CMOS 8-Bit Microcontroller

TMP87CM39N/F, TMP87CP39N/F, TMP87CS39N/F

The TMP87CM39/P39/S39 are the high-speed and high-performance 8-bit single chip microcomputers. These MCU contain CPU core, ROM, RAM, input/output ports, six multi-function timer/counters, serial bus interface, on-screen display, PWM outputs, 8-bit A/D converter, remote control signal preprocessor, and two clock generators on a chip.

Part No.	ROM	RAM	Package	OTP
TMP87CM39N/F	32 Kbytes	1 Kbytes	D CD IDC4 750 4 70	T1 4D07D6301
TMP87CP39N/F	48 Kbytes		P-SDIP64-750-1.78	TMP87PS39N
TMP87CS39N/F	60 Kbytes	2 Kbytes	P-QFP64-1420-1.00A	TMP87PS39F

Features

- ◆8-bit single chip microcomputer TLCS-870 Series
- lacklost Instruction execution time : 0.5 μ s (at 8 MHz), 122 μ s (at 32.768 kHz)
- 412 basic instructions
 - Multiplication and Division (8 bits × 8 bits, 16 bits ÷ 8 bits)
 - Bit manipulations (Set/Clear/Complement/Move/Test/Exclusive or)
 - 16-bit data operations
 - 1-byte jump/subroutine-call (Short relative jump/Vector call)
- 15 interrupt sources (External: 6, Internal: 9)
 - All sources have independent latches each, and nested interrupt control is available.
 - 4 edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover
- Program Corrective Function
- ◆8 Input/Output ports (55 pins)
 - High current output: 4 pins (typ. 20 mA)
- ◆Two 16-bit Timer/Counters
 - Timer, Event counter, Programmable pulse generator output, Pulse width measurement, External trigger timer, Window modes

000707FRP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled
- Quality and Reliability Assurance / Handling Precautions.

 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment office equipment magazing equipment industrial reportics applications (computer, personal equipment office equipment magazing equipment industrial reportics applications (computer). These

- personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an 1² C system, provided that the system conforms to the 1² C Standard Specification as defined by

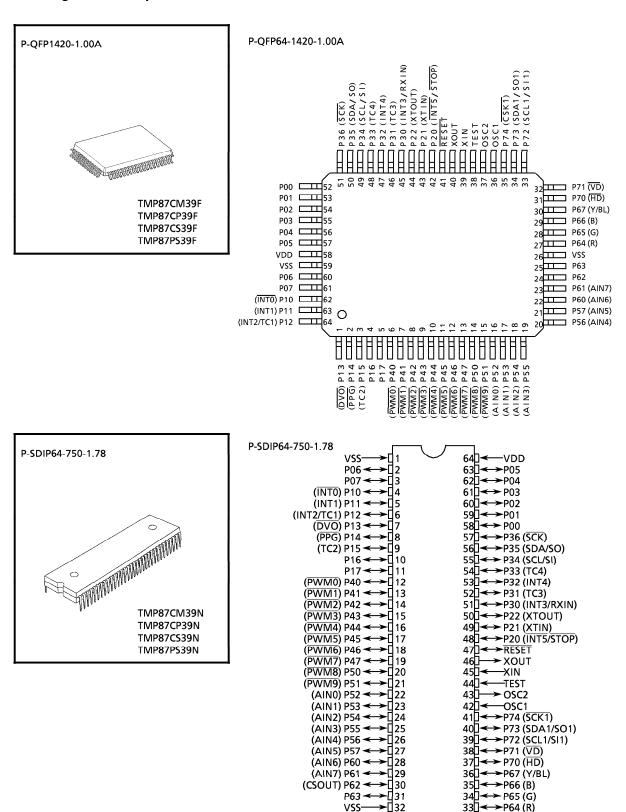
> 2002-12-12 3-39-1

- ◆Two 8-bit Timer/Counters
 - Timer, Event counter, Capture (Pulse width/duty measurement) modes
- ◆Time Base Timer (Interrupt frequency: 1 Hz to 16 kHz)
- ◆Divider output function (frequency: 1 kHz to 8 kHz)
- ◆Watchdog Timer
 - Interrupt source/reset output (programmable)
- ◆Serial Bus Interface
 - I²C-bus, 8-bit SIO modes
 Selectable two I/O channels
- ◆On-screen display circuit

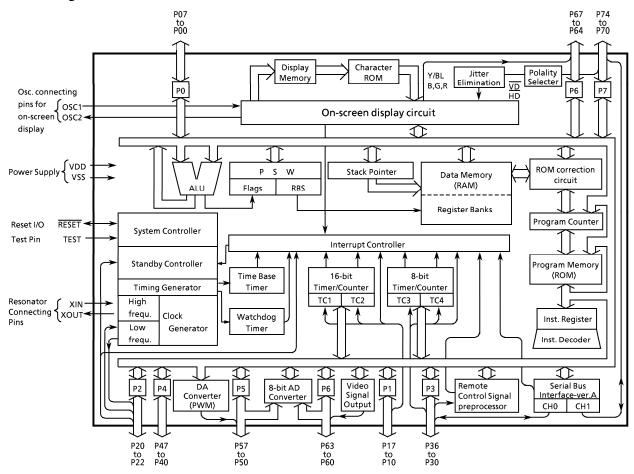
Character patterns
 Characters displayed
 256 characters
 24 columns x 12 lines

• Composition : 14 x 18 dots

• Size of character : 3 kinds (line by line)


• Color of character : 8 kinds (character by character)

• Variable display position : Horizontal 128 steps, Vertical 256 steps


• Fringing, Smoothing function

- ◆DA conversion (Pulse Width Modulation) outputs
 - 14-bit resolution (1 channel)
 - 7-bit resolution (9 channels)
- ◆8-bit successive approximate type AD converter with sample and hold
 - 8 analog inputs
 - ullet Conversion time : 23 μ s at 8 MHz
- ◆ Remote control signal preprocessor
- Jitter Elimination
- ◆Dual clock operation
 - Single/Dual-clock mode (option)
- Five Power saving operating modes
 - STOP mode : Oscillation stops. Battery/Capacitor back-up. Port output hold/high-impedance.
 - SLOW mode: Low power consumption operation using low-frequency clock (32.768 kHz).
 - IDLE1 mode: CPU stops, and Peripherals operate using high-frequency clock. Release by interrupts.
 - IDLE2 mode: CPU stops, and Peripherals operate using high and low frequency clock.
 - Release by interrupts.
 - SLEEP mode: CPU stops, and Peripherals operate using low-frequency clock. Release by interrupts.
- ♦ Wide operating voltage : 2.7 to 5.5 V at 32.768 kHz, 4.5 to 5.5 V at 8 MHz
- ◆Emulation Pod : BM87CS39N0A

Pin Assignments (Top View)

Block Diagram

Pin Function

Pin Name	Input/Output	F	unction		
P07 to P00	I/O	Two 9 bit programmable input/output			
P17, P16	I/O	Two 8-bit programmable input/output ports (tri-state).			
P15 (TC2)	I/O (Input)		Timer/Counter 2 input		
P14 (PPG)	1/0 (0++)	Each bit of these ports can be individually configured as an input or an	Programmable pulse generator output		
P13 (DVO)	l/O (Output)	output under software control.	Divider output		
P12 (INT2/TC1)		During reset, all bits are configured as inputs.	External interrupt input 2 or Timer/Counter 1 input		
P11 (INT1)	I/O (Input)	When used as a divider output or a PPG	External interrupt input 1		
P10 (INTO)	1	output, the latch must be set to "1".	External interrupt input 0		
P22 (XTOUT)	I/O (Output)	3-bit input/output port with latch.	Resonator connecting pins (32.768 kHz). For inputting external clock, XTIN is used and		
P21 (XTIN)	1,10,11	When used as an input port, the latch	XTOUT is opened.		
P20 (INT5/STOP)	l/O (Input)	must be set to "1".	External interrupt input 5 or STOP mode release signal input		
P36 (SCK0)	1/0 (1/0)		SIO serial clock input/output 0		
P35 (SDA0/SO0)	I/O (I/O/Output)	7-bit input/output port with latch.	I ² Cbus serial data input/output or SIO serial data output 0		
P34 (SCL0/SI0)	I/O (I/O/Input)	When used as an input port, a serial bus interface input/output, a timer/counter	I ² Cbus serial clock input/output or SIO serial data input 0		
P33 (TC4)	†····	input, a remote control signal	Timer/Counter 4 input		
P32 (INT4)	l/O (Input)	preprocessor input, or an external interrupt input, the latch must be set to	External interrupt input 4		
P31 (TC3)	1	"1".	Timer/Counter 3 input		
P30 (INT3/RXIN)	I/O (Input/Input)		External interrupt input 3 or remote control signal preprocessor input		
P47 (PWM7) to P41 (PWM1)	· I/O (Output)	8-bit programable input/output port (tri- state). Each bit of this port can be individually configured as an input or an output under software control. During	7-bit DA conversion (PWM) outputs		
P40 (PWM0)	" (Gutput)	reset, all bits are configured as inputs. When used as a PWM output, the latch must be set to "1".	14-bit DA conversion (PWM) output		
P57 (AIN5) to P52 (AIN0)	I/O (Input)	8-bit programable input/output port (tri - state) . Each bit of this port can be individually	AD converter analog inputs		
P51 (PWM9)	· I/O (Output)	configured as an input or an output under software control. When used as an input port, analog input, or a PWM output, the latch must	7-bit DA conversion (PWM) outputs		
		be set to "1". 8-bit programable input/output port	Focus signal output or Background blanking		
P67 (Y/BL)]	(P67 to P64 : tri-state, P63 to P60 : High	control signal output		
P66 (B) P65 (G) P64 (R)	l/O (Output)	current output). Each bit of this port can be individually configured as an input or an output under software control. During reset, all bits are configured as	RGB outputs		
P63 P62 (CSOUT)	1/0	inputs. When used as the R, G, B, Y/BL outputs of on-screen display circuit, each bit of the P6 port data selection register	High current Test video signal output		
P61 (AIN7) P60 (AIN6)	l/O (Input)	(bits 7 to 4 in address 0F91 _H) must be set to "1".	outputs AD converter analog inputs		

Pin Name	Input/Output	Function				
P74 (SCK1)	I/O (I/O)		SIO serial clock input/output 1			
P73 (SDA1/SO1)	I/O (I/O/Output)	5-bit input/output port with latch. When used as an input port, a serial bus	I ² Cbus serial data input/output or SIO serial data output 1			
P72 (SCL1/SI1)	I/O (I/O/Input)	interface input/output, or a vertical synchronous signal input and horizontal synchronous signal input, the latch must	I ² Cbus serial data input/output or SIO serial data input 1			
P71 (VD)	1/0 (1==::t)	be set to "1".	Vertical synchronous signal input			
P70 (HD)	· I/O (Input)		Horizontal synchronous signal input			
OSC1, OSC2	Inner Output	Resonator connecting pins for on-screen d	lisplay circuitry.			
XIN, XOUT	Input, Output	Resonator connecting pins. For inputting external clock, XIN is used and XOUT is opened.				
RESET	1/0	Reset signal input or watchdog timer output/address-trap- reset output/system-clock-reset output.				
TEST	Input	Test pin for out-going test. Be tied to low.				
VDD, VSS	Power Supply	+ 5 V, 0 V (GND)				

Operational Description

1. CPU Core Functions

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64 Kbytes of memory. Figure 1-1 shows the memory address maps of the TMP87CM39/P39/S39. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR/DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

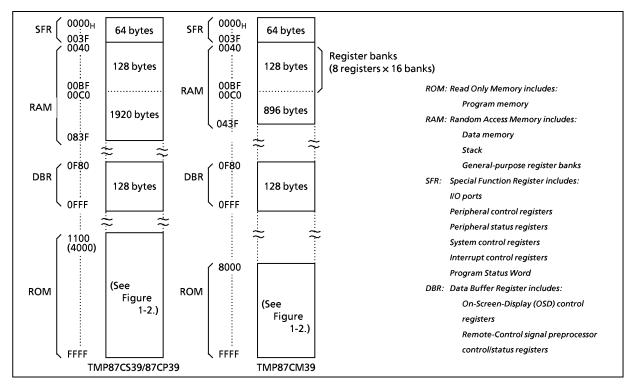


Figure 1-1. Memory Address Map

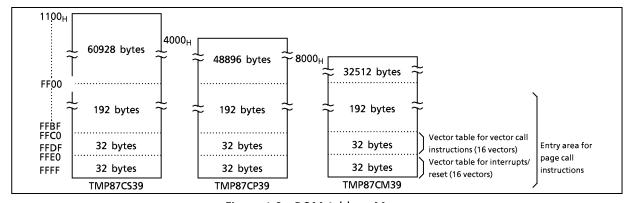


Figure 1-2. ROM Address Maps

Electrical Characteristics

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Rating	Unit
Supply Voltage	V_{DD}		- 0.3 to 6.5	
Input Voltage	V _{IN}		- 0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}		- 0.3 to V _{DD} + 0.3	
Output Current (Per 1 pin)	I _{OUT1}	Ports P0, P1, P2, P3, P4, P5, P64 to P67, P7	3.2	
	I _{OUT2}	Ports P60 to P63	30	mA
Outside Comment (Table)	Σl _{OUT1}	Ports P0, P1, P2, P3, P4, P5, P64 to P67, P7	120] ""A
Output Current (Total)	ΣI _{OUT2}	Ports P60 to P63	120	
Power Dissipation [Topr = 70°C]	PD		600	mW
Soldering Temperature (time)	T _{sld}		260 (10 s)	
Storage Temperature	T _{stg}		– 55 to 125	°C
Operating Temperature	T _{opr}		– 30 to 70	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	С	Conditions		Max	Unit
Supply Voltage			fc = 8 MHz	NORMAL1, 2 mode	4.5		
	V_{DD}		fs = 32.768 kHz	SLOW mode SLEEP mode	2.7	5.5	
				STOP mode	2.0		
	V _{IH1} Except hysteresis input		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$V_{DD} \times 0.70$		V	
Input High Voltage	V _{IH2}	Hysteresis input	V _{DD} ≧ 4.5V		$V_{DD} \times 0.75$	V_{DD}	
	V _{IH3}		V _{DD} <4.5V		$V_{DD} \times 0.90$		
	V _{IL1}	Except hysteresis input	- V _{DD} ≧ 4.5V			$V_{DD} \times 0.30$	
Input Low Voltage	V_{IL2}	Hysteresis input			0	$V_{DD} \times 0.25$	
	V _{IH3}		V	_{DD} <4.5V		$V_{DD} \times 0.01$	
	fc	XIN, XOUT	V_{DD}	= 4.5 to 5.5V	4.0	8.0	
			Normal freque	ency mode	4.0	fosc≦fc x 1.2	
Clask Fraguess	ı.	0001 0003	Double frequency mode fo		≦ 8.0	MHz	
Clock Frequency	fosc	OSC1, OSC2			$fosc \le fc \times 0.6$	7 I	
			(FORS = 1, V_{DD}	$S = 1, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ ≤ 4		≦4.0	
	fs	XTIN, XTOUT				34.0	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc; The condition of supply voltage range is the value in NORMAL 1/2 mode and IDLE 1/2 mode.

Note 3: When using test video signal circuit, high frequency must be 8 MHz.

Note 4: When the OSD circuit is used, the supply voltage must be from 4.5 V to 5.5 V.

DC Characteristics $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		-	0.9	_	V
	I _{IN1}	TEST	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}/0 \text{ V}$	-	_	± 2	
	I _{IN2}	Open drain ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}/0 \text{ V}$	-	-	± 2	_ [
Input Current	I _{IN3}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}/0 \text{ V}$	-	-	± 2	μA
	I _{IN4}	RESET, STOP	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}/0 \text{ V}$	-	-	± 2	
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage	I _{LO1}	Sink open drain ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V}$	-	_	2	μA
Current	I _{LO2}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V/0 V}$	-	_	± 2] ".
Output High Voltage	V _{OH2}	Tri-state ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	_	
Output Low Voltage	V _{OL}	Except XOUT, OSC2 and ports P63 to P60	V _{DD} = 4.5 V, I _{OL} = 1.6 mA	-	-	0.4	V
Output Low current	I _{OL3}	Ports P63 to P60	$V_{DD} = 4.5 \text{ V}, V_{OL} = 1.0 \text{ V}$	-	20	_	
Supply Current in NORMAL 1, 2 modes			V _{DD} = 5.5 V, V _{IN} = 5.3 V/0.2 V	_	13	20	mA
Supply Current in IDLE 1, 2 modes			fc = 8 MHz fs = 32.768 kHz	ı	6.5	10	
Supply Current in SLOW mode	I _{DD}		V _{DD} = 3.0 V	_	30	70	
Supply Current in SLEEP mode			fs = 32.768 kHz V _{IN} = 2.8 V/0.2 V	-	15	35	μΑ
Supply Current in STOP mode			V _{DD} = 5.5 V V _{IN} = 5.3 V/0.2 V	-	0.5	10	

Note 1 : Typical values show those at Topr = 25° C , V_{DD} = 5 V.

Note 2 : Input Current I_{IN1} , I_{IN4} ; The current through pull-up or pull-down resistor is not included.

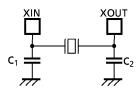
Note 3 : Supply Current I_{DD} ; The current (Typ. 0.5 mA) through ladder resistors of ADC is included in NORMAL mode and IDEL mode.

AD Conversion Characteristics

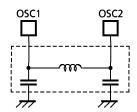
 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V _{DD}	supplied from V _{DD} pin	_	V_{DD}	_	
Analog Reference Voltage	V _{SS}	supplied from V _{SS} pin	_	0	0	
Analog Reference Voltage Range	$_{\Delta}V_{AREF}$	$=V_{DD}-V_{SS}$	_	V _{DD}	_	V
Analog Input Voltage	V _{AIN}		V _{SS}	-	V _{DD}	
Nonlinearity Error			_	_	± 1	
Zero Point Error			_	_	± 2	LSB
Full Scale Error		$V_{DD} = 4.5V \text{ to } 5.5V$	_	_	± 2]
Total Error			_	_	± 3	1

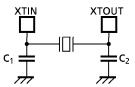
AC Characteristics


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		In NORMAL1, 2 modes			4.0	
Machine Cycle Time	١.	In IDLE1, 2 modes	0.5	_	1.0	
	t _{cy}	In SLOW mode	117.5		- 133.3	μS
		In SLEEP mode	117.6	_		
High-Level Clock Pulse Width	t _{WCH}	For external clock operation	62.5			
Low-Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 8 MHz	62.5	_	_	ns
Low-Level Clock Pulse Width	t _{WSH}	For external clock operation	44-7			
Low-Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	_	_	μS


Recommended Oscillating Conditions

$$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$$


	Oscillator	Oscillation	Pacammandad Oscillator	Recommended Oscillator	
Parameter	Oscillator	Frequency	Recommended Oscillator	C ₁	C ₂
		0.541	KYOCERA KBR8.0M		
		8 MHz			
High-frequency Oscillation	Ceramic Resonator		KYOCERA KBR4.0MS	30 pF	30 pF
		4 MHz	MURATA CSA4.00MG		
		8 MHz	TOYOCOM 210B 8.0000		
	Crystal Oscillator	4 MHz	TOYOCOM 204B 4.0000	20 pF	20 pF
OSD LC	lan .	8 MHz	TOKO A285TNIS-11695		
	LC Resonator	7 MHz	TOKO TBEKSES-30375FBY	_	_
Low-frequency	Crystal Oscillator	32.768 kHz	NDV MV 20T	15	15.55
Oscillation	Crystal Oscillator	32.700 KHZ	NDK MX-38T	15 pF	15 pF

(2) LC Resonator for OSD

(3) Low-frequency Oscillation

Note: On our OSD circuit, the horizontal display start position is determined by counting the clock from LC oscillator. So, the unstable start of oscillation after the rising edge of Horizontal Sync. Signal will be cause the OSD distortion. Generally, smaller C and larger L make clearer wave form at the beginning of oscillation. We recommend that the value of LC oscillator should be equal and bigger than 33 µH.

Note: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, be CRT (Cathode Ray Tube).