CMOS 8-Bit Microcontroller


TMP88CS48AN, TMP88CS48AF

TMP88CS48A is high-speed and high-function 8-bit single-chip microcomputers whose built-in features include large-capacity RAM, multi-function timer/counter, and 10-bit AD converter, serial interface (UART/I²C bus). They are equipped with 3 phase brushless DC sensorless/sensor motor control, and AC motor inverter control.

Part No.	ROM	RAM	Package	ОТР МСИ
TMP88CS48AN	64 Kbytes	2 Kbytes	P-SDIP64-750-1.78	TMP88PS49N
TMP88CS48AF	04 Noytes	2 Kbytes	P-QFP64-1420A-1.00A	TMP88PS49F

Features

- ◆8-bit single-chip microcomputer TLCS-870/X series microcomputer
- ◆Interrupt sources: 25 (6 external, 19 Internal)
- ♦I/O ports: 56 pins
 - Large-current output: 8 pins (typ. 20 mA), LED direct drive
- ◆ 16-bit timer/counter: 2 channels
 - Timer, event counter, programmable pulse generator (PPG) output, pulse width measurement, external trigger timer, window mode
- ◆8-bit Timer/Counter: 3 channels
 - Timer, event counter, capture (pulse width/duty measurement), pulse width modulation (PWM) output, programmable divider output (PDO) mode
- ◆Time base timer (interrupt frequency: 1 to 16384 Hz)
- ♦ Watchdog timer
- ◆Divider output function (frequency: 1 to 8 kHz)
- Programmable motor driver (PMD): 1 channel
 - Rotor position: minimum resolution of 250 ns for detecting rotor position
 - Motor control timer, timer capture function
 - Overload protection function DC overload protection function
 - AC overload protection function (Can halt counter in 3-phase PWM output circuit)
 - Protection circuit for malfunction (urgent halt)
 - Automatic direction change, automatic position detection start
- ◆High-speed PWM output: 2 channel
 - Cycle: 32 kHz, 64 kHz, 128 kHz (at 8 MHz operation)
 - Resolution: 8-bit, 7-bit, 6-bit mode selectable

980910EBP1

● For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

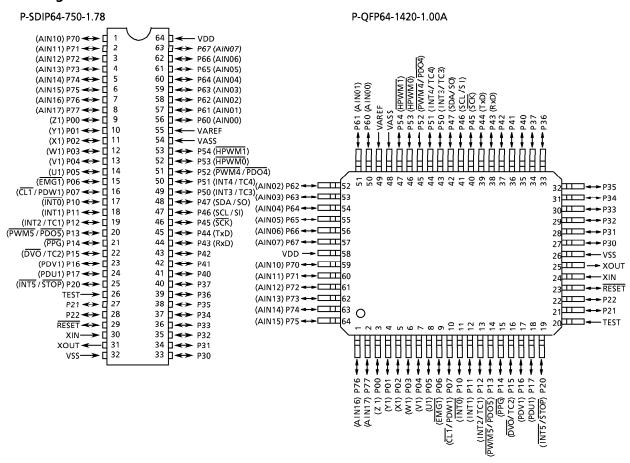
The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

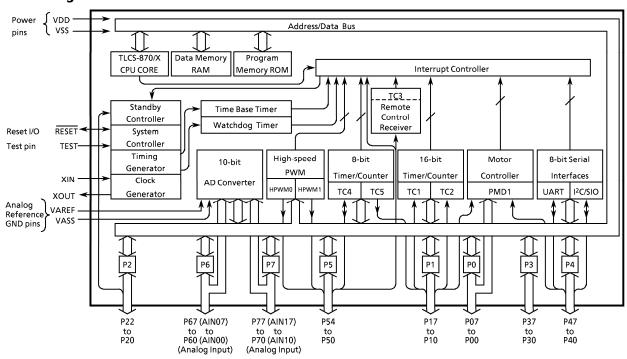
The information contained herein is subject to change without notice.

Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by Philips.

3-48A-1 2000-01-24


- ◆ Serial interface
 - 8-bit SIO/I²C bus
 - Universal asynchronous receiver transmitter (UART)
- ◆ 10-bit successive approximation type AD converter

 - Analog input: 16 channels
 Conversion time: 46 μs (at 16 MHz operation)
- Low power dissipation operation (2 modes)
 STOP mode:Stops oscillation (battery or capacitor backup). Port output hold or high impedance selectable
- IDLE mode:Stops CPU but continues operation of peripheral hardware. Released by interrupt (restarts CPU)


 ◆Operating voltage: 4.5 to 5.5 V at 16 MHz operation
- ♦ Emulation pod: BM88CM49N0A

3-48A-2 2000-01-24

Pin Assignments

Block Diagram

Pin Function

Pin Name	1/0	Fun	ction		
P07 (CL1/PDW1) P06 (EMG1)	I/O (Input)	8-bit programmable I/O port (tri state) Input or output specifiable in units of bits. When using pins for motor control circuit, set accordingly using POCR, then	Overload protection input 1/motor control circuit W1-phase position detection input Motor control circuit malfunction detection input 1		
P05 (U1) P04 (V1) P03 (W1)	I/O (Output)	MDCR to 1.	Motor control circuit U1-/V1-/W1-phase output		
P02 (X1) P01 (Y1) P00 (Z1)	I/O (Output)		Motor control circuit X1-/ Y1-/Z1-phase output		
P17 (PDU1) P16 (PDV1)	· I/O (Input)	8-bit programmable I/O port (tri state) Input or output specifiable units of bits. When using pins for motor control	Motor control circuit U1-phase position detection input Motor control circuit V1-phase position		
P15 (DVO/TC2)	II/O (Output/Input)	circuit, timer/counter input, or external interrupt input, set them to input mode.	detection input Divider output or Timer/Counter 2 input		
P14 (PPG) P13 (PWM5/PDO5)	I/O (Output)	When using pins for PPG output, divider output, or PWM output/PDO output, set them to output mode.	Programmable pulse generator output 8-BIT PWM output 5 or 8-BIT programmable divider output 5		
P12 (INT2/TC1) P11 (INT1) P10 (INT0)	· I/O (Input)		External interrupt input 2 or Timer/Counter 1 input External interrupt input 1 External interrupt input 0		
P22 P21	. 1/0	3-bit I/O port When using pins for input port, external			
P20 (INT5/STOP)	I/O (Input)	interrupt input, or STOP mode release input, set output latches to 1.	External interrupt input 5 or STOP mode release signal input		
P37 P36 P35 P34 P33 P32 P31 P30	l/O (Output)	8-bit I/O port (large-current output) When using pins for motor control circuit input, set output latches to 1, then MDCR2 to 1.	_		
P47 (SDA/SO)	I/O (I/O/Output)	8-bit I/O port			
P46 (SCL/SI) P45 (SCK) P44 (TxD)	I/O (I/O/Input) I/O (I/O) I/O (Input)	When using pins for motor control circuit input, UART/I ² C/SIO, set output latches to 1.	UART data input		
P43 (RxD) P42 P41 P40	I/O (Output)		UART data output —		
P54 (HPWM1) P53 (HPWM0) P52 (PWM4/PDO4)	· I/O (Output)	5-bit input/output port with latch. When using pins for input port, HPWM output, PWM output/PDO output, external interrupt input, or	high-speed PWM output 8-BIT PWM output 4 or, 8-bit programmable divider output 4		
P51 (INT4/TC4)	l/O (Input)	timer/counter input, set output latches to 1.	External interrupt 4 input or timer / counter 4 input		
P50 (INT3/TC3)	i/O (iriput)		External interrupt 3 input or timer / counter 3 input		

Pin Name	Input/Output	Fun	Function				
P67 (AIN07) to P60 (AIN00)	I/O (Input)	8-bit programmable I/O port (tri state) Input or output specifiable in units of bits. When using pins for analog input, set to input mode using P6CR and ADCCR.	AD converter analog input				
P77 (AIN17) to P70 (AIN10)	I/O (Input)	8-bit programmable I/O port (tri state) Input or output specifiable in units of bits. When using pins for analog input, set to input mode using P7CR and ADCCR.	AD converter analog input				
XIN, XOUT	Input, Output	High-frequency oscillator connecting pin and leave XOUT open.	s. For external clock input, input to XIN				
RESET	1/0	Reset signal input, watchdog timer output, address trap reset output, system clock reset output					
TEST	Input	Shipment test pin, fix to "L" level.					
VDD, VSS	Power Cumply	+5 V, 0 V (GND)					
VAREF, VASS	Power Supply	Analog reference voltage for AD conversion	on. Reference GND.				

Operation

1. CPU Core Functions

The CPU core consists of the CPU, system clock control circuit, and interrupt control circuit. This chapter describes the CPU core, program memory, data memory and the reset circuit.

1.1 Memory Address Map

The TMP88CS48A memory consists of four blocks: ROM, RAM, special function registers (SFR) and Data buffer registers (DBR). They are all mapped to a 1 Mbyte address space. Figure 1-1 shows the TMP88CS48A memory address map. There are 16 general-purpose registers mapped to the RAM address space.

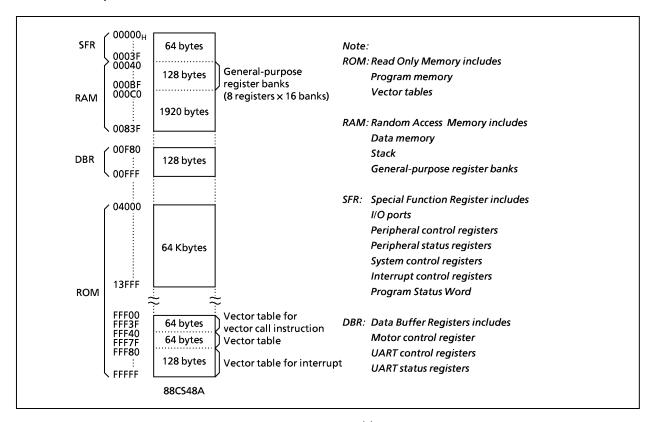


Figure 1-1. Memory Address Maps

Electrical Characteristics

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V_{DD}		– 0.3 to 6.5	٧
Input Voltage	V_{IN}		- 0.3 to V _{DD} + 0.3	٧
Output Valtage	V _{OUT1}	Port P21, P22, RESET, Tri-state port	- 0.3 to V _{DD} + 0.3	٧
Output Voltage	V _{OUT2}	Port P20, Sink open drain port	– 0.3 to 5.5	٧
	I _{OUT1}	Ports P1, P2, P4, P5, P6, P7	3.2	
Output Current	I _{OUT2}	Port P0	20	mA
	I _{OUT3}	Port P3	30	
	Σl _{OUT1}	Ports P1, P2, P4, P5, P6, P7	120	
Output Current	ΣI_{OUT2}	Port P0	60	mA
	ΣI_{OUT3}	Port P3	120	
Danier Dissipation [Tana 70%]	DD.	TMP88CS48AN	600	\4/
Power Dissipation [Topr = 70°C]	PD	TMP88CS48AF	350	· mW
Soldering Temperature (time)	Tsld		260 (10 s)	°C
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		– 40 to 85	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Opeating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit
			f. 16 NALI-	NORMAL mode		5.5	
Supply Voltage	V_{DD}		fc = 16 MHz	IDLE mode	4.5		V
				STOP mode			ł
Input High Voltage	V _{IH1}	Except hysteresis input	V _{DD} ≥ 4.5 V V _{DD} < 4.5 V		$V_{DD} \times 0.70$	_{DD} × 0.70	
	V _{IH2}	Hysteresis input			$V_{DD} \times 0.75$	V_{DD}	٧
	V _{IH3}				$V_{DD} \times 0.90$		
	V _{IL1}	Except hysteresis input	V >45V			$V_{DD} \times 0.30$	
Input Low Voltage	V_{IL2}	Hysteresis input	V _{DD} ≧4.5 V		0	$V_{DD} \times 0.25$	V
	V _{IL3}		V _{DD} <4.5 V			V _{DD} × 0.10	
Clock Frequency	fc	XIN, XOUT	V _{DD} =	4.5 to 5.5 V	8.0	16.0	MHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: The condition of supply voltage range is the value in NORMAL and IDLE modes.

DC Characteristics

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		_	0.9	_	V
	I _{IN1}	TEST					
Input Current	I _{IN2}	Sink open drain, Tri-state ports	$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.5 \text{ V}/0 \text{ V}$	_	_	± 2	μA
	I _{IN3}	RESET, STOP	- VIII - 3.3 V/O V				
In root Desister (*)	_	TEST with pull-down		20	70	170	kΩ
Input Resistor (*)	R _{IN}	RESET		90	220	510	K77
Output Leakage Current	l _{OL}	Sink open drain, Tri-state ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V/0 V	-	-	± 2	μΑ
Output High Voltage	V _{OH}	Tri-state ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	_	٧
	I _{OL1}	Except XOUT, Ports P0, P3.	$V_{DD} = 4.5 \text{ V}, \ \ V_{OL} = 0.4 \text{ V}$	_	1.6	_	
Output Low Current	I _{OL2}	Port P0	4577 77 4077	6	10	_	mA
	I _{OL3}	Port P3	$V_{DD} = 4.5 \text{ V}, V_{OL} = 1.0 \text{ V}$	12	20	_	
Supply Current in NORMAL Mode			$V_{DD} = 5.5 \text{ V}$	_	32	40	mA
Supply Current in IDLE Mode			$V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$ fc = 16.0 MHz	-	24	30	mA
Supply Current in STOP Mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$	_	0.5	20	μΑ

Note 1: Typical values show those at Topr = 25° C, $V_{DD} = 5 V$.

Note 2: Input Current I_{IN1}, I_{IN3}; The current through registor is not included, when the input resistor (pull-up or pull-down) is contained.

Note 3: IDD except I_{REF}.

AD Conversion Characteristics

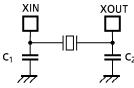
 $(Topr = -40 \text{ to } 85^{\circ}C)$

		Conditions		lin Typ.	M		
Parameter	Symbol		Min		ADCDR1	ADCDR2	Unit
					ADCDIO	ACK = 1	
Analas Reference Valtage	V _{AREF}		V _{DD} – 1.0	1	V _{DD}		
Analog Reference Voltage	V _{ASS}	$V_{AREF} - V_{ASS} \ge 3.5 V$	V _{SS}	1	1.0		\ \ \
Analog Input Voltage	V_{AIN}		V _{ASS}	_	V_{AREF}		V
Analog Supply Current	I _{REF}	$V_{AREF} = 5.5 V,$ $V_{ASS} = 0.0 V$	_	0.5	1.0		mA
Non-Linearity Error			_	_	± 1	± 2	
Zero Point Error		$V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$ $V_{AREF} = 5.000 \text{ V}$		_	± 1	± 2	160
Full Scale Error		V _{ASS} = 0.000 V		_	± 1	± 2	LSB
Total Error			_		± 2	± 4	

Note 1: ADCDR1: 8-bit AD conversion result (1LSB = ΔV_{AREF} /256) ADCDR2: 10-bit AD conversion result (1LSB = ΔV_{AREF} /1024)

Note 2: Total error includes all errors except quantization error.

AC Characteristics


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine Cycle Time	+01	NORMAL mode	0.25	-	0.5	
Wachine Cycle Time	tcy	IDLE mode	0.25			μS
High Level Clock Pulse Width	t _{WCH}	For external clock operation	31.25		62.5	nc
Low Level Clock Pulse Width	t _{WCL}	(XIN input)	31.23	-	02.5	ns

Recommended Oscillating Conditions

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Oscillator	Oscillation	Recommended Oscillator	Recommended Constant		
rarameter	Oscillator	Frequency	Recommended Oscillator	C ₁	C ₂	
High-frequency Oscillation		16 MHz	MURATA CSA16.00MXZ	5 pF	5 pF	
	Ceramic Resonator		MURATA CST16.00MXW	built-in 5 pF	built-in 5 pF	

High-frequency Oscillation

Note: An electrical shield by metal shield on the surface of IC package should be recommendable in order to prevent the device from the high electric fieldstress applied from CRT (Cathode Ray Tube) for continuous reliable operation.