Low Voltage / Low Power CMOS 16-Bit Microcontrollers

TMP93CS40F / TMP93CS41F TMP93CS40DF / TMP93CS41DF

1. **Outline and Device Characteristics**

The TMP93CS40/S41 are high-speed advanced 16-bit microcontrollers developed for controlling medium-to large-scale equipment. The TMP93CS41 does not have a ROM; the TMP93CS40 has a builtin ROM. Otherwise, the devices function in the same way.

The TMP93CS40/S41F are housed in a 100-pin flat package.

The device characteristics are as follows:

- Original 16-bit CPU (900/L CPU) **(1)**
 - TLCS-90 instruction mnemonic upward-compatible
 - 16-Mbyte linear address space
 - General-purpose registers, register bank system
 - 16-bit multiplication / division and bit transfer / arithmetic instructions
 - Micro DMA: 4 channels $(1.6 \mu s / 2 \text{ bytes at } 20 \text{ MHz})$
- Minimum instruction execution time: 200 ns at 20 MHz (2)
- (3) Internal RAM: 2 Kbyte

Internal ROM:

TMP93CS40	64-Kbyte ROM
TMP93CS41	None

- (4) External memory expansion
 - Can be expanded to up to 16 Mbytes (for both programs and data).
 - AM8/ $\overline{16}$ pin (selects the external data bus width)
 - Can mix 8- and 16-bit external data buses.
 - ··· Dynamic bus sizing

8-bit timer: 2 channels (5)

(6) 8-bit PWM timer: 2 channels

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments. transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

(7) 16-bit timer: 2 channels

(8) 4-bit pattern generator: 2 channels

(9) Serial interface: 2 channels

(10) 10-bit AD converter: 8 channels

(11) Watchdog timer

(12) Chip select / wait controller: 3 blocks

(13) Interrupt functions: 29

• 9 CPU interrupts SWI instruction, and Illegal instruction

• 14 internal interrupts

• 6 external interrupts _____ 7-level priority can be set.

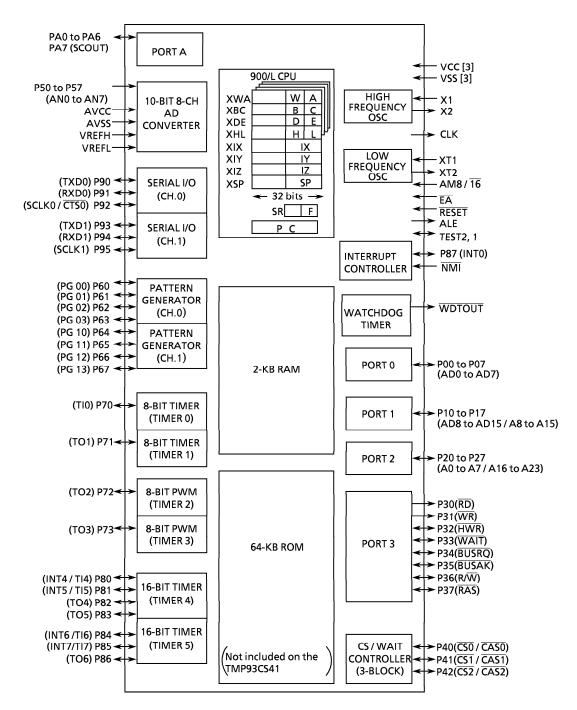
(14) I/O ports

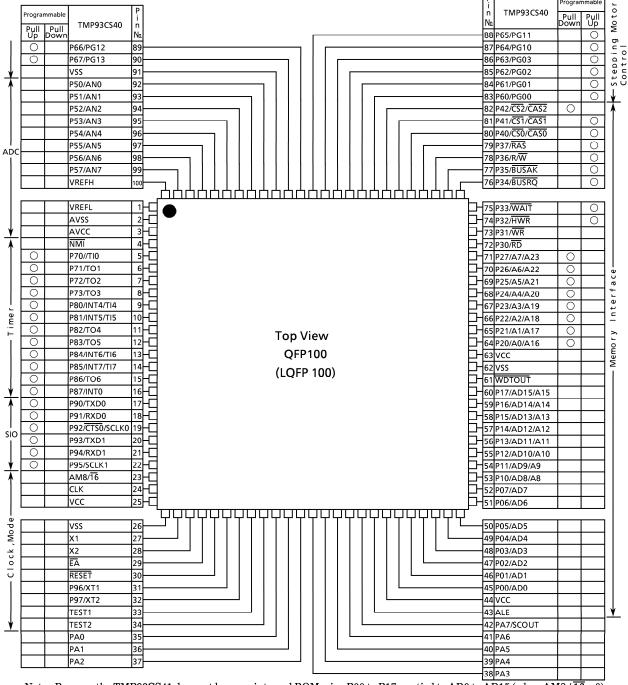
79 pins for TMP93CS40 and 61 pins for TMP93CS41

- (15) Standby function: 4 Halt modes (Run, Idle2, Idle1, Stop)
- (16) Clock gear function
 - Dual clock operation
 - Clock gear: High-frequency clock can be varied from fc to fc/16.
- (17) Wide Operating Voltage
 - Vcc = 2.7 to 5.5 V

(18) Package

Type No.	Package
TMP93CS40F TMP93CS41F	P-QFP100-1414-0.50
TMP93CS40DF TMP93CS41DF	P-LQFP100-1414-0.50D




Figure 1.1 TMP93CS40/TMP93CS41 Block Diagram

2. Pin Assignment and Functions

The assignment of input / output pins on the TMP93CS40/TMP93CS41, their names and outline functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows the pin assignment for the TMP93CS40F/S41F and TMP93CS40DF/S41DF.

Note: Because the TMP93CS41 does not have an internal ROM, pins P00 to P17 are tied to AD0 to $\overline{AD15}$ (when $\overline{AM8}/\overline{16}=0$), or to AD0 to AD7 and A8 to A15 (when AM8/ $\overline{16}=1$). P30 is tied to \overline{RD} , P31 to \overline{WR} .

Figure 2.1.1 Pin Assignment (100-pin QFP and 100-pin LQFP)

2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below. Table $2.2.1\,$ Pin Names and Functions

Table 2.2.1 Pin Names and Functions (1/4)

Pin Name	Number of Pins	I/O	Function
P00 to P07 AD0 to AD7	8	I/O Tri-State	Port 0: I/O port that allows at the bit level Address/data (lower): Bits 0 to 7 of address/data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I/O Tri-State Output	Port 1: I/O port that allows at the bit level Address data (upper): Bits 8 to 15 of address/data bus Address: Bits 8 to 15 of address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows selection of I/O at the bit level (with pull-down resistor) Address: bits 0 to 7 of address bus Address: bits 16 to 23 of address bus
P30 RD	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins AD0 to AD7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to AD15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	I/O Input	Port 34: I/O port (with pull-up resistor) Bus request: Signal used to request bus release
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus acknowledge: Signal used to acknowledge bus release
P36 R/W	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0 represents write cycle.
P37 RAS	1	I/O Output	Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM.
P40 CS0	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area.
CAS0		Output	Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.

Note: This device's built-in memory or built-in I/O cannot be accessed by an external DMA controller using the \overline{BUSRQ} and \overline{BUSAK} signals.

Table 2.2.1 Pin Names and Functions (2/4)

Pin Name	Number of Pins	I/O	Function
P41 CS1 CAS1	1	I/O Output Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.
P42 CS2 CAS2	1	I/O Output Output	Port 42: I/O port (with pull-down resistor) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area.
P50 to P57 AN0 to AN7	8	Input Input	Port 5: Input port Analog input: Analog signal input for AD converter
VREFH	1	Input	Pin for high level reference voltage input to AD converter
VREFL	1	Input	Pin for low level reference voltage input to AD converter
P60 to P63 PG00 to PG03	4	I/O Output	Ports 60 - 63: I/O ports that allow selection of I/O at the bit level (with pull-up resistor) Pattern generator ports: 00 to 03
P64 to P67 PG10 to PG13	4	I/O Output	Ports 64 - 67: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 10 to 13
P70 TI0	1	I/O Input	Port 70: I/O port (with pull-up resistor) Timer input 0: Timer 0 input
P71 TO1	1	I/O Output	Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or timer 1 output
P72 TO2	1	I/O Output	Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output
P73 TO3	1	I/O Output	Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output
P80 TI4 INT4	1	I/O Input Input	Port 80: I/O port (with pull-up resistor) Timer input 4: Timer 4 count / capture trigger signal input Interrupt request pin 4: Interrupt request pin with programmable rising / falling edge
P81 TI5 INT5	1	I/O Input Input	Port 81: I/O port (with pull-up resistor) Timer input 5: Timer 5 count / capture trigger signal input Interrupt request pin 5: Interrupt request pin with rising edge
P82 TO4	1	I/O Output	Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin
P83 TO5	1	I/O Output	Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin

Table 2.2.1 Pin Names and Functions (3/4)

Pin Name	Number of Pins	I/O	Function
P84 TI6 INT6	1	I/O Input Input	Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count / capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising / falling edge
P85 TI7 INT7	1	l/O Input Input	Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count / capture trigger signal input Interrupt request pin 7: Interrupt request pin with rising edge
P86 TO6	1	I/O Output	Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin
P87 INT0	1	I/O Input	Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level / rising edge
P90 TXD0	1	I/O Output	Port 90: I/O port (with pull-up resistor) Serial data send 0
P91 RXD0	1	I/O Input	Port 91: I/O port (with pull-up resistor) Serial data receive 0
P92 CTS0 SCLK0	1	I/O Input I/O	Port 92: I/O port (with pull-up resistor) Serial data send enable 0 (Clear to Send) Serial Clock I/O 0
P93 TXD1	1	I/O Output	Port 93: I/O port (with pull-up resistor) Serial data send 1
P94 RXD1	1	I/O Input	Port 94: I/O port (with pull-up resistor) Serial data receive 1
P95 SCLK1	1	I/O I/O	Port 95: I/O port (with pull-up resistor) Serial clock I/O 1
PA0 to PA6	7	I/O	Ports A0 to A6: I/O ports
PA7 SCOUT	1	I/O Output	Port A7: I/O port System Clock Output: Outputs f _{FPH} or f _{SYS} clock.
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge or with both edges programmable.
CLK	1	Output	Clock output: Outputs 「f _{SYS} ÷ 2 」 clock. Pulled-up during reset. Can be disabled to reduce noise.
ĒĀ	1	Input	External access: On the TMP93CS41, the Vss pin should be connected. On the TMP93CS40, the Vcc pin should be connected.

Table 2.2.1 Pin Names and Functions (4/4)

Pin Name	Number of Pins	I/O	Function					
AM8/16	1	Input	Address Mode: Selects external Data Bus width. (On the TMP93CS40) The Vcc pin should be connected. The Data Bus Width for external access is set by the Chip Select / WAIT Control register, Port 1 Control register. (On the TMP93CS41) The Vss pin should be connected to access either fixed 16-bit Bus width, or 16-bit Bus interchangeable with 8-bit Bus. The Vcc pin should be connected to access a fixed 8-bit Bus Width.					
ALE	1	Output	Address Latch Enable (Can be disabled to reduce noise.)					
RESET	1	Input	Reset: Initializes TMP93CS40/TMP93CS41. (with pull-up resistor)					
X1/X2	2	I/O	High Frequency Oscillator connecting pin					
P96 XT1	1	I/O Input	Port 96: I/O port (open drain output) Low Frequency Oscillator connecting pin					
P97 XT2	1	I/O Output	Port 97: I/O port (open drain output) Low Frequency Oscillator connecting pin					
TEST1/TEST2	2	Output /Input	TEST1: should be connected to TEST2 pin.					
vcc	3		Power supply pin (All VCC pins should be connected to the power supply pin.)					
VSS	3		GND pin (0 V) (All VSS pins should be connected to GND (0 V).)					
AVCC	1		Power supply pin for AD converter					
AVSS	1		GND pin for AD converter (0 V)					

Note: All pins that have built-in pull-up/down resistors (other than the \overline{RESET} pin) can be disconnected from the built-in pull-up/down resistor by software.

3. Operation

This section describes in blocks the functions and basic operations of TMP93CS40 and S41 devices. Please also refer to section 7., Precautions in use, which describes some points requiring careful attention.

3.1 CPU

TMP93CS40 and S41 devices have a built-in high-performance 16-bit CPU (900/L CPU). (For basics of the CPU operation, see the information on the TLCS-900/L CPU in the previous chapter).

This section describes some CPU functions unique to the TMP93CS40 and S41, that are not described in the previous chapter, entitled TLCS-900/L CPU.

3.1.1 Reset

To reset a TMP93CS40 or S41 device, the $\overline{\text{RESET}}$ pin must be kept at 0 for at least ten system clock cycles (160 states: 16 μ s at 20 MHz) while remaining within the specified operating voltage range and sustaining a stable clock oscillation.

When a reset signal is accepted, the CPU sets itself as follows:

• The Program Counter (PC) is set according to the Reset Vector that is stored from 8000H to 8002H.

```
PC (7 to 0) ← data in location 8000H

PC (15 to 8) ← data in location 8001H

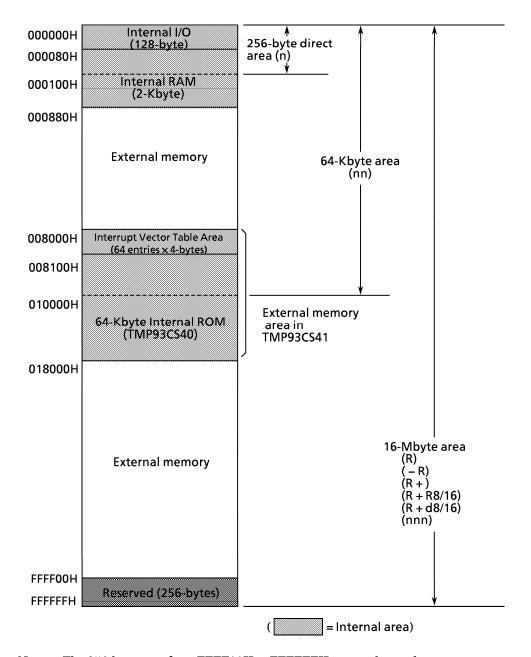
PC (82 to 16) ← data in location 8009H
```

PC (23 to 16) \leftarrow data in location 8002H

The Stack pointer (XSP) for system mode is set to 100H.

- The <IFF2 to 0> bits of the status register SR are set to 111. (Sets mask register to interrupt level 7)
- The <MAX> bit of SR is set to 1. (Sets to maximum mode. See previous chapter).
- The <RFP2 to 0> bits of SR are set to 000. (Clears register banks to 0)

When the reset is released, instruction execution starts from PC (the reset vector). The reset makes no changes in any CPU internal registers other than those specifically mentioned above.


When a reset is received, signal and data processing for built-in I/Os, ports, and other pins is affected as follows:

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to General-Purpose Input / Output Port mode.
- Sets the WDTOUT pin to 0. (The watchdog timer is set to Enable after reset.)
- Pulls up the CLK pin to 1.
- Sets the ALE pin to 0 in the case of the TMP93CS41, and to High Impedance (Hi-Z) in the case of TMP93CS40.
- Note 1: Resetting makes no change in any register in the CPU except the program counter (PC), status register (SR) and stack pointer (XSP), nor in the data in the internal RAM.
- Note 2: The CLK pin is pulled up during reset. When the voltage is externally reduced, there is a possibility of causing malfunctions.

Figures 3.1.1 and 3.1.2 show the reset timing chart of the TMP93CS41 and S40.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP93CS40 and S41.

Note: The 256-byte area from FFFF00H to FFFFFFH can not be used.

Figure 3.2.1 Memory map

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

(TMP93CS40F, TMP93CS41F TMP93CS40DF, TMP93CS41DF) "X" used in an expression shows a frequency for the clock $f_{\rm FPH}$ selected by SYSCR1 < SYSCK >. The value of X changes according to whether a clock gear or a low speed oscillator is selected. An example value is calculated for fc, with gear = 1/fc (SYSCR1 < SYSCK, GEAR 2 to 0 > = 0000).

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	– 0.5 to 6.5	V
Input Voltage	V _{IN}	- 0.5 to V _{CC} + 0.5	V
Output Current (total)	Σl _{OL}	120	mA
Output Current (total)	Σl _{OH}	- 80	mA
Power Dissipation (Ta = 85° C)	P _D	600	mW
Soldering Temperature (10 s)	T _{SOLDER}	260	င
Storage Temperature	T _{STG}	– 65 to 150	င
Operating Temperature	T _{OPR}	– 40 to 85	$^{\circ}$

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

 $Ta = -40 \text{ to } 85^{\circ}C$

	Parameter		Condition	Min	Typ. (Note)	Max	Unit
	Power Supply Voltage		fc = 4 to 20 MHz	4.5		5.5	V
'	$(AV_{CC} = V_{CC} (AV_{CC} = V_{SS} = 0V)$	V _{CC}	fc = 4 to 12.5 MHz 34 kHz	2.7			
a d e	AD0 to 15	VIL	$V_{CC} \ge 4.5 \text{ V}$			0.8	
olta	Port 2 to A (except P87, P5)	 V _{IL1}	V _{CC} < 4.5 V			0.6 0.3 V _{CC}	
±	RESET,NMI,INTO	V _{IL2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	-0.3		0.25 V _{CC} 0.3 0.2 V _{CC}	
Inpu	EA, AM8/16 X1, P5	V _{IL3} V _{IL4}					,,
<u>a</u>		VIH	V _{CC} ≥ 4.5 V	2.2			V
t ag		* IH	V _{CC} < 4.5 V	2.0			
-	Port 2 to A (except P87)	V _{IH1}		0.7V _{CC}		V _{CC} + 0.3	
+ ^	RESET, NMI, INTO	V _{IH2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	0.75V _{CC}		10.5	
n d u	ĒĀ, AM8/16	V _{IH3}	100 = 2.7 10 3.3 1	$V_{CC} - 0.3$			
- т	X1	V _{IH4}		0.8V _{CC}			
Outp	Output Low Voltage		$I_{OL} = 1.6 \text{ mA}$ ($V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$)			0.45	
Outr	Output High Voltage		$I_{OH} = -400 \ \mu A$ ($V_{CC} = 3 \ V \pm 10\%$)	2.4			V
Out	out ingil voltage	V _{OH2}	I _{OH} = -400 μA (V _{CC} = 5 V ± 10%)	4.2			

Note: Typical values are for Ta = 25°C and V_{CC} = 5 V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note 1)	Max	Unit	
Darlington Drive Current (8 Output Pins Max)	I _{DAR} (Note 2)	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 1.1 \text{ k}\Omega$ (when $V_{CC} = 5 \text{ V} \pm 10\%$)	- 1.0		- 3.5	mA	
Input Leakage Current	ILI	$0.0 \le V_{IN} \le V_{CC}$		0.02	± 5		
Output Leakage Current	ILO	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	± 10	μ A	
Powerdown Voltage (at Stop, RAM Back-up)	V _{STOP}	$V_{IL2} = 0.2V_{CC},$ $V_{IH2} = 0.8V_{CC}$	2.0		6.0	V	
	_	V _{CC} = 5 V ± 10%	50		150	1	
RESET Pull-up Resistor	R _{RST}	V _{CC} = 3 V ± 10%	80	TT	200	$ \mathbf{k}\Omega $	
Pin Capacitance	C _{IO}	fc = 1 MHz			10	pF	
Schmitt Width RESET, NMI, INTO	V _{TH}		0.4	1.0		٧	
Programmable	_	V _{CC} = 5 V ± 10%	10		80		
Pull-down Resistor	R_{KL}	V _{CC} = 3 V ± 10%	30	TT	150	\mathbf{k}_{Ω}	
Programmable	_	V _{CC} = 5 V ± 10%	50		150	7 "2"	
Pull-up Resistor	R _{KH}	V _{CC} = 3 V ± 10%	100	TT	300	1	
Normal (Note 3)	Icc	$V_{CC} = 5 V \pm 10\%$		19	25		
Normal2 (Note 4)		fc = 20 MHz		24	30		
Run				17	25	mA	
ldle2				10	15		
ldle1				3.5	5		
Normal (Note 3)		$V_{CC} = 3 V \pm 10\%$		6.5	10		
Normal2 (Note 4)		fc = 12.5 MHz $(Typ: V_{CC} = 3.0 \text{ V})$		9.5	13		
Run		(1yp. VCC = 3.0 V)		5.0	9	$ _{mA} $	
ldle2				3.0	5] '''' \	
ldle1				0.8	1.5		
Slow (Note 3)		$V_{CC} = 3 V \pm 10\%$		20	35		
Run		fs = 32.768 kHz (Typ: V _{CC} = 3.0 V)		16	30	$\mu_{\mathbf{A}}$	
ldle2		(iyp. VCC = 3.0 V)		10	20		
ldle1				5	15		
Stop		$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.2	10	μA	

- Note 1: Typical values are for Ta = 25°C and $V_{\rm CC}$ = 5 V unless otherwise noted.
- Note 2: I_{DAR} is guaranteed for up to eight ports.
- Note 3: ICC measurement conditions (Normal, Slow):

Only CPU is operational; output pins are open and input pins are fixed.

Note 4: I_{CC} measurement conditions (Normal2):

All functions are operational; output pins are open and input pins are fixed.

4.3 AC Characteristics

(1) $V_{CC} = 5 V \pm 10\%$

NI -	Danamatan	Symbol	Vari	able	16 N	/lHz	20 N	ЛHz	l lasia
No.			Min	Max	Min	Max	Min	Max	Unit
1	Osc. Period (= x)	tosc	50	31250	62.5		50		ns
2	CLK pulse Width	t _{CLK}	2x – 40		85		60		ns
	A0 to A23 Valid→ CLK Hold	t _{AK}	0.5x - 20		11		5		ns
	CLK Valid→ A0 to A23 Hold	t _{KA}	1.5x – 70		24		5		ns
5	A0 to A15 Valid→ ALE Fall	t _{AL}	0.5x - 15		16		10		ns
6	ALE Fall → A0 to A15 Hold	t _{LA}	0.5x - 20		11		5		ns
7	ALE High pulse Width	t _{LL}	x – 40		23		10		ns
8	ALE Fall → RD/WR Fall	t _{LC}	0.5x - 25		6		0		ns
9	RD/WR Rise→ ALE Rise	t _{CL}	0.5x - 20		11		5		ns
10	A0 to A15 Valid→RD/WR Fall	t _{ACL}	x – 25		38		25		ns
11	A0 to A23 Valid→RD/WR Fall	t _{ACH}	1.5x - 50		44		25		ns
12	RD/WR Rise→ A0 to A23 Hold	tcA	0.5x - 25		6		0		ns
13	A0 to A15 Valid \rightarrow D0 to D15 Input	t _{ADL}		3.0x – 55		133		95	ns
14	A0 to A23 Valid→ D0 to D15 Input	t _{ADH}		3.5x – 65		154		110	ns
15	RD Fall → D0 to D15 Input	t _{RD}		2.0x – 60		65		40	ns
16	RD Low Pulse Width	t _{RR}	2.0x - 40		85		60		ns
17	RD Rise→ D0 to D15 Hold	t _{HR}	0		0		0		ns
18	RD Rise→ A0 to A15 Output	t _{RAE}	x – 15		48		35		ns
19	WR Low Pulse Width	tww	2.0x - 40		85		60		ns
20	D0 to D15 Valid→WR Rise	t _{DW}	2.0x - 55		70		45		ns
21	WR Rise →D0 to D15 Hold	t _{WD}	0.5x – 15		16		10		ns
22	A0 to A23 Valid $\rightarrow \overline{WAIT}$ Input $\binom{1 \text{WAIT}}{+ \text{n mode}}$	t _{AWH}		3.5x – 90		129		85	ns
23	A0 to A15 Valid $\rightarrow \overline{\text{WAIT}}$ Input $\binom{1 \text{WAIT}}{+ \text{n mode}}$	t _{AWL}		3.0x - 80		108		70	ns
24	RD/WR Fall→WAIT Hold (1WAIT + n mode)	tcw	2.0x + 0		125		100		ns
25	A0 to A23 Valid→ PORT Input	t _{APH}		2.5x – 120		36		5	ns
26	A0 to A23 Valid→ PORT Hold	t _{APH2}	2.5x + 50		206		175		ns
27	WR Rise→ PORT Valid	t _{CP}		200		200		200	ns
	A0 to A23 Valid→RAS Fall	tasrh	1.0x - 40		23		10		ns
29	A0 to A15 Valid→RAS Fall	t _{ASRL}	0.5x – 15		16		10		ns
	RAS Fall→D0 to D15 Input	t _{RAC}		2.5x – 70		86		55	ns
	RAS Fall→ A0 to A15 Hold	t _{RAH}	0.5x – 15		16		10		ns
	RAS Low Pulse Width	t _{RAS}	2.0x - 40		85		60		ns
33	RAS High Pulse Width	t _{RP}	2.0x - 40		85		60		ns
34	CAS Fall→ RAS Rise	t _{RSH}	1.0x - 40		23		10		ns
	RAS Rise→ CAS Rise	t _{RSC}	0.5x - 25		6		0		ns
36	RAS Fall → CAS Fall	t _{RCD}	1.0x - 40		23		10		ns
37	CAS Fall→ D0 to D15 Input	t _{CAC}		1.5x – 65		29		10	ns
38	CAS Low Pulse Width	tcas	1.5x – 30		64		40		ns

AC Measuring Conditions

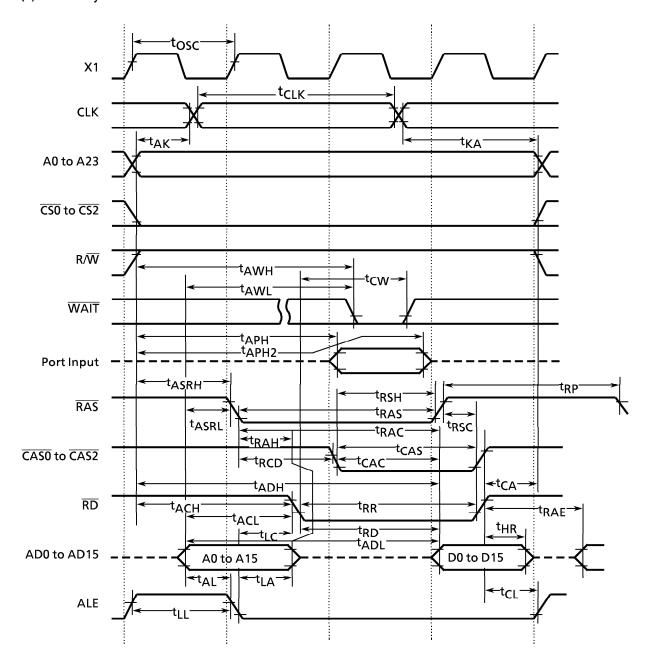
• Output Level: High 2.2 V / Low 0.8 V, CL = 50 pF

(However, CL = 100 pF for AD0 to AD15, A0 to A23, ALE, \overline{RD} , \overline{WR} , \overline{HWR} , R/\overline{W} , CLK, \overline{RAS} , $\overline{CAS0}$ to $\overline{CAS2}$)

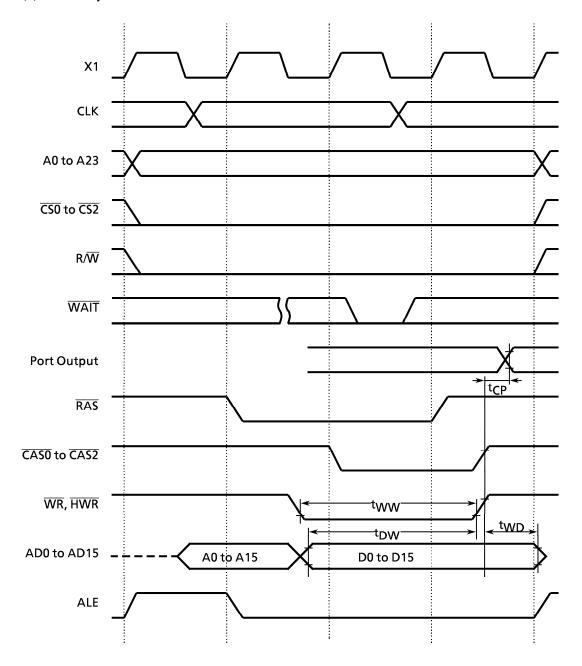
• Input Level: High 2.4 V / Low 0.45 V (AD0 to AD15)

High $0.8 \times V_{CC}$ /Low $0.2 \times V_{CC}$ (except for AD0 to AD15)

(2) $V_{CC} = 3 V \pm 10\%$


No.	Donomorton	Cuma la a l	Vari	able	12.5	Unit	
NO.	Parameter	Symbol	Min	Max	Min	Max	Unit
1	Osc. Period (= x)	tosc	80	31250	80		ns
2	CLK pulse Width	t _{CLK}	2x – 40		120		ns
3	A0 to A23 Valid→CLK Hold	t _{AK}	0.5x - 30		10		ns
4	CLK Valid→ A0 to A23 Hold	t _{KA}	1.5x – 80		40		ns
5	A0 to A15 Valid→ ALE Fall	t_{AL}	0.5x - 35		5		ns
6	ALE Fall → A0 to A15 Hold	t_{LA}	0.5x - 35		5		ns
7	ALE High pulse Width	t _{LL}	x – 60		20		ns
8	ALE Fall→RD/WR Fall	t _{LC}	0.5x - 35		5		ns
9	RD/WR Rise→ ALE Rise	t_{CL}	0.5x - 40		0		ns
10	A0 to A15 Valid→RD/WR Fall	t _{ACL}	x – 50		30		ns
11	A0 to A23 Valid→RD/WR Fall	t _{ACH}	1.5x – 50		70		ns
12	RD/WR Rise→ A0 to A23 Hold	tcA	0.5x - 40		0		ns
13	A0 to A15 Valid→D0 to D15 Input	t _{ADL}		3.0x – 110		130	ns
14	A0 to A23 Valid→D0 to D15 Input	t _{ADH}		3.5x – 125		155	ns
15	RD Fall → D0 to D15 Input	t_{RD}		2.0x – 115		45	ns
16	RD Low Pulse Width	t _{RR}	2.0x - 40		120		ns
17	RD Rise→ D0 to D15 Hold	t_{HR}	0		0		ns
	RD Rise→ A0 to A15 Output	t _{RAE}	x – 25		55		ns
19	WR Low Pulse Width	tww	2.0x - 40		120		ns
	D0 to D15 Valid→WR Rise	t_{DW}	2.0x - 120		40		ns
21	WR Rise →D0 to D15 Hold	t_{WD}	0.5x - 40		0		ns
22	A0 to A23 Valid $\rightarrow \overline{WAIT}$ Input $\binom{1 WAIT}{+ n \mod e}$	t _{AWH}		3.5x – 130		150	ns
23	A0 to A15 Valid $\rightarrow \overline{WAIT}$ Input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	t _{AWL}		3.0x – 100		140	ns
24	RD/WR Fall→WAIT Hold (1WAIT + n mode)	t _{CW}	2.0x + 0		160		ns
25	A0 to A23 Valid→ PORT Input	t _{APH}		2.5x – 195		5	ns
	A0 to A23 Valid→ PORT Hold	t _{APH2}	2.5x + 50		250		ns
27	WR Rise→ PORT Valid	t _{CP}		200		200	ns
	A0 to A23 Valid→RAS Fall	tasrh	1.0x – 60		20		ns
29	A0 to A15 Valid→ RAS Fall	tasrl	0.5x - 40		0		ns
	RAS Fall → D0 to D15 Input	t _{RAC}		2.5x – 90		110	ns
	RAS Fall→A0 to A15 Hold	t _{RAH}	0.5x - 25		15		ns
32	RAS Low Pulse Width	t _{RAS}	2.0x - 40		120		ns
	RAS High Pulse Width	t _{RP}	2.0x - 40		120		ns
	CAS Fall→ RAS Rise	t _{RSH}	1.0x – 55		25		ns
	RAS Rise→ CAS Rise	t _{RSC}	0.5x – 25		15		ns
	RAS Fall→ CAS Fall	t_{RCD}	1.0x - 40		40		ns
	CAS Fall→ D0 to D15 Input	t _{CAC}		1.5x – 120		0	ns
38	CAS Low Pulse Width	t _{CAS}	1.5x – 30		80		ns

AC Measuring Conditions


■ Output Level: High 0.7 × V_{CC} / Low 0.3 × V_{CC}, CL = 50 pF

■ Input Level: High 0.9 × V_{CC} / Low 0.1 × V_{CC}

(1) Read Cycle

(2) Write Cycle

4.4 **AD Conversion Characteristics**

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

Parameter	Symbol	Power Supply	Min	Тур	Max	Unit	
Analog Reference Voltage (+)	V	$V_{CC} = 5V \pm 10\%$	V _{CC} – 1.5V	V_{CC}	V _{CC}		
Analog Kelerence Voltage (+)	V _{REFH}	$V_{CC} = 3V \pm 10\%$	V _{CC} – 0.2V	V_{CC}	V _{CC}		
Analog Reference Voltage (–)	V	$V_{CC} = 5V \pm 10\%$	Vss	V_{SS}	V _{SS} + 0.2V	V	
	V _{REFL}	$V_{CC} = 3V \pm 10\%$	Vss	V_{SS}	V _{SS} + 0.2V		
Analog Input Voltage Range	VAIN		V_{REFL}		V _{REFH}		
Analog Current for Analog Reference		$V_{CC} = 5V \pm 10\%$		0.5	1.5	^	
Voltage <vrefon> = 1</vrefon>	I _{REF}	V _{CC} = 3V ± 10%		0.3	0.9	mA	
<vrefon>=0</vrefon>	$(V_{REFL} = 0 V)$	$V_{CC} = 2.7 \text{ to } 5.5V$		0.02	5.0	μ A	
Error (not including quantizing		$V_{CC} = 5V \pm 10\%$		± 1.0	± 3.0	LSB	
errors)	_	$V_{CC} = 3V \pm 10\%$		± 1.0	± 3.0	LOD	

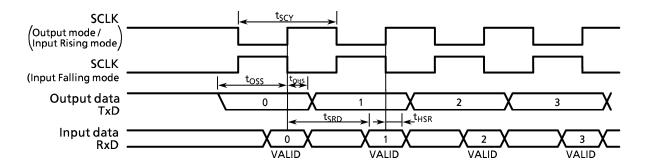
Note 1: 1LSB = $(V_{REFH} - V_{REFL})/2^{10}$ [V] Note 2: The operation of this AD converter is guaranteed only using fc (the high-frequency oscillator). It is not guaranteed for fs. The operation above is guaranteed for $f_{FPH} \ge 4$ MHz. Note 3: The value I_{CC} includes the current which flows through the AVCC pin.

4.5 **Serial Channel Timing**

I/O Interface Mode (1)

① SCLK Input Mode

Parameter	Symbol	Variable		32.768 MHz (Note)		12.5 MHz		20 MHz		l l min
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Unit
SCLK Cycle	t _{SCY}	16X		488 μs		1.28		0.8		μS
Output Data → Rising Edge or Falling Edge* of SCLK	toss	t _{SCY} /2 – 5X – 50		91.5 μs		190		100		ns
SCLK Rising Edge or Falling Edge* → Output Data Hold	t _{OHS}	5X – 100		152 μs		300		150		ns
SCLK Rising Edge or Falling Edge* →Input Data Hold	t _{HSR}	0		0		0		0		ns
SCLK Rising Edge or Falling Edge* → Effective Data Input	t _{SRD}		t _{SCY} – 5X – 100		336 μs		780		450	ns


Note:

System clock is fs, or input clock to prescaler is divisor clock of fs. The rising edge is used in SCLK Rising mode. The falling edge is used SCLK Falling mode.

② SCLK Output Mode

Parameter	Caa la a l	Variable 3		32.768 MHz (Note)		12.5 MHz		20 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
SCLK Cycle (Programmable)	t _{SCY}	16X	8192X	488 μs	250 ms	1.28	655.36	8.0	409.6	μS
Output Data → SCLK Rising Edge	toss	t _{SCY} – 2X – 150		427 μs		970		550		ns
SCLK Rising Edge→Output Data Hold	t _{OHS}	2X – 80		60 μs		80		20		ns
SCLK Rising Edge→Input Data Hold	t _{HSR}	0		0		0		0		ns
SCLK Rising Edge→ Effective Data Input	t _{SRD}		t _{SCY} – 2X – 150		428 μs		970		550	ns

Note: System clock is fs, or input clock to prescaler is divisor clock of fs.

4.6 Timer / Counter Input Clock (TI0, TI4, TI5, TI6, TI7)

Parameter	Symbol	Variable		12.5 MHz		20 MHz		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Clock Cycle	t _{VCK}	8X + 100		740		500		ns	
Low Level Clock Pulse Width	t _{VCKL}	4X + 40		360		240		ns	
High Level Clock Pulse Width	t _{VCKH}	4X + 40		360		240		ns	

4.7 Interrupt and Capture

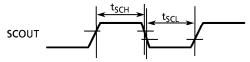
(1) NMI, INTO interrupts

Dorometer	اء ما مصر	Variable		12.5 MHz		20 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
NMI, INTO Low Level Pulse Width	t _{INTAL}	4X		320		200		ns
NMI, INTO High Level Pulse Width	t _{INTAH}	4X		320		200		ns

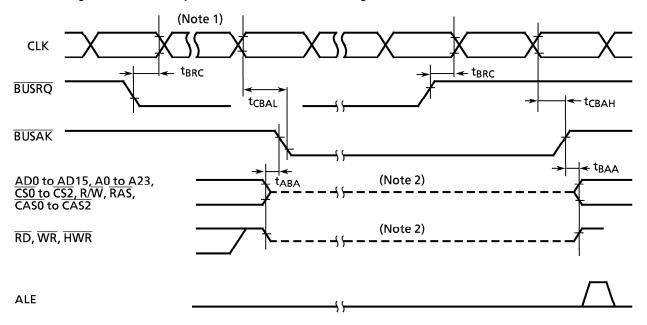
(2) INT4 to 7 interrupts, capture

The INT4 to 7 input pulse width depends on the CPU operation clock and timer (9-bit prescaler). The following shows the pulse width for each clock.

System clock Prescaler clock		t _{INTBL} (INT4 to 7 lov	w level pulse width)	t _{INTBH} (INT4 to 7 hig		
selected	selected	Variable	20 MHz	Variable	20 MHz	Unit
<sysck> < PRCK1 to 0></sysck>		Min	Min	Min	Min	
	00 (f _{FPH})	8X + 100	500	8X + 100	500	ns
0 (fc)	01 (fs)	8XT + 0.1	244.3	8XT + 0.1	244.3	
	10 (fc/16)	128X + 0.1	6.5	128X + 0.1	6.5	٠
1 (fs)	00 (f _{FPH})	8XT + 0.1	244.2	OVT . 0.1	244.2	μS
(Note 2)			244.3	8XT + 0.1	244.3	


Note 1: XT represents the frequency of the low frequency clock fs. Calculated at $fs = 32.768 \, kHz$. Note 2: When using fs as the system clock, fc/16 cannot be selected as the prescaler clock.

SCOUT pin AC characteristics 4.8


Parameter	Symbol	Variable		12.5 MHz		20 MHz		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
High-Level Pulse Width $V_{CC} = 5 \text{ V} \pm 10\%$	t _{sch}	0.5X – 10		40		15		ns	
High-Level Pulse Width $V_{CC} = 3 \text{ V} \pm 10\%$		0.5X – 20		30		-	-	113	
Low-Level Pulse Width V _{CC} = 5 V ± 10%	t _{SCL}	0.5X – 10		40		15		ns	
Low-Level Pulse Width V _{CC} = 3 V ± 10%		0.5X – 20		30		-	-	3	

Measurement condition

■ Output level: High 2.2 V / Low 0.8 V, CL = 10 pF

4.9 Timing Chart for Bus Request (BUSRQ) / Bus Acknowledge (BUSAK)

Parameter	C. mala al	Variable		12.5 MHz		20 MHz		Unit
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
BUSRQ Set-up Time to CLK	t _{BRC}	120		120		120		ns
CLK→ BUSAK Falling Edge	t _{CBAL}		1.5X + 120		240		195	ns
CLK→ BUSAK Rising Edge	t _{CBAH}		0.5X + 40		80		65	ns
Output Buffer off to BUSAK	t _{ABA}	0	80	0	80	0	80	ns
BUSAK to Output Buffer on	t _{BAA}	0	80	0	80	0	80	ns

Note 1: Even if the \overline{BUSRQ} signal goes low, the <u>bus will</u> not be released <u>while</u> the \overline{WAIT} signal is low. The bus will only be released when \overline{BUSRQ} goes low while \overline{WAIT} is high.

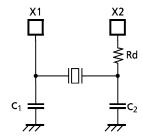
Note 2: This line shows only that the output buffer is in the off state. It does not indicate that the signal level is fixed.

Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resistor during bus release, careful design is necessary, as fixing of the level is delayed.

The internal programmable pull-up / pull-down resistor is switched between the active

and non-active states by the internal signal.

4.10 Recommended oscillator


The TMP93CS40/S41 are evaluated with vasious resonators. The evaluation results are displayed below to enable appropriate selection for any given application.

Note: The load capacitance of the resonator consists of the load capacitors C1 and C2 which are to be connected and the floating capacitance of the target board.

Even if the specified values of C1 and C2 are used, there is a possibility that the oscillator will malfunction due to varying load capacitance on the target boards. Hence the oscillator's wiring patterns on the board should be designed to be as short as possible.

It is recommended that evaluation of the resonators be conducted on the target board.

(1) Examples of Resonator Connection

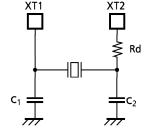


Figure 1: Example of High Frequency Resonator Connection

Figure 2: Example of Low Frequency Resonator Connection

(2) Ceramic resonator: Toyama Murata Mfg. Co., Ltd (Note 1)

 $Ta = -20 \text{ to } 80^{\circ}\text{C}$

	Frequency		Recon	nmended val		= -20 to 80 C	
Parameter	(MHz)	Recommended resonator	C ₁ [pF]	C ₂ [pF]	Rd [k Ω]	Vcc [V]	
		CSA4.00MG	30	30			
	4.00	CST4.00MGW	(30) (Note 2)	(30) (Note 2)			
		CSA10.0MTZ093	30	30		2.7 to 5.5	
	10.00	CST10.0MTW093	(30) (Note 2)	(30) (Note 2)	0		
High-frequency oscillation		CSA12.5MTZ093	30	30			
	12.50	CST12.5MTW093	(30) (Note 2)	(30) (Note 2)			
		CSA16.00MXZ040	5	5			
	16.00	CST16.00MXW0C1	(5) (Note 2)	(5) (Note 2)		4.5 to 5.5	
	20.00	CSA20.00MXZ040	3	3			

Note 1: TOYAMA MURATA MFG. CO., LTD. (JAPAN)

These product numbers and the corresponding specifications are subject to change. For up-to-date information, please refer to the following URL;

http://www.murata.co.jp/search/index.html

Note 2: For built-in condenser type

TOSHIBA TMP93CS40/TMP93CS41

(3) Crystal resonator: Nihon Denpa Kogyo(Note 1)

 $Ta = -10 \text{ to } 60^{\circ}\text{C}$

Da wa wa asta w	Frequency		Recor	mmended	value	V 15.0	
Parameter	(MHz)	(MHz) Recommended resonator		C ₂ [pF]	Rd [k Ω]	Vcc [V]	
	4.00	NT040016A	12	12			
	10.00	NT100016A	10	10		2.7 to 5.5	
High-frequency oscillation	12.50	NT125016A	10	10	0		
	16.00	NT160016A	10	10			
	20.00	NT200016A	7	7		4.5 to 5.5	

Note 1: NDK AMERICA, INC.: U.S.A

NDK ELECTRONICS SINGAPORE PTE, LTD.

NDK ELECTRONICS (HK) LIMITED: HONG KONG

NDK EUROPE LIMITED: ENGLAND

NDK FRANCE SARL: FRANCE NDK ITALY SRL: ITALY

NDK SCANDINAVIA AB: SWEDEN

Note 2: High-frequency resonator

NR-18: Lead mount type AT-51: Lead mount type CP12A: Surface mount type Phone: +1-510-623-6500, Phone: +65-298-9878, Phone: +852-2956-3181, Phone: +44-20-8390-8344, Phone: +39-2-96702920, Phone: +46-8-444-1040, Phone: +46-8-632-0070