.1 Absolute Maximum Ratings (TMP93PW40DF)

"X" used in an expression shows a frequency of clock $f_{\rm FPH}$ selected by SYSCR1 < SYSCK >. If a clock gear or a low speed oscillator is selected, a value of "X" is different. The value in an example is calculated at fc, gear = 1/fc (SYSCR1 < SYSCK, GEAR 2 to 0 > = "0000").

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	– 0.5 to 6.5	V
Input Voltage	V _{IN}	- 0.5 to V _{CC} + 0.5	V
Output Current (total)	Σl _{OL}	120	mA
Output Current (total)	Σl _{OH}	- 80	mA
Power Dissipation (Ta = 85°C)	P _D	600	mW
Soldering Temperature (10 s)	T _{SOLDER}	260	င
Storage Temperature	T _{STG}	– 65 to 150	${\mathfrak C}$
Operating Temperature	T _{OPR}	– 40 to 85	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

 $Ta = -40 \text{ to } 85^{\circ}C$

	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
	Power Supply Voltage (AVcc = Vcc AVcc = Vss = 0V)		fc = 4 to 20 MHz fs = 30 to fc = 4 to 12.5 MHz 34 kHz	4.5 2.7		5.5	<
ag e	AD0 to 15	VIL	$V_{CC} \ge 4.5 \text{ V}$ $V_{CC} < 4.5 \text{ V}$			0.8 0.6	
-	Port 2 to A (except P87)	V _{IL1}		_0.3		0.3 V _{CC}	
z >	RESET,NMI,INTO	V _{IL2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	-0.5		0.25 V _{CC} 0.3 0.2 V _{CC}	
n b n Low	ĒA, AM8/16	V _{IL3}	100 217 10 010 1				
	X1	V _{IL4}					l v l
ag e	AD0 to 15	V _{IH}	$V_{CC} \ge 4.5 V$	2.2			
t ag			V _{CC} < 4.5 V	2.0			
-	Port 2 to A (except P87)	V _{IH1}		0.7V _{CC}		V _{CC} + 0.3	
= _	RESET, NMI, INTO	V _{IH2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	0.75V _{CC}			
n p u	EA, AM8/16	V _{IH3}	\(\cup \(\cup \)	$V_{CC} - 0.3$			
- 	X1	V _{IH4}		0.8V _{CC}			
Outp	out Low Voltage	V _{OL}	I _{OL} = 1.6 mA (V _{CC} = 2.7 to 5.5 V)			0.45	
Outr	Output High Valtage		$I_{OH} = -400 \mu\text{A}$ (V _{CC} = 3 V ± 10%)	2.4			v
Cut	out High Voltage	V _{OH2}	I _{OH} = -400 μA (V _{CC} = 5 V ± 10%)	4.2			

Note: Typical values are for Ta = 25°C and $V_{CC} = 5$ V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note 1)	Max	Unit
Darlington Drive Current (8 Output Pins Max)	I _{DAR} (Note 2)	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 1.1 \text{ k}\Omega$ (when $V_{CC} = 5 \text{ V} \pm 10\%$)	- 1.0		- 3.5	mA
Input Leakage Current	ILI	$0.0 \le V_{IN} \le V_{CC}$		0.02	±5	μΑ
Output Leakage Current	ILO	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	± 10	$]^{\mu}$
Powerdown Voltage (at Stop, RAM Back-up)	V _{STOP}	$V_{IL2} = 0.2V_{CC},$ $V_{IH2} = 0.8V_{CC}$	2.0		6.0	>
	_	V _{CC} = 5 V ± 10%	50		150	
RESET Pull-up Resistor	R _{RST}	V _{CC} = 3 V ± 10%	80	T	200	kΩ
Pin Capacitance	C _{IO}	fc = 1 MHz			10	рF
Schmitt Width RESET, NMI, INTO	V _{TH}		0.4	1.0		٧
Programmable	_	V _{CC} = 5 V ± 10%	10		80	
Pull-down Resistor	R _{KL}	V _{CC} = 3 V ± 10%	30	T	150	k Ω
Programmable	_	V _{CC} = 5 V ± 10%	50		150	
Pull-up Resistor	R _{KH}	V _{CC} = 3 V ± 10%	100	T	300	
Normal (Note 3)		$V_{CC} = 5 V \pm 10\%$		19	25	
Normal2 (Note 4)		fc = 20 MHz		24	30	
Run	1			17	25	mA
Idle2	1			10	15	
ldle1				3.5	5	
Normal (Note 3)		V _{CC} = 3 V ± 10%		6.5	10	
Normal2 (Note 4)	lcc	fc = 12.5 MHz (Typ: V _{CC} = 3.0 V)		9.5	13	
Run		(Typ. VCC = 3.0 V)		5.0	9 5	mA
Idle2				3.0	5	
ldle1				0.8	1.5	
Slow (Note 3)		V _{CC} = 3 V ± 10%		20	45	
Run		fs = 32.768 kHz $(Typ: V_{CC} = 3.0 \text{ V})$		16	40	μ A
Idle2		$(13p, \sqrt{CC} = 3.0 \text{ V})$		10	30	
ldle1				5	25	
		Ta ≦ 50°C			10	
Stop		Ta ≦ 70°C		0.2	20	μ A
		Ta ≦ 85°C			50	

Note 1: Typical values are for Ta = 25 °C and V_{CC} = 5 V unless otherwise noted.

Note 2: I_{DAR} is guranteed for total of up to 8 ports.

Note 3: The condition of measurement of I_{CC} (Normal / Slow).

Only CPU operates. Output ports are open and input ports fixed.

Note 4: The condition of measurement of I_{CC} (Normal 2).

 $[\]ensuremath{\mathsf{CPU}}$ and all peripherals operate. Output ports are open and input ports fixed.

4.3 AC Characteristics

(1) $V_{CC} = 5 V \pm 10\%$

No.	Parameter		Vari	able	16 N	ЛHz	20 N	ЛHz	Unit
INO.	rarameter	Symbol	Min	Max	Min	Max	Min	Max	Onit
1	Osc. Period (= x)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	t _{CLK}	2x – 40		85		60		ns
3	A0 to 23 Valid→CLK Hold	t _{AK}	0.5x - 20		11		5		ns
4	CLK Valid→ A0 to 23 Hold	t _{KA}	1.5x – 70		24		5		ns
5	A0 to 15 Valid→ ALE fall	t _{AL}	0.5x - 15		16		10		ns
6	ALE fall → A0 to 15 Hold	t _{LA}	0.5x - 20		11		5		ns
7	ALE High pulse width	t _{LL}	x – 40		23		10		ns
8	ALE fall→RD/WR fall	t_{LC}	0.5x - 25		6		0		ns
9	RD/WR rise→ ALE rise	t _{CL}	0.5x - 20		11		5		ns
10	A0 to 15 Valid→RD/WR fall	t _{ACL}	x – 25		38		25		ns
11	A0 to 23 Valid→RD/WR fall	t _{ACH}	1.5x – 50		44		25		ns
12	RD/WR rise→ A0 to 23 Hold	tcA	0.5x - 25		6		0		ns
	A0 to 15 Valid \rightarrow D0 to 15 input	t _{ADL}		3.0x – 55		133		95	ns
14	A0 to 23 Valid→D0 to 15 input	t _{ADH}		3.5x – 65		154		110	ns
	\overline{RD} fall \rightarrow D0 to 15 input	t_{RD}		2.0x – 60		65		40	ns
16	RD Low pulse width	t _{RR}	2.0x - 40		85		60		ns
17	RD rise→ D0 to 15 Hold	t _{HR}	0		0		0		ns
18	\overline{RD} rise \rightarrow A0 to 15output	t _{RAE}	x – 15		48		35		ns
	WR Low pulse width	tww	2.0x - 40		85		60		ns
20	D0 to 15 Valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x - 55		70		45		ns
21	WR rise →D0 to 15 Hold	t _{WD}	0.5x – 15		16		10		ns
	A0 to 23 Valid $\rightarrow \overline{WAIT}$ input $\binom{1 \text{WAIT}}{+ \text{n mode}}$	t _{AWH}		3.5x – 90		129		85	ns
	A0 to 15 Valid $\rightarrow \overline{WAIT}$ input $\begin{pmatrix} 1 & WAIT \\ + & n & mode \end{pmatrix}$	t _{AWL}		3.0x – 80		108		70	ns
	RD/WR fall→WAIT Hold (1WAIT + n mode)	tcw	2.0x + 0		125		100		ns
	A0 to 23 Valid→ PORT input	t _{APH}		2.5x – 120		36		5	ns
	A0 to 23 Valid→PORT Hold	t _{APH2}	2.5x + 50		206		175		ns
	WR rise→ PORT Valid	t _{CP}		200		200		200	ns
	A0 to 23 Valid→RAS fall	tasrh	1.0x – 40		23		10		ns
-	A0 to 15 Valid→RAS fall	tasrl	0.5x – 15		16		10		ns
	RAS fall → D0 to 15 input	t _{RAC}		2.5x – 70		86		55	ns
	RAS fall → A0 to 15 Hold	t _{RAH}	0.5x – 15		16		10		ns
	RAS Low pulse width	t _{RAS}	2.0x - 40		85		60		ns
	RAS High pulse width	t _{RP}	2.0x - 40		85		60		ns
	\overline{CAS} fall $\to \overline{RAS}$ rise	t _{RSH}	1.0x – 40		23		10		ns
	RAS rise→ CAS rise	t _{RSC}	0.5x – 25		6		0		ns
36	RAS fall → CAS fall	t _{RCD}	1.0x – 40		23		10		ns
37	CAS fall→ D0 to 15 input	t _{CAC}		1.5x – 65		29		10	ns
38	CAS Low pulse width	tcas	1.5x – 30		64		40		ns

AC Measuring Conditions

• Output Level : High 2.2 V / Low 0.8 V, CL = 50 pF

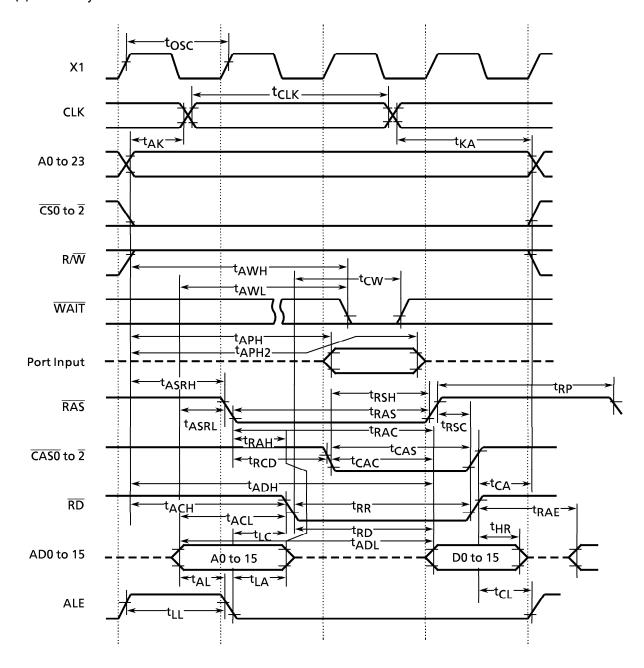
(However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{HWR}}$, $\overline{\text{R/W}}$, CLK, $\overline{\text{RAS}}$, $\overline{\text{CASO}}$ to $\overline{\text{CASO}}$)

• Input Level : High 2.4 V / Low 0.45 V (AD0 to AD15)

High $0.8 \, V_{CC} / Low \, 0.2 \, V_{CC}$ (Except for AD0 to AD15)

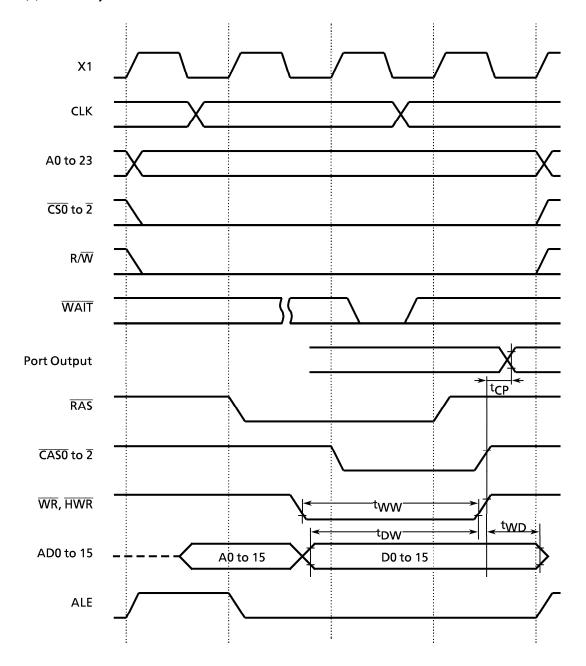
2001-03-15

(2) $V_{CC} = 3 V \pm 10\%$


No.			Vari	12.5	Unit		
INO.			Min	Max	Min	Max	Unit
1	Osc. Period (= x)	tosc	80	31250	80		ns
2	CLK pulse width	t_{CLK}	2x – 40		120		ns
3	A0 to 23 Valid→CLK Hold	t_{AK}	0.5x - 30		10		ns
4	CLK Valid→ A0 to 23 Hold	t_{KA}	1.5x - 80		40		ns
5	A0 to 15 Valid→ ALE fall	t_{AL}	0.5x - 35		5		ns
6	ALE fall → A0 to 15 Hold	t_{LA}	0.5x - 35		5		ns
7	ALE High pulse width	t _{LL}	x – 60		20		ns
8	ALE fall→RD/WR fall	t_{LC}	0.5x - 35		5		ns
9	RD/WR rise→ ALE rise	t _{CL}	0.5x - 40		0		ns
10	A0 to 15 Valid→ RD/WR fall	t _{ACL}	x – 50		30		ns
11	A0 to 23 Valid→RD/WR fall	t _{ACH}	1.5x - 50		70		ns
12	RD/WR rise→ A0 to 23 Hold	tcA	0.5x - 40		0		ns
13	A0 to 15 Valid→D0 to 15 input	t _{ADL}		3.0x – 110		130	ns
14	A0 to 23 Valid→ D0 to 15 input	t_{ADH}		3.5x – 125		155	ns
15	RD fall → D0 to 15 input	t_{RD}		2.0x – 115		45	ns
16	RD Low pulse width	t_{RR}	2.0x - 40		120		ns
17	RD rise→ D0 to 15 Hold	t_{HR}	0		0		ns
18	RD rise→ A0 to 15output	t _{RAE}	x – 25		55		ns
19	WR Low pulse width	tww	2.0x - 40		120		ns
20	D0 to 15 Valid→WRrise	t_{DW}	2.0x - 120		40		ns
21	WR rise →D0 to 15 Hold	t_{WD}	0.5x - 40		0		ns
22	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{pmatrix} 1 \text{ WAIT} \\ + \text{ n mode} \end{pmatrix}$	t _{AWH}		3.5x – 130		150	ns
23	A0 to 15 Valid \rightarrow WAIT input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	t _{AWL}		3.0x - 100		140	ns
24	RD/WR fall→WAIT Hold (1WAIT + n mode)	tcw	2.0x + 0		160		ns
25	A0 to 23 Valid→PORT input	t_{APH}		2.5x - 195		5	ns
26	A0 to 23 Valid→ PORT Hold	t _{APH2}	2.5x + 50		250		ns
27	WR rise→ PORT Valid	t _{CP}		200		200	ns
28	A0 to 23 Valid $\rightarrow \overline{RAS}$ fall	tasrh	1.0x - 60		20		ns
29	A0 to 15 Valid→RAS fall	tASRL	0.5x - 40		0		ns
30	RAS fall → D0 to 15 input	t_{RAC}		2.5x – 90		110	ns
31	RAS fall → A0 to 15 Hold	t_{RAH}	0.5x - 25		15		ns
32	RAS Low pulse width	t _{RAS}	2.0x - 40		120		ns
33	RAS High pulse width	t _{RP}	2.0x - 40		120		ns
	CAS fall→ RAS rise	t _{RSH}	1.0x – 55		25		ns
	RAS rise → CAS rise	t _{RSC}	0.5x - 25		15		ns
36	RAS fall → CAS fall	t_{RCD}	1.0x - 40		40		ns
	CAS fall→ D0 to 15 input	t _{CAC}		1.5x – 120		0	ns
38	CAS Low pulse width	t _{CAS}	1.5x – 40		80		ns

AC Measuring Conditions

■ Output Level: High 0.7 × V_{CC} / Low 0.3 × V_{CC}, CL = 50 pF


■ Input Level: High 0.9 × V_{CC} / Low 0.1 × V_{CC}

(1) Read Cycle

TOSHIBA

(2) Write Cycle

4.4 AD Conversion Characteristics

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

Parameter	Symbol	Power Supply	Min	Тур.	Max	Unit	
Analog reference veltage ()	V	$V_{CC} = 5 V \pm 10\%$	V _{CC} – 1.5 V	V_{CC}	V _{CC}		
Analog reference voltage (+)	V _{REFH}	$V_{CC} = 3 V \pm 10\%$	V _{CC} – 0.2 V	Vcc	V _{CC}		
Analas reference valte as ()	V2551	$V_{CC} = 5 V \pm 10\%$	V _{SS}	V_{SS}	V _{SS} + 0.2 V	v	
Analog reference voltage (–)	V _{REFL}	$V_{CC} = 3 V \pm 10\%$	V _{SS}	V_{SS}	V _{SS} + 0.2 V		
Analog input voltage range	V _{AIN}		V_{REFL}		V _{REFH}		
Analog current for analog reference	1	$V_{CC} = 5 V \pm 10\%$		0.5	1.5	~ ^	
voltage <vrefon> = 1</vrefon>	I _{REF}	$V_{CC} = 3 V \pm 10\%$		0.3	0.9	mA	
<vrefon> = 0</vrefon>	$(V_{REFL} = 0 V)$	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.02	5.0	μ A	
Error (excluding quantizing		V _{CC} = 5 V ± 10%		± 1.0	± 3.0	LSB	
error)	_	$V_{CC} = 3 V \pm 10\%$		± 1.0	± 3.0	LOD	

Note 1: $1LSB = (V_{REFH} - V_{REFL}) / 2^{10} [V]$ Note 2: Minimum operation frequency

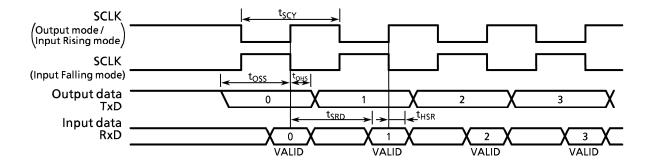
The operation of the AD converter is guaranteed only when fc (high-frequency oscillator) is used. (It is not guaranteed when fs is used.) Additionally, it is guaranteed when the clock frequency whith is selected by the clock gear is 4 MHz or more.

Note 3: The value ICC includes the current which flows through the AVCC pin.

4.5 Serial Channel Timing

(1) I/O Interface Mode

① SCLK Input Mode


Dame meden	Cl. al	Variable :		32.768 MHz (Note)		12.5 MHz		20 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	16X		488 μs		1.28		0.8		μS
Output Data \rightarrow Rising edge or SCLK	toss	t _{SCY} /2 – 5X – 50		91.5 μs		190		100		ns
SCLK rising edge \rightarrow Output Data hold	t _{OHS}	5X – 100		152 μs		300		150		ns
SCLK rising edge → Input Data hold	t _{HSR}	0		0		0		0		ns
SCLK rising edge \rightarrow effective data input	t _{SRD}		t _{SCY} – 5X – 100		336 μs		780		450	ns

Note: When fs is used as system clock (fSYS) or fs is used as input clock to prescaler.

② SCLK Output Mode

Do no monton	Cla a l	Variable :		32.768 MHz (Note)		12.5 MHz		20 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle (programmable)	t _{SCY}	16X	8192X	488 μs	250 ms	1.28	655.36	0.8	409.6	μS
Output Data → SCLK rising edge	toss	t _{SCY} – 2X – 150		427 μs		970		550		ns
SCLK rising edge → Output Data hold	t _{OHS}	2X – 80		60 μs		80		20		ns
SCLK rising edge→Input Data hold	t _{H\$R}	0		0		0		0		ns
SCLK rising edge→ effective data input	t _{SRD}		t _{SCY} – 2X – 150		428 μs		970		550	ns

Note: When fs is used as system clock (fSYS) or fs is used as input clock to prescaler.

^{*)} SCLK rising / falling timing ··· SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SCLK.

4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6, TI7)

Parameter	Symbol	Varia	12.5 MHz		20 MHz		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Onit
Clock Cycle	t _{VCK}	8X + 100		740		500		ns
Low level clock Pulse width	t _{VCKL}	4X + 40		360		240		ns
High level clock Pulse width	t _{VCKH}	4X + 40		360		240		ns

4.7 Interrupt and Capture

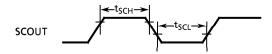
(1) NMI, INTO interrupts

Parameter	eter Symbol		Variable		12.5 MHz		VIHz	Unit
	Symbol	Min	Max	Min	Max	Min	Max	Unit
NMI, INTO Low Level Pulse Width	t _{INTAL}	4X		320		200		ns
NMI, INTO High Level Pulse Width	t _{INTAH}	4X		320		200		ns

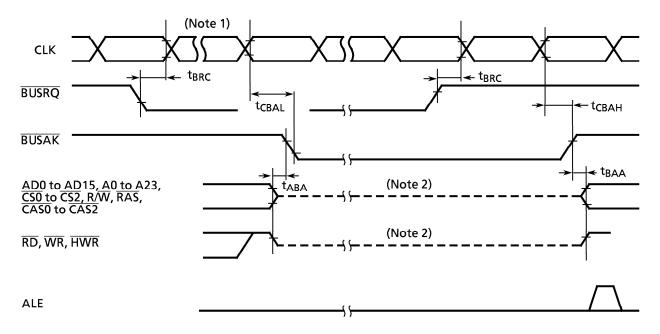
(2) INT4 to 7 interrupts, capture

Input pulse width of INT4 to 7 depends on the operation clock of CPU and Timer (9 bit prescaler). The following shows the pulse width in each clock.

System clock	Prescaler clock	t _{INTBL} (INT4 to 7 lov	v level pulse width)	t _{INTBH} (INT4 to 7 hig	t_{INTBH} (INT4 to 7 high level pulse width)			
selected selected		Variable	20 MHz	Variable	20 MHz	Unit		
<sysck> < PRCK1 to 0></sysck>	Min	Min	Min	Min				
	00 (f _{FPH})	8X + 100	500	8X + 100	500	ns		
0 (fc)	01 (fs)	8XT + 0.1	244.3	8XT + 0.1	244.3			
	10 (fc/16)	128X + 0.1	6.5	128X + 0.1	6.5	ا م. ا		
1 (fs)	00 (f _{FPH})	9VT : 0.1	244.2	9VT - 0.1	244.2	μ S		
(Note 2)	01 (fs)	8XT + 0.1	244.3	8XT + 0.1	244.3			


Note 1: XT represents the cycle of the low frequency clock fs. Calculated at $fs = 32.768 \, kHz$. Note 2: When fs is used as the system clock, fc/16 can not be selected for the prescaler clock.

4.8 SCOUT pin AC characteristics


Doromete	Parameter		Variable		12.5 MHz		20 MHz		Unit	
raiailletei		Symbol	Min	Max	Min	Max	Min	Max	Unit	
Lligh Lovel Bulga Width	V _{CC} = 5 V ± 10%	t _{SCH}	0.5X – 10		30		15		ns	
High-Level Pulse Width	V _{CC} = 3 V ± 10%	*3CH	0.5X - 20		20		-	ı]	
Lavy Laval Dulca Width	V _{CC} = 5 V ± 10%	t _{SCL}	0.5X – 10		30		15		ns	
Low-Level Pulse Width	V _{CC} = 3 V ± 10%	*SCL	0.5X - 20		20		-	-	3	

Measurement condition

Output level: High 2.2 V / Low 0.8 V, CL = 10 pF

4.9 Timing Chart for Bus Request (BUSRQ) / Bus Acknowledge (BUSAK)

Parameter	Cumbal	Variable		12.5 MHz		20 MHz		Unit
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
BUSRQ Set-up Time to CLK	t _{BRC}	120		120		120		ns
CLK→BUSAK Falling Edge	t _{CBAL}		1.5X + 120		270		195	ns
CLK→BUSAK Rising Edge	t _{CBAH}		0.5X + 40		80		65	ns
Output Buffer off to BUSAK	t _{ABA}	0	80	0	80	0	80	ns
BUSAK to Output Buffer on	t _{BAA}	0	80	0	80	0	80	ns

Note 1: The Bus will be released after the \overline{WAIT} request is inactive, when the \overline{BUSRQ} is set to "0" during "Wait" cycle.

Note 2: This line only shows the output buffer is off-state.

It doesn't indicate the signal level is fixed.

Just after the bus is released, the signal level which is set before the bus is released is kept dynamically by the external capacitance. Therefore, to fix the signal level by an external resistor during bus releasing, designing is executed carefully because the level-fix will be delayed.

The internal programmable pull-up/pull-down resistor is switched active/non-active by an internal signal.

4.10 Read operation in PROM mode

DC / AC characteristics

 $Ta = 25 \pm 5$ °C $V_{CC} = 5 V \pm 10$ %

Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} Read Voltage Input High Voltage (A0 to A16, CE, OE, PGM) Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{PP} V _{IH1} V _{IL1}	-	4.5 2.2 – 0.3	5.5 V _{CC} + 0.3 0.8	> >
Address to Output Delay	t _{ACC}	C _L = 50 _P F	_	2.25T _{CYC} + α	ns

 $T_{CYC} = 400 \text{ ns (10 MHz Clock)}$ $\alpha = 200 \text{ ns}$

4.11 Program operation in PROM mode

DC / AC characteristics

 $Ta = 25 \pm 5$ °C $V_{CC} = 6.25 V \pm 0.25 V$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Programming Supply Voltage Input High Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{PP} V _{IH}	-	12.50 2.6	12.75	13.00 V _{CC} + 0.3	V V
Input Low Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{IL}	-	- 0.3		0.8	V
V _{CC} Supply Current	lcc	fc = 10 MHz	_		50 50	mA
V _{PP} Supply Current PGM Program Pulse Width	I _{PP}	$V_{PP} = 13.00 \text{ V}$ $C_1 = 50 \text{ pF}$	0.095	0.1	50 0.105	mA ms

4.12 Timing chart of read operation in PROM mode

4.13 Timing chart of program operation in PROM mode

Note 1: The power supply of V_{PP} (12.75 V) must be turned on at the same time or the later time for a power supply of V_{CC} and must be turned off at the same time or early time for a power supply of V_{CC} .

Note 2: The device suffers a damage taking out and putting in on the condition of $V_{PP} = 12.75 \text{ V}$.

Note 3: The maximum spec of V_{PP} pin is 14.0 V. Be carefull a overshoot at the programming.