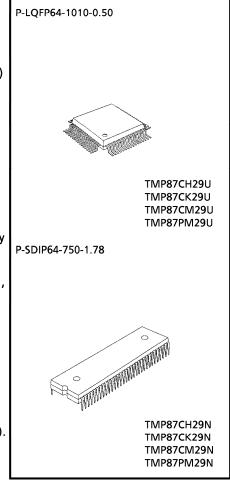
#### CMOS 8-Bit Microcontroller

# TMP87CH29U/N, TMP87CK29U/N, TMP87CM29U/N


The 87CH29/K29/M29 are high-speed and high-performance 8-bit single chip microcomputers. These MCU contains CPU core, ROM, RAM, a LCD driver, multi-function timer/counters, an A/D converter, two clock generators and a serial interface (UART) on a chip.

| Part No.   | ROM          | RAM         | Package            | OTP MCU      |
|------------|--------------|-------------|--------------------|--------------|
| TMP87CH29U | 16 K 0 kit   |             | P-LQFP64-1010-0.50 | TMP87PM29U   |
| TMP87CH29N | 16 K × 8-bit |             | P-SDIP64-750-1.78  | * TMP87PM29N |
| TMP87CK29U | 24 K × 8-bit | 1 K × 8-bit | P-LQFP64-1010-0.50 | TMP87PM29U   |
| TMP87CK29N | 24 K X 8-DIL | IKX8-DIL    | P-SDIP64-750-1.78  | * TMP87PM29N |
| TMP87CM29U | 32 K × 8-bit |             | P-LQFP64-1010-0.50 | TMP87PM29U   |
| TMP87CM29N | 32 N X 6-DIL |             | P-SDIP64-750-1.78  | * TMP87PM29N |

\*; Under development

#### **Features**

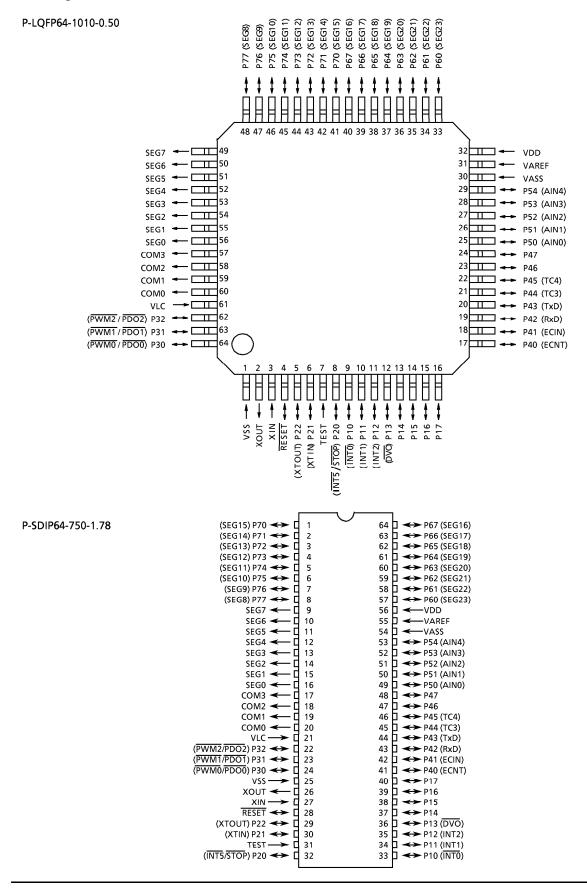
- ◆8-bit single chip microcomputer TLCS-870 Series
- lacktriangle Instruction execution time: 0.5  $\mu$ s (at 8 MHz), 122  $\mu$ s (at 32.768 kHz)
- ◆412 basic instructions
  - Multiplication and Division (8 bits × 8 bits, 16 bits ÷ 8 bits)
  - Bit manipulations (set/clear/complement/move/test /exclusive or)
  - 16-bit data operations
  - 1-byte jump/subroutine-call (Short relative jump / Vector call)
- 13 interrupt sources (External: 4, Internal: 9)
  - All sources have independent latches each, and nested interrupt control is available.
  - 2 edge-selectable external interrupts with noise reject
  - High-speed task switching by register bank changeover
- 7 Input/Output ports (43 pins)
  - High current output: 3 pins (typ. 20 mA)
- ◆ 18-bit Timer/Counter
  - Timer, Event counter, Pulse width measurement, Frequency measurement modes
- ◆Four 8-bit Timer/Counters
  - Timer, Event counter, Capture (Pulse width/duty measurement), PWM output, Programmable divider output modes
- ◆Time Base Timer (Interrupt frequency: 1 Hz to 16384 Hz)
- ◆Divider output function (frequency: 1 kHz to 8 kHz)
- Watchdog Timer
  - Interrupt source / reset output (programmable)
- Universal asynchronous receiver and transmitter (UART)
  - With 8 bit transmit/receive data buffer
  - Transfer clock, Select of with/without parity bit.
- LCD driver/Controller
  - LCD direct drive capability (max. 12-digit display at 1/4 duty LCD).
  - 1/4, 1/3, 1/2 duties or static drive are programmably selectable.
  - With display memory.



- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability
- For a discussion of how the reliability of microcontrollers can be predicted, please relief to Section 1.3 of the chapter. State Assurance/Handling Precautions.

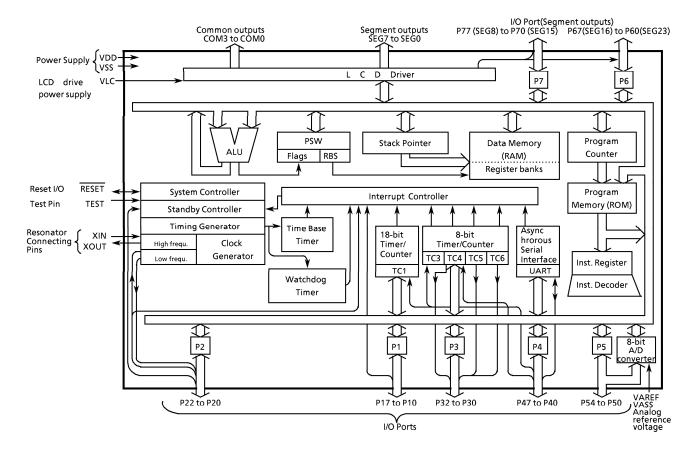
  TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

  The products described in this document are subject to the foreign exchange and foreign trade laws.


  The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- by implication or otherwise under any intellectual property or other r The information contained herein is subject to change without notice

3-29-1 1999-08-25

- ◆ Dual clock operation
  - Single/Dual-clock mode (option)
- ◆ Five power saving operating modes
  - STOP mode: Oscillation stops. Battery/Capacitor back-up. Port output hold/High-impedance.
  - SLOW mode: Low power consumption operation using low-frequency clock (32.768 kHz).
  - IDLE1 mode: CPU stops, and peripherals operate using high-frequency clock. Release by interrupts.
  - IDLE2 mode: CPU stops, and peripherals operate using high and low frequency clock. Release by interrupts.
  - SLEEP mode: CPU stops, and peripherals operate using low-frequency clock. Release by interrupts.
- ♦ Wide operating voltage: 2.7 to 5.5V at 4.19 MHz / 32.768 kHz, 4.5 to 5.5 V at 8 MHz / 32.768 kHz
- ◆Emulation Pod: BM87CM29U0A


3-29-2 1999-08-25

## Pin Assignments (Top View)



3-29-3 1999-08-25

# **Block Diagram**



# **Pin Function**

| Pin Name                 | Input / Output | F                                                                             | unction                                                                                |  |  |  |  |
|--------------------------|----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| P17 to P14               | I/O            | 8-bit programmable input/output ports (tri-state).                            |                                                                                        |  |  |  |  |
| P13 (DVO)                | I/O (Output)   | Each bit of these ports can be                                                | Divider output                                                                         |  |  |  |  |
| P12 (INT2)               |                | individually configured as an input or an output under software control.      | External interrupt input 2                                                             |  |  |  |  |
| P11 (INT1)               | I/O (Input)    | During reset, all bits are configured as inputs. When used as a divider       | External interrupt input 1                                                             |  |  |  |  |
| P10 (INTO)               |                | output, the latch must be set to "1".                                         | External interrupt input 0                                                             |  |  |  |  |
| P22 (XTOUT)              | I/O (Output)   | 3-bit input/output port with latch.                                           | Resonator connecting pins (32.768 kHz). For inputting external clock, XTIN is used and |  |  |  |  |
| P21 (XTIN)               | I/O (Input)    | When used as an input port, the latch                                         | XTOUT is opened. External interrupt input 5 or STOP mode                               |  |  |  |  |
| P20 (INT5/STOP)          | "O (mput)      | must be set to "1".                                                           | release signal input                                                                   |  |  |  |  |
| P32 (PWM2 / PDO2)        |                | 3-bit input/output port (high current output) with latch.                     | 8-bit PWM2 output or<br>8-bit PDO2 output                                              |  |  |  |  |
| P31 (PWM1 / PDO1)        | I/O (Output)   | When used as an input port, a PWM                                             | 8-bit PWM1 output or<br>8-bit PDO1 output                                              |  |  |  |  |
| P30 (PWM0 / PDO0)        |                | output, or a PDO output, the latch must be set to "1".                        | 8-bit PWM0 output or                                                                   |  |  |  |  |
| P47                      |                |                                                                               | 8-bit PDO0 output                                                                      |  |  |  |  |
| P46                      | I/O            | 8-bit input/output port with latch. Each bit of these ports can be            |                                                                                        |  |  |  |  |
|                          |                | individually configured as a sink open                                        | Times / Country / insult                                                               |  |  |  |  |
| P45 (TC4)                | I/O (Input)    | drain or a push-pull output under software control.                           | Timer / Counter 4 input                                                                |  |  |  |  |
| P44 (TC3)                |                | During reset, all bits are configured as sink open drain outputs.             | Timer / Counter 3 input                                                                |  |  |  |  |
| P43 (TxD)                | I/O (Output)   | When used as an input port, a                                                 | UART data output                                                                       |  |  |  |  |
| P42 (RxD)                | I/O (Inn. st)  | timer/counter input, a PWM output, a PDO output, or a UART input/output,      | UART data input                                                                        |  |  |  |  |
| P41 (ECIN)               | I/O (Input)    | the latch must be set to "1".                                                 | Timer / Counter 1 inputs                                                               |  |  |  |  |
| P40 (ECNT)<br>P54 (AIN4) |                |                                                                               |                                                                                        |  |  |  |  |
| P53 (AIN3)               |                | 5-bit programmble input/output ports (tri-state) .                            |                                                                                        |  |  |  |  |
| P52 (AIN2)               | I/O (Input)    | Each bit of these ports can be                                                | A/D converter analog inputs                                                            |  |  |  |  |
| P51 (AIN1)               |                | individually configured as an input or an output under software control.      |                                                                                        |  |  |  |  |
| P50 (AIN0)               |                | C his in a state of a state of a state last ab                                | ICD Comment outputs                                                                    |  |  |  |  |
| P67 (SEG16) to           | I/O (Output)   | 8-bit input/output port with latch. When used as an input port, the latch     | LCD Segment outputs. When used as a segment output, the P6                             |  |  |  |  |
| P60 (SEG23)              | •              | must be set to "1".                                                           | control register (P6CR) must be set to "1".                                            |  |  |  |  |
| P77 (SEG8) to            | I/O (Output)   | 8-bit input/output port with latch. When used as an input port, the latch     | LCD Segment outputs. When used as a segment output, the P7                             |  |  |  |  |
| P70 (SEG15)              | •              | must be set to "1".                                                           | control register (P7CR) must be set to "1".                                            |  |  |  |  |
| SEG7 to SEG0             | Output         | LCD Segment outputs                                                           |                                                                                        |  |  |  |  |
| COM3 to COM0             |                | LCD Common outputs                                                            |                                                                                        |  |  |  |  |
| XIN, XOUT                | Input, Output  | Resonator connecting pins for high-free                                       |                                                                                        |  |  |  |  |
|                          |                | For inputting external clock, XIN is used and XOUT is opened.                 |                                                                                        |  |  |  |  |
| RESET                    | I/O            | Reset signal input or watchdog timer output/address-trap-reset output/system- |                                                                                        |  |  |  |  |
|                          |                | clock-reset output.                                                           |                                                                                        |  |  |  |  |
| TEST                     | Input          | Test pin for out-going test. Be tied to low.                                  |                                                                                        |  |  |  |  |
| VDD, VSS                 |                | + 5 V, 0 V (GND)                                                              |                                                                                        |  |  |  |  |
| VAREF, VASS              | Power Supply   | Analog reference voltage inputs (High,                                        | Low)                                                                                   |  |  |  |  |
| VLC                      |                | LCD drive power supply                                                        |                                                                                        |  |  |  |  |

3-29-5

#### OPERATIONAL DESCRIPTION

#### 1. CPU CORE FUNCTIONS

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

## 1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64K bytes of memory. Figure 1-1 shows the memory address maps of the 87CH29/K29/M29.

In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR/DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

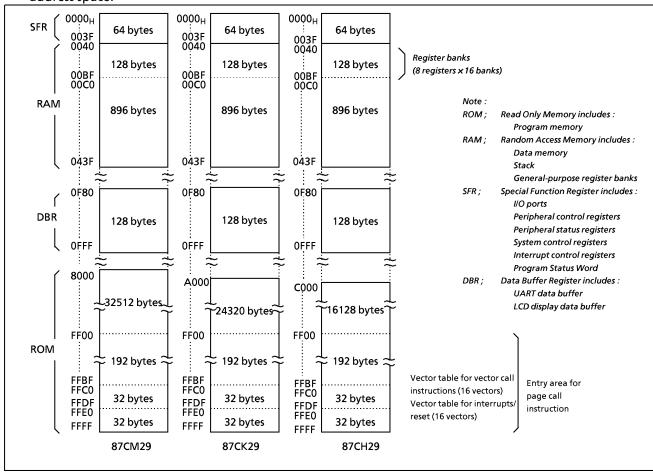



Figure 1-1. Memory Address Maps

#### 1.2 Program Memory (ROM)

The 87CH29 has a  $16K \times 8$ -bit (addresses  $C000_{H}$ -FFFF<sub>H</sub>), the 87CK29 has a  $24K \times 8$ -bit (addresses  $A000_{H}$ -FFFF<sub>H</sub>), and the 87CM29 has a  $32K \times 8$ -bit (addresses  $8000_{H}$ -FFFF<sub>H</sub>) of program memory (mask programmed ROM).

Addresses FF00<sub>H</sub>-FFFF<sub>H</sub> in the program memory can also be used for special purposes.

#### (1) Interrupt/Reset vector table (addresses FFE0<sub>H</sub>-FFFF<sub>H</sub>)

This table consists of a reset vector and 16 interrupt vectors (2 bytes/vector). These vectors store a reset start address and interrupt service routine entry addresses.

### **Electrical Characteristics**

#### (1) 87CH29/K29/M29

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$ 

| Parameter                       | Symbol              | Conditions                                          | Ratings                        | Unit |  |
|---------------------------------|---------------------|-----------------------------------------------------|--------------------------------|------|--|
| Supply Voltage                  | $V_{DD}$            |                                                     | - 0.3 to 6.5                   | V    |  |
| Input Voltage                   | $V_{IN}$            |                                                     | - 0.3 to V <sub>DD</sub> + 0.3 | V    |  |
| Outro d Valtaga                 | V <sub>OUT1</sub>   | P21, P22, RESET, Tri-state port, and Push-pull port | - 0.3 to V <sub>DD</sub> + 0.3 | .,   |  |
| Output Voltage                  | V <sub>OUT2</sub>   | P20, Port P3 and Segment port                       | – 0.3 to 5.5                   | V    |  |
| 0.10.16.0001(80.11.11)          | I <sub>OUT1</sub>   | Ports P1, P2, P4, P5, P6, P7                        | 3.2                            | A    |  |
| Output Current (Per 1 pin)      | I <sub>OUT2</sub>   | Port P3                                             | 30                             | mA   |  |
| Out and Constant (Table I)      | Σ l <sub>OUT1</sub> | Ports P1, P2, P4, P5, P6, P7                        | 120                            | 4    |  |
| Output Current (Total)          | Σ I <sub>OUT2</sub> | Port P3                                             | 60                             | mA   |  |
| D D' ' ' [T 7006]               |                     | TMP87CH29N/CK29N/CM29N                              | 600                            | 387  |  |
| Power Dissipation [Topr = 70°C] | PD                  | TMP87CH29U/CK29U/CM29U                              | 350                            | mW   |  |
| Soldering Temperature (time)    | Tsld                |                                                     | 260 (10 s)                     | °C   |  |
| Storage Temperature             | Tstg                |                                                     | – 55 to 125                    | °C   |  |
| Operating Temperature           | Topr                |                                                     | – 30 to 70                     | °C   |  |

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

**Recommended Operating Conditions** 

 $(V_{SS} = 0V, Topr = -30 \text{ to } 70^{\circ}C)$ 

| Parameter          | Symbol           | Pins                    | C                                                   | Conditions              | Min                  | Max                    | Unit  |
|--------------------|------------------|-------------------------|-----------------------------------------------------|-------------------------|----------------------|------------------------|-------|
| Supply Voltage     |                  |                         | C 0 0 0 0 1 1                                       | NORMAL1, 2 mode         |                      |                        |       |
|                    |                  |                         | fc = 8 MHz                                          | IDLE1, 2 mode           | 4.5                  |                        |       |
|                    |                  |                         | f- 4.2 NALL-                                        | NORMAL1, 2 mode         |                      |                        |       |
|                    | $V_{DD}$         |                         | fc = 4.2 MHz                                        | IDLE1, 2 mode           | ]                    | 5.5                    | V     |
|                    |                  |                         | fs =                                                | SLOW mode               | 2.7                  |                        |       |
|                    |                  |                         | 32.768 kHz                                          | SLEEP mode              | 7                    |                        |       |
|                    |                  |                         |                                                     | STOP mode               | 2.0                  |                        |       |
|                    | V <sub>IH1</sub> | Except hysteresis input | $V_{DD} \ge 4.5 \text{ V}$ $V_{DD} < 4.5 \text{ V}$ |                         | $V_{DD} \times 0.70$ |                        |       |
| Input High Voltage | V <sub>IH2</sub> | Hysteresis input        |                                                     |                         | $V_{DD} \times 0.75$ | V <sub>DD</sub>        | V     |
|                    | V <sub>IH3</sub> |                         |                                                     |                         | $V_{DD} \times 0.90$ |                        |       |
|                    | V <sub>IL1</sub> | Except hysteresis input | V >45V                                              |                         |                      | V <sub>DD</sub> × 0.30 |       |
| Input Low Voltage  | $V_{IL2}$        | Hysteresis input        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \               | V <sub>DD</sub> ≧ 4.5 V |                      | $V_{DD} \times 0.25$   | V     |
|                    | $V_{IL3}$        |                         | V                                                   | V <sub>DD</sub> <4.5 V  |                      | $V_{DD} \times 0.10$   |       |
| Clock Frequency    | fc               | VIN VOLIT               | V <sub>DD</sub> = 4.5 to 5.5 V                      |                         | 0.4                  | 8.0                    | MHz   |
|                    | fc XIN, XOUT     |                         | V <sub>DD</sub> = 2.7 to 5.5 V                      |                         | 0.4                  | 4.2                    | IVITZ |
|                    | fs               | XTIN, XTOUT             |                                                     |                         | 30.0                 | 34.0                   | kHz   |

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc; The supply voltage range of the conditions shows the value in NORMAL 1, 2 modes and IDLE 1, 2 modes.

3-29-92

## **D.C.Characteristics**

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$ 

| Parameter                              | Symbol             | Pins                                                        | Cond                                                                 | ditions               | Min | Тур. | Max | Unit |
|----------------------------------------|--------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----|------|-----|------|
| Hysteresis Voltage                     | V <sub>HS</sub>    | Hysteresis input                                            |                                                                      |                       | _   | 0.9  | _   | V    |
|                                        | I <sub>IN1</sub>   | TEST                                                        |                                                                      |                       |     |      |     |      |
| Input Current                          | I <sub>IN2</sub>   | Sink open drain port and tri-state port                     | V <sub>DD</sub> = 5.5 V<br>V <sub>IN</sub> = 5.5 V / 0 V             |                       | _   | _    | ± 2 | μΑ   |
|                                        | I <sub>IN3</sub>   | RESET, STOP                                                 |                                                                      |                       |     |      |     |      |
| Input Low Current                      | I <sub>IL</sub>    | Push-pull port                                              | $V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$                     |                       | _   | _    | -2  | mA   |
| Input Resistance                       | R <sub>IN</sub>    | RESET                                                       |                                                                      |                       | 100 | 220  | 450 | kΩ   |
| Output Leakage<br>Current              | I <sub>LO</sub>    | Sink open drain port and tri-state port                     | V <sub>DD</sub> = 5.5 V, V <sub>OU</sub>                             | <sub>JT</sub> = 5.5 V | _   | _    | 2   | μΑ   |
| Output High Voltage                    | V <sub>OH1</sub>   | Push-pull port                                              | $V_{DD} = 4.5 \text{ V}, I_{OH}$                                     | = - 200 μA            | 2.4 | _    | _   | V    |
| Output High Voltage                    | Vo <sub>H2</sub>   | Tri- state port                                             | $V_{DD} = 4.5 \text{ V, } I_{OH}$                                    | = - 0.7 mA            | 4.1 | _    | _   | V    |
| Output Low Voltage                     | V <sub>OL</sub>    | Except XOUT and port P3                                     | V <sub>DD</sub> = 4.5 V, I <sub>OL</sub> =                           | = 1.6 mA              | _   | l –  | 0.4 | ٧    |
| Output Low Current                     | I <sub>OL</sub>    | Only P30, P31, P32                                          | $V_{DD} = 4.5  V, V_{OL}$                                            | = 1.0 V               | _   | 20   | _   | mA   |
| Supply Current in<br>NORMAL 1 , 2 mode |                    |                                                             | V <sub>DD</sub> = 5.5 V<br>fc = 8 MHz                                |                       | _   | 10   | 16  | mA   |
| Supply Current in IDLE 1, 2 mode       |                    |                                                             | fs = 32.768 kHz<br>V <sub>IN</sub> = 5.3 V / 0.2 V                   | /                     | _   | 4.5  | 6   | mA   |
| Supply Current in SLOW mode            | I <sub>DD</sub>    |                                                             | $V_{DD} = 3.0 \text{ V}$ fs = 32.768 kHz                             |                       | _   | 30   | 60  | μΑ   |
| Supply Current in SLEEP mode           |                    | V <sub>IN</sub> = 2.8 V / 0.2 V<br>LCD driver is not enable | $V_{IN} = 2.8 \text{ V} / 0.2 \text{ V}$                             |                       | 15  | 30   | μΑ  |      |
| Supply Current in STOP mode            |                    |                                                             | $V_{DD} = 5.5 \text{ V}$<br>$V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$ | /                     | _   | 0.5  | 10  | μΑ   |
| Segment Output                         | Ī _                | 55600 - 5560 -                                              |                                                                      | RESL = 0 (Note 11)    |     | 20   |     |      |
| Low Resistance                         | R <sub>OS1</sub>   | SEG23 to SEG0 pins                                          |                                                                      | RSEL = 1              |     | 7    |     |      |
| Common Output Low                      | _                  | COM2 to COM0 mins                                           |                                                                      | RESL = 0              |     | 20   |     | kΩ   |
| Resistance                             | R <sub>OC1</sub>   | COM3 to COM0 pins                                           |                                                                      | RSEL = 1              |     | 7    |     |      |
| Segment Output                         |                    | SEC33 to SEC0 mins                                          | $V_{DD} = 5 V$                                                       | RESL = 0              | _   | 200  | _   |      |
| High Resistance                        | R <sub>OS2</sub>   | SEG23 to SEG0 pins                                          | $V_{DD} - V_{LC} = 3 V$                                              | RSEL = 1              |     | 70   |     |      |
| Common Output                          | Ь                  | COM2 to COM0 nine                                           |                                                                      | RESL = 0              |     | 200  |     |      |
| High Resistance                        | R <sub>OC2</sub>   | COM3 to COM0 pins                                           | _                                                                    | RSEL = 1              |     | 70   |     |      |
|                                        | V <sub>O 2/3</sub> |                                                             |                                                                      |                       | 3.8 | 4.0  | 4.2 |      |
| Segment /Common<br>Output Voltage      | V <sub>O 1/2</sub> | SEG23 to SEG0 and COM3 to COM0 pins                         |                                                                      |                       | 3.3 | 3.5  | 3.7 | ٧    |
|                                        | V <sub>O 1/3</sub> |                                                             |                                                                      |                       | 2.8 | 3.0  | 3.2 |      |

Note 1: Typical values show those at Topr =  $25^{\circ}$ C,  $V_{DD} = 5 V$ .

Note 2: Input Current; The current through pull-up or pull-down resistor is not included.

Note 3: IDD; Except for  $I_{REF}$ . Note 4: Output resustance  $R_{OS}$  and  $R_{OC}$  indicate "on" when switching levels.

Note 5:  $V_{O2/3}$  indicates an output current at the 2/3 level when operating in the 1/4 or 1/3 duty mode.

Note 6:  $V_{O1/2}$  indicates an output current at the 1/2 level when operating in the 1/2 duty or static mode.

Note 7:  $V_{01/3}$  indicates an output current at the 1/3 level when operating in the 1/4 or 1/3 duty mode.

Note 8: When you use a liquid crystal display (LCD), it is necessary to give careful consideration to the value of the output

resistor  $R_{OS\ 1/2}$ ,  $R_{OC\ 1/2}$ . Note 9:  $R_{OS\ 1}$ ,  $R_{OC\ 1}$ : On time of the lower output resistor is 27/fc, 1/(2·fs) [s].

Note 10:  $R_{OS2}$ ,  $R_{OC2}$ : On time of the higher output resistor is  $1/(n \cdot f_F)$ . (1/n duty,  $f_F$ : frame frequency)

Note 11: RSEL; Bit 6 in LCDCR

A / D Conversion Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ 

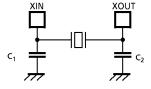
| Parameter                | Symbol            | Conditions                                                | Min              | Тур. | Max               | Unit |
|--------------------------|-------------------|-----------------------------------------------------------|------------------|------|-------------------|------|
| Analas Bafaranas Valtana | V <sub>AREF</sub> | V >25V                                                    | 2.7              | _    | $V_{DD}$          | V    |
| Analog Reference Voltage | V <sub>ASS</sub>  | $V_{AREF} - V_{ASS} \ge 2.5 V$                            | V <sub>SS</sub>  | _    | 1.5               | V    |
| Analog Input Voltage     | V <sub>AIN</sub>  |                                                           | V <sub>ASS</sub> | -    | V <sub>AREF</sub> | V    |
| Analog Supply Current    | I <sub>REF</sub>  | $V_{AREF} = 5.5 V, V_{ASS} = 0.0 V$                       | -                | 0.5  | 1.0               | mA   |
| Nonlinearity Error       |                   | $V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$          | _                | _    | ± 1               |      |
| Zero Point Error         |                   | V <sub>ASS</sub> = 0.000 V                                | _                | _    | ± 1               | LEB  |
| Full Scale Error         |                   | or $V_{DD} = 2.7 \text{ V}, V_{SS} = 0.0 \text{ V}$       | _                | _    | ± 1               | LSB  |
|                          |                   | V <sub>AREF</sub> = 2.700 V<br>V <sub>ASS</sub> = 0.000 V | _                | _    | ± 2               |      |

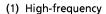
Note: Quantizing error is not contained in those errors.

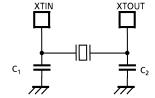
A.C. Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ 

| Parameter                    | Symbol           | Conditions                    | Min   | Тур. | Max   | Unit |
|------------------------------|------------------|-------------------------------|-------|------|-------|------|
|                              |                  | In NORMAL 1, 2 mode           | 0.5   |      | 10    |      |
| Machine Cycle Time           | ١.               | In IDLE 1, 2 mode             | 0.5   | _    |       | μs   |
|                              | t <sub>cy</sub>  | In SLOW mode                  | 117.6 |      | 133.3 |      |
|                              |                  | In SLEEP mode                 | 117.6 | _    | 133.3 |      |
| High Level Clock Pulse Width | t <sub>WCH</sub> | For external clock operation  | F0    |      |       |      |
| Low Level Clock Pulse Width  | t <sub>WCL</sub> | (XIN input), fc = 8 MHz       | 50    | _    | _     | ns   |
| High Level Clock Pulse Width | t <sub>WSH</sub> | For external clock operation  | 14.7  |      |       |      |
| Low Level Clock Pulse Width  | t <sub>WSL</sub> | (XTIN input), fs = 32.768 kHz | 14.7  | _    | _     | μS   |


 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$ 


| Parameter              | Symbol           | Conditions                     |                         | Min | Тур. | Max | Unit  |
|------------------------|------------------|--------------------------------|-------------------------|-----|------|-----|-------|
|                        |                  | Frequency medsurement mode     | Single<br>edge<br>count | -   | -    | 8   |       |
| TC1 input (ECIN input) |                  | V <sub>DD</sub> = 4.5 to 5.5 V | Both<br>edge<br>count   | _   | ı    | 4   | MHz   |
| TC1 input (ECIN input) | t <sub>TC1</sub> | Frequency medsurement mode     | Single<br>edge<br>count | _   | -    | 4.2 | IVIHZ |
|                        |                  | V <sub>DD</sub> = 2.7 to 5.5 V | Both<br>edge<br>count   | _   | _    | 3   |       |


Recommended Oscillating Condition

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ 

| Parameter          | Oscillator         | Frequency  | Recommen | ded Oscillator | Recommende     | ed Condition   |
|--------------------|--------------------|------------|----------|----------------|----------------|----------------|
| rarameter          | Oscillator         | rrequericy | Recommen | ded Oscillator | C <sub>1</sub> | C <sub>2</sub> |
|                    | Ceramic Resonator  | 8 MHz      | KYOCERA  | KBR8.0M        | 30×E           | 30 m E         |
|                    |                    | 4 MHz      | KYOCERA  | KBR4.0MS       | 30pF           | 30pF           |
| High-frequency     |                    | 4 IVI   12 | MURATA   | CSA4.00MG      |                |                |
| riigii-ii equericy | Crystal Oscillator | 8 MHz      | точосом  | 210B 8.0000    | 20pF           | 20pF           |
|                    |                    | 4 MHz      | точосом  | 204B 4.0000    | Ζυρι           | Ζυρι           |
| Low-frequency      | Crystal Oscillator | 32.768 kHz | NDK      | MX-38T         | 15pF           | 15pF           |







(2) Low-frequency

Note: When it is used in high electrical field, an electrical shield of the package is recommended to retain normal operations.