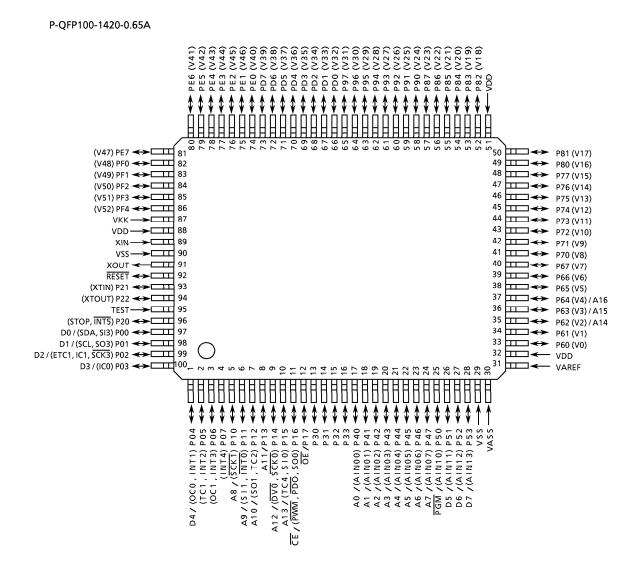

CMOS 8-Bit Microcontroller

TMP88PU77F

The 88PU77 are the high-speed and high performance 8-bit single chip microcomputers which built in a program storage area (96 Kbyte) and the One-Time PROM of bector table storage area (256 byte). The 88PU77 is pin compatible with the 88CP77/S77/U77. The operations possible with the 88PU77 can be performed by writing programs to PROM. The 88PU77 can write and verify in the same way as the TC571000 an EPROM programmer.


PART No.	OTP	RAM	PACKAGE	ADAPTOR SOCKET
TMP88PU77F	96 Kbyte + 256 byte	3 Kbyte	P-QFP100-1420-0.65A	BM11150

000707EBA1

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA products applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of work is assumed by TOSHIBA products described in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade laws.
T

Pin Assignments (Top View)

Note: All VDDs should be connected externally for keeping the same voltage level.

Pin Function

The 88PU77 has two modes: MCU and PROM.

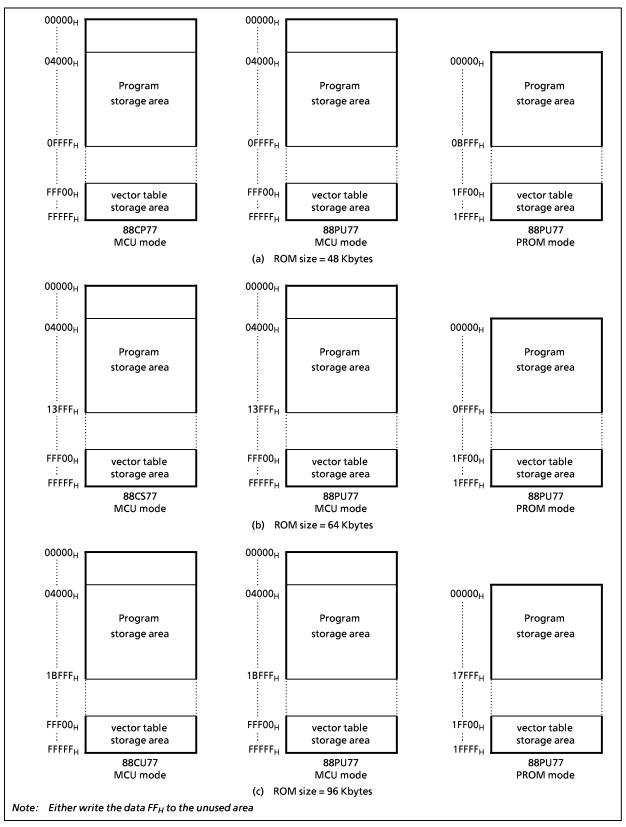
- (1) MCU mode In this mode, the 88PU77 is pin compatible with the 88CP77/S77/U77 (fix the TEST pin at low level).
- (2) PROM mode

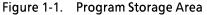
Pin Name (PROM mode)	Input/Output	Functions	Pin Name (MCU mode)			
A16			P64			
A15 to A8	Input	PROM address inputs	P63, P62, P15 to P10			
A7 to A0			P47 to P40			
D7 to D0	I/O	PROM data input/outputs	P53 to P51, P04 to P00			
CE		Chip enable signal input (active low)	P16			
ŌĒ	Input	Output enable signal input (active low)	P17			
PGM		Program mode single input	P50			
VPP		+ 12.75 V / 5 V (Program supply voltage)	TEST			
vcc	Power supply	+ 6.25 V / 5 V	VDD			
GND		ov	VSS			
P07 to P05		Pull-up with resistance for input processing				
P33 to P30						
P60		PROM mode setting pin. Be fixed at high level.				
P21	Input					
P67, P66, P61						
PF4 to PF0, PE7 to PE0		PROM mode setting pin. Be fixed at low level.				
RESET						
P65						
P77 to P70						
P87 to P80	Output	Open				
P97 to P90						
PD7 to PD0						
XIN	Input	Connect an 8 MHz oscillator to stabilize the intern	al state			
XOUT	Output		ai state.			
VAREF VASS	Power supply	0 V (GND)				
νκκ		Open				

Operational Description

The configuration and functions of the 88PU77 are the same as those of the 88CP77/S77/U77, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. Operating Mode


The 88PU77 has two modes: MCU and PROM.


1.1 MCU Mode

The MCU mode is activated by fixing the TEST / VPP pin at low level. In the MCU mode, operation is the same as with the 88CP77/S77/U77 (the TEST / VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program memory

The 88PU77 has a 96 Kbyte (addresses 04000_H to $1BFFF_H$ in the MCU mode, addresses 00000_H to $17FFF_H$ in the PROM mode) of program storage area and 256 byte (addresses FFF00 to FFFFF_H in the MCU mode, addresses 1FF00 to $1FFFF_H$ in the PROM mode) one-time PROM of vector table storage area.

Electrical Characteristics

Absolute Maximum Ratings		$(V_{SS} = 0 V)$					
PARAMETER	SYMBOL	PINS	RATINGS	UNIT			
Supply Voltage (* Note 3)	V _{DD}		– 0.3 to 6.5	V			
Program Voltage	V _{PP}	TEST/VPP	– 0.3 to 13.0	V			
	V _{IN1}	P1, P2, P3, P4, P5, XOUT, RESET	-0.3 to V _{DD} + 0.3	.,			
Input Voltage	V _{IN2}	P0 port	– 0.3 to 5.5 V	V			
	V _{OUT1}	P1, P2, P3, P4, P5, XOUT, RESET	– 0.3 to V _{DD} + 0.3				
Output Voltage	V _{OUT2}	P0 port	– 0.3 to 5.5 V	V			
	V _{OUT3}	Source open drain ports	$V_{DD} - 40$ to $V_{DD} + 0.3$				
	I _{OUT1}	P0, P1, P2, P3, P4, P5 ports	3.2				
Output Current (Per 1 pin)	I _{OUT2}	P6, P7, P80, 81 Ports	- 25	mA			
	I _{OUT3}	P82 to P87, P9, PD, PE, PF ports	- 12				
	Σ I _{OUT1}	P1, P3, P4, P5 ports	- 40				
Output Current (Total)	ΣI_{OUT2}	P0, P1, P2, P3, P4, P5 ports	60	mA			
	ΣI_{OUT3}	P6, P7, P8, P9, PD, PE, PF ports	- 120				
Power Dissipation [Topr = 25°C]	PD	note	1200	mW			
Soldering Temperature (time)	Tsld		260 (10 s)	°C			
Storage Temperature	Tstg		–55 to 125	°C			
Operating Temperature	Topr		- 30 to 70	°C			

Note 1: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded. Note 2: Power Dissipation (PD) ; For PD, it is necessary to decrease -14.3 mW/°C. (Refernce to TMP88CP77/S77/U77) Note 3: All VDDs should be connected externally for keeping the same voltage level.

PARAMETER	SYMBOL	PINS	C	CONDITIONS	Min	Max	UNIT
			fc =	NORMAL1, 2 modes			
Supply Voltage			12.5 MHz	IDLE1, 2 modes	4.5		
	V _{DD}		fs =	SLOW mode	4.5	5.5	v
			32.768 kHz	SLEEP mode			
				STOP mode	2.0		
	V _{IH1}	Except hysteresis input		- V _{DD} ≧4.5 V			
Input High Voltage	V _{IH2}	Hysteresis input				V _{DD}	v
	V _{IH3}		V _{DD} <4.5 V		V _{DD} × 0.90		
	V _{IL1}	Except hysteresis input				V _{DD} × 0.30	
Input Low Voltage	V _{IL2}	Hysteresis input		$V_{DD} \ge 4.5 V$	0	V _{DD} × 0.25	l v
	V _{IL3}			V _{DD} <4.5 V		V _{DD} × 0.10	
	fc	XIN, XOUT	V _{DD}	= 4.5 V to 5.5 V	1.0	12.5	MHz
Clock Frequency	fs	XTIN, XTOUT	V _{DD}	= 2.7 V to 5.5 V	30.0	34.0	kHz

The recommended operating conditions for a device are operating conditions under which it can be guaranteed that Note: the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

PARAMETER	SYMBOL	PINS	CONDITIONS	Min	Тур.	Max	דואט	
Hysteresis Voltage	V _{HS}	Hysteresis input		-	0.9	_	V	
Input Current	t		$V_{DD} = 5.5 V$ $V_{IN} = 5.5 V / 0 V$	-	-	± 2	μA	
	I _{IN3}	PD, PE, PF ports (Note3)		-	_	80	1	
Input Resistance	R _{IN3}	RESET		100	220	450		
Pull-down Resistance	R _K	Source open drain ports	$V_{DD} = 5.5 V, V_{KK} = -30 V$	50	80	110	kΩ	
	I _{LO1}	Sink open drain ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	-	-	2		
Output Leakage Current	I _{LO2}	Source open drain ports	V _{DD} = 5.5 V, V _{OUT} = -32 V	-	-	- 2	_ μ Α	
	I _{LO3}	Tri-state ports	$V_{DD} = 5.5 V, V_{OUT} = 5.5 V / 0 V$	-	-	2		
Output High Voltage	V _{OH2}	Tri-state ports	V _{DD} = 4.5 V, I _{OH} = -0.7 mA	4.1	_	-	v	
Output Low Voltage	V _{OL}	Except XOUT	$V_{DD} = 4.5 V, I_{OL} = 1.6 mA$	-	-	0.4	V	
Output High current	I _{OH1}	P6, P7, P80, P81 port P82 to P87, P9, PD, PE, PF	V _{DD} = 4.5 V, V _{OH} = 2.4 V		- 30	_	mA	
	I _{OH2}	ports		-	- 15	-		
Supply Current in NORMAL 1, 2 modes			$V_{DD} = 5.5 V$ $V_{IN} = 5.3 V / 0.2 V$	-	15	22		
modesSupply Current in IDLE 1, 2 modes			fc = 12.5 MHz fs = 32.768 kHz	-	6	12	mA	
Supply Current in SLOW mode	I _{DD}		$V_{DD} = 3.0 V$	-	30	60		
Supply Current in SLEEP mode			V _{IN} = 2.8 V / 0.2 V fs = 32.768 kHz	-	15	30	μ Α	
Supply Current in STOP mode			$V_{DD} = 5.5 V$ $V_{IN} = 5.3 V / 0.2 V$	-	0.5	10		

contained.

Note 3: Input Current I_{IN4}; The current when the pull-down register (Rk) is not connected by the mask option.

AD Conversion Characte	eristics	$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$					
PARAMETER	SYMBOL	CONDITIONS	Min	Тур.	Max	UNIT	
	V _{AREF}		4.5	-	V _{DD}	.,	
Analog Reference Voltage	V _{ASS}		Vss			V	
Analog Reference Voltage Range	V _{AIN}		V _{ASS}	_	V _{AREF}	v	
Analog Input Voltage	I _{REF}	$V_{AREF} = 5.5 V$, $V_{ASS} = 0.0 V$	-	0.5	1.0	mA	
Nonlinearity Error			-	-	± 1		
Zero Point Error		$V_{DD} = 5.0 V, V_{SS} = 0.0 V$	_	-	± 1		
Full Scale Error		V _{AREF} = 5.000 V	_	_	± 1	LSB	
Total Error		V _{ASS} = 0.000 V	-	_	± 2		

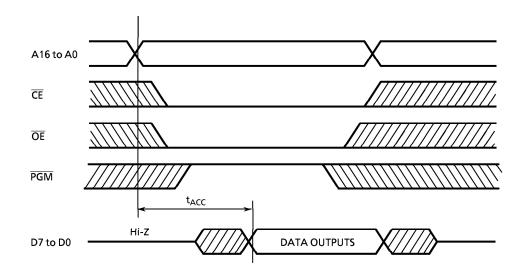
AC	Characteristics	
 .	characteristics	

 $(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	Min	Тур.	Max	UNIT
		In NORMAL1, 2 modes	0.22		10	
Mashina Cuela Tima	4.0.1	In IDLE1, 2 modes	0.32	-	10	
Machine Cycle Time	tcy	In SLOW mode			133.3	μs
		In SLEEP mode	117.6	-		
High Level Clock Pulse Width	t _{WCH}	For external clock operation	32	_		
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 12.5 MHz	52	_	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation	15.2	_	_	μS
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	13.2			μ

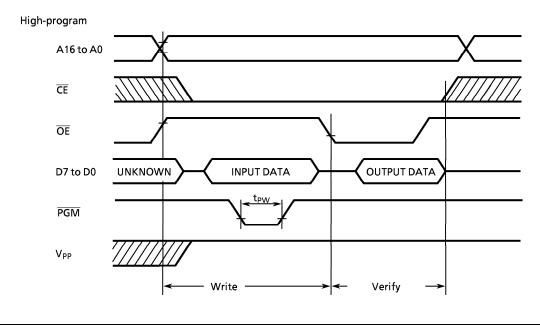
Recommended Oscillating Conditions ($V_{SS} = 0 V$, $V_{DD} = 4.5$ to 5.5 V, Topr = - 30 to 70°C)

	PARAMETER Oscillator				Recommended Constant		
PARAMETER			Recomm	ended Oscillator	C ₁	C ₂	
		12.5 MHz	Murata	CSA12.5MTZ	30 pF	30 pF	
High-frequency Oscillation	Ceramic Resonator	8 MHz	Murata	CSA8.00MTZ	30 pF	30 pF	
	Crystal Oscillator	12.5 MHz	NDK	AT-51	10 pF	10 pF	
Low-frequency Oscillation	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15 pF	15 pF	

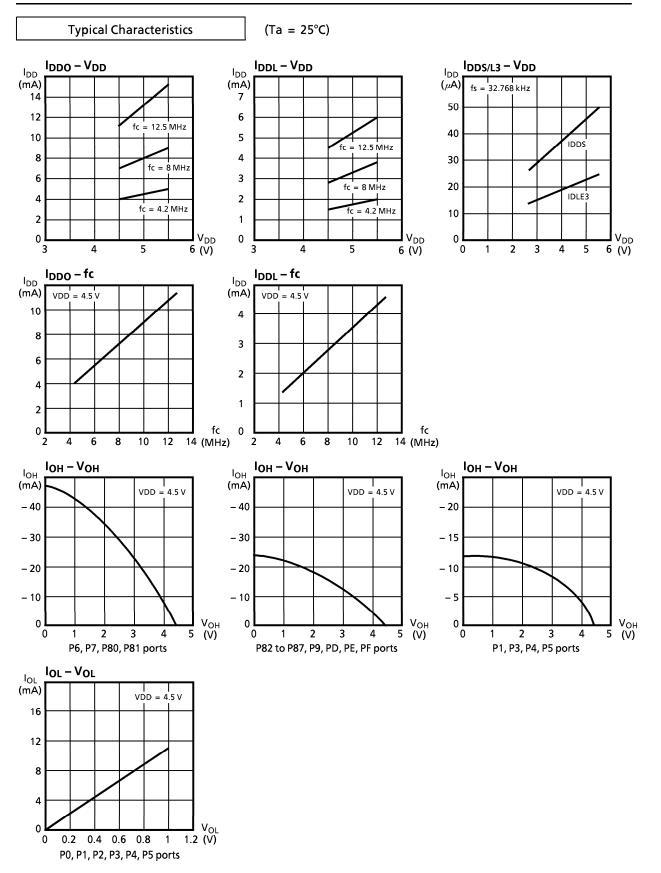

Note: An electrical shield by metal shied plate on the IC package should be recommend able in order to prevent the device from the high electric fieldstress applied for continuous reliable operation.

D.C./A.C. Characteristics (PROM mode) (V_{SS} = 0 V)

(1) Read Operation (VDD = $5.0 \pm 0.25 \text{ V}$, Topr = $25 \pm 5^{\circ}$ C)


PARAMETER	SYMBOL	CONDITIONS	Min	Тур.	Max	UNIT
Input High Voltage (A0 to A16, CE, OE, PGM)	V _{IH4}		VDD x 0.7	-	VDD	V
Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{IL4}		0	-	0.8	v
Program Power Supply Voltage	V _{PP}		4.75	5.0	5.25	v
Address Access Time	t _{ACC}		_	1.5tcyc + 300	-	ns

Note: tcyc = 500 ns at 8 MHz



(2) High-Speed Programming Operation (Topr = $25 \pm 5^{\circ}$ C, VDD = 6.25 ± 0.25 V)

PARAMETER	SYMBOL	CONDITIONS	Min	Тур.	Max	UNIT
Input High Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{IH4}		VDD x 0.7	-	VDD	v
Input Low Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{IL4}		0	-	0.8	v
Program Power Supply Voltage	V _{PP}		12.5	12.75	13.0	v
Initial Program Pulse Width	t _{PW}	V _{DD} = 6.0 V	0.095	0.1	0.105	ms

Note1:	When V_{cc} power supply is turned on or after, V_{pp} must be increased.
	When V_{cc} power supply is turned off or before, V_{pp} must be decreased.
Note2:	The device must not be set to the EPROM programmer or picked up from it under applying the
	program voltage (12.75 V \pm 0.5 V) to the V _{pp} pin as the device is damaged.
Note3:	Be sure to execute the recommended programing mode with the recommended programing
	adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

