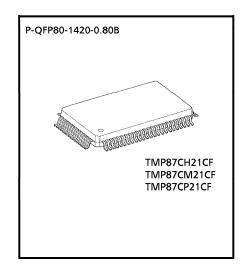
CMOS 8-Bit Microcontroller

TMP87CH21CF, TMP87CM21CF, TMP87CP21CF TMP87CH21CDF, TMP87CM21CDF, TMP87CP21CDF

The TMP87CH21C/M21C/P21C are the high speed and high performance 8-bit single chip microcomputers. These MCU contain, large ROM, RAM, input/output ports, LCD driver, 8-bit AD converter, four multi-function timer/counters, two serial interfaces, and two clock generators on chip.


Product No.	ROM	RAM	Package	OTP MCU
TMP87CH21CF	16 K × 8 bits		P-QFP80-1420-0.80B	TMP87PP21F
TMP87CH21CDF	16 K X 8 DITS		P-LQFP80-1212-0.50A	TMP87PP21DF
TMP87CM21CF	22 16 - 0 1-16	1 K × 8 bits	P-QFP80-1420-0.80B	TMP87PP21F
TMP87CM21CDF	32 K × 8 bits		P-LQFP80-1212-0.50A	TMP87PP21DF
TMP87CP21CF			P-QFP80-1420-0.80B	TMP87PP21F
TMP87CP21CDF	48 K × 8 bits	2 K × 8 bits	P-LQFP80-1212-0.50A	TMP87PP21DF

Features

- ◆8-bit single chip microcomputer TLCS-870 Series
- lacktriangle Instruction execution time: 0.5 μ s (at 8 MHz),

122 μ s (at 32.768 kHz)

- ◆ 129 types and 412 basic instructions
 - Multiplication and Division (8 bits × 8 bits, 16 bits ÷ 8 bits) : 3.5 μ s (at 8 MHz)
 - Bit manipulations
 - (Set/Clear/Complement/Load/Store/Test/Exclusive OR)
 - 16-bit data operations
 - 1-byte jump/call (Short relative jump/Vector call)
- 14 interrupt sources (External: 5, Internal: 9)
 - All sources have independent latches each, and nested interrupt control is available
 - 4 edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments transportation instruments traffic signal instruments. transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

TOSHIBA

- ◆ 10 input/output ports (Max 52 pins)
- ◆Two 16-bit timer/counters
 - Timer, Event counter, Programmable pulse generator output,
 Pulse width measurement, External trigger timer, Window modes
- ◆Two 8-bit timer/counters
 - Timer, Event counter, Capture (Pulse width/duty measurement),
 PWM output, PDO modes
- ◆Time Base Timer (Interrupt frequency: 1 Hz to 16348 Hz)
- ◆ Divider output function (frequency: 1 kHz to 8 kHz)
- **♦**Watchdog Timer
- ◆Two 8-bit serial interfaces
 - Each 8 bytes transmit/receive data buffer
 - Internal/external serial clock, and 4/8-bit mode
- ◆LCD driver
 - With displaymemory
 - LCD direct drive capability (Max 32 seg x 4 com)
 - 1/4, 1/3, 1/2 duty or static drive are programmably selectable
- ◆8-bit successive approximate type AD converter with sample and hold
 - 8 analog inputs
 - Conversion time: 23 μ s/92 μ s (at 8 MHz)
- ◆ Dual clock operation
- ◆ Five Power saving operating modes
 - STOP mode: Oscillation stops. Battery/Capacitor back-up.

Port output hold/high-impedance.

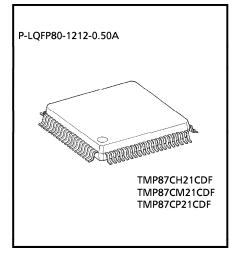
• SLOW mode: Low power consumption operation using

low-frequency clock (32.768 kHz).

• IDLE1 mode: CPU stops, and Peripherals operate using

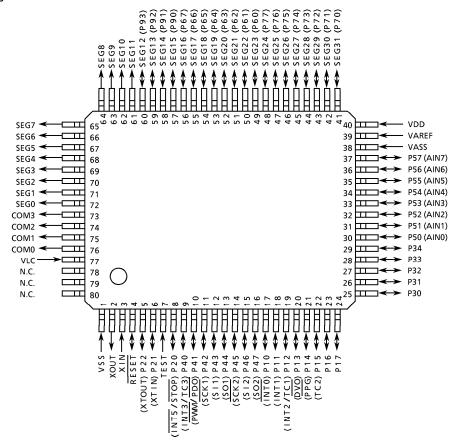
high-frequency clock. Release by interrupts.

• IDLE2 mode: CPU stops, and Peripherals operate using high and

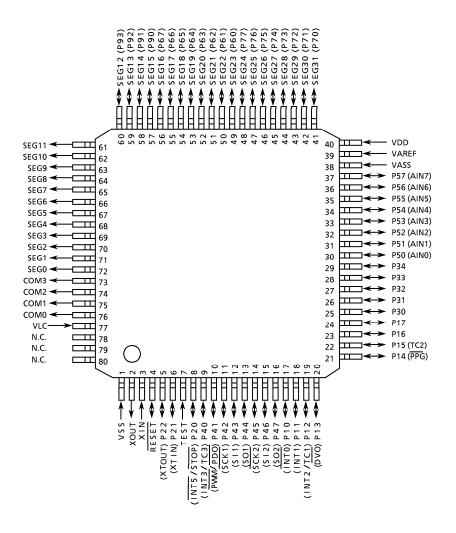

low frequency clock. Release by interrupts.

• SLEEP mode: CPU stops, and Peripherals operate using low-frequency clock.

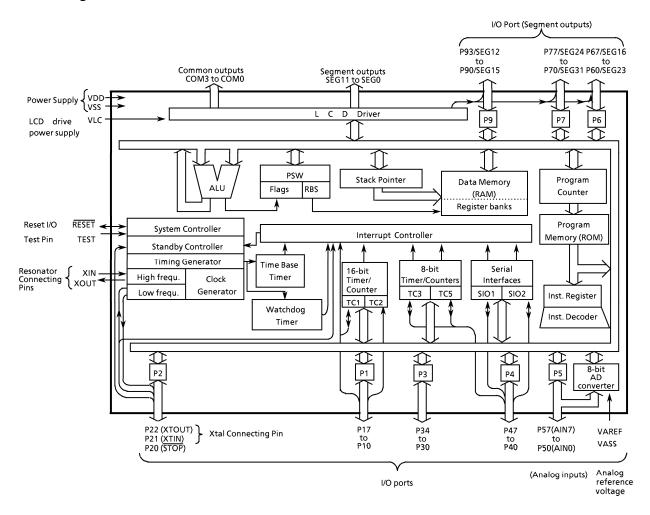
Release by interrupts.


◆Operating Voltage: 2.7 to 5.5 V at 4.2 MHz/32.768 kHz, 4.5 to 5.5 V at 8 MHz/32.768 kHz

◆ Emulation Pod: BM87CP23F0A ◆ MCU probe: PN120004


Pin Assignments (Top View)

P-QFP80-1420-0.80B


Note: Always keep N.C. pins open.

P-LQFP80-1212-0.50A

Note: Always keep N.C. pins open.

Block Diagram

Pin Functions

Pin Name	Input/Output	Func	tion				
P17, P16	1/0	8-bit programmable input/output port					
P15 (TC2)	I/O (Input)	(tri-state).	Timer/Counter 2 input				
P14 (PPG)		Each bit of this port can be individually	Programmable pulse generator output				
P13 (DVO)	I/O (Output)	configured as an input or an output under software control.	Divider output				
P12 (INT2/TC1)		When used as timer/counter in or external interrupt input, the input mode should be	External interrupt input 2 or Timer/Counter 1 input				
P11 (INT1)	I/O (Input)	set. When used as PPG output or divider	External interrupt 1 input				
P10 (INTO)	·	output, the output mode should be set and the latch must be set to "1".	External interrupt 0 input				
P22 (XTOUT)	I/O (Output)	3-bit input/output port with latch.	Resonator connecting pins (32.768 kHz).				
P21 (XTIN)			For inputting external clock, XTIN is used				
	I/O (Input)	When used as an input port, the latch must be set to "1".	and XTOUT is opened. External interrupt input 5 or STOP mode				
P20 (INT5/STOP)		5-bit input/output port with latch.	release signal input				
P34 to P30	I/O	When used as input port, the latch must be	set to "1".				
P47 (SO2)	I/O (Output)	8-bit input/output port with latch.	SIO2 serial data output				
P46 (SI2)	I/O (Input)		SIO2 serial data input				
P45 (SCK2)	I/O (I/O)	When used as input port or a SIO input/output, PWM/PDO output or	SIO2 serial clock input/output				
P44 (SO1)	I/O (Output)	external interrupt input, the latch must be	SIO1 serial data output				
P43 (SI1)	I/O (Input)	set to "1".	SIO1 serial data input				
P42 (SCK1)	I/O (I/O)		SIO1 serial clock input/output				
P41 (PWM/PDO)	I/O (Output)		8-bit PWM output, 8-bit programmable divider output				
P40 (INT3/TC3)	I/O (Input)		External interrupt 3 input, Timer/Counter 3 input				
P57 (AIN07) to P50 (AIN00)	I/O (Input)	8-bit programmable input/output port (tri-state). Each bit of the port can be individually configured as an input or an output under software control. When used as analog input, the input mode should be set.	AD converter analog inputs				
SEG31 (P70) to SEG24 (P77)	Output (I/O)	8-bit input/output port with latch.	LCD segment outputs. When used as				
SEG23 (P60) to SEG16 (P67)	Output (I/O)	When used as an input port, the latch	segment output, the control register of				
SEG15 (P90) to SEG12 (P93)	Output (I/O)	must be set to "1".	P6, P7 and P9 must be set to "1".				
SEG11 to SEG0	Output	LCD segment outputs					
COM3 to COM0	Output	LCD common outputs					
XIN, XOUT	Input, Output	Resonator connecting pins for high-frequer is used and XOUT is opened.	ncy clock. For inputting external clock, XIN				
RESET	I/O	Reset signal input or watchdog timer output/address-trap-reset output					
TEST	Input	Test pin for out-going test. Be fixed to low.					
VDD, VSS	Power Supply	2.7 to 5.5 V, 0 V (GND)					
VAREF, VASS	1 Ower Juppiy	Analog reference voltage inputs (High, Low)					
VLC	LCD drive power s	upply.					

Note: Always keep N.C. pins open.

Operational Description

1. CPU Core Functions

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Maps

The TLCS-870 Series is capable of addressing 64 K bytes of memory. Figure 1-1 shows the memory address maps of the TMP87CH21C/M21C/P21C. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR/DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

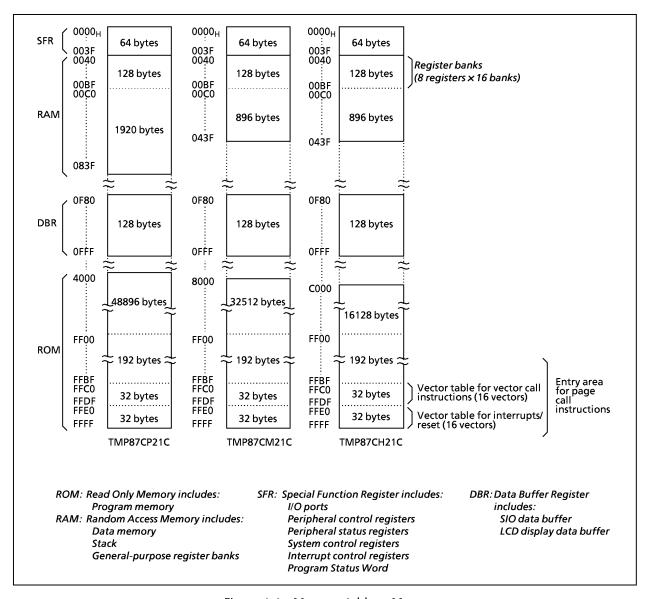


Figure 1-1. Memory Address Maps

Electrical Characteristics

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V_{DD}		- 0.3 to 6.5	
Input Voltage	V _{IN}		- 0.3 to V _{DD} + 0.3] v
Output Voltage	V _{OUT}		- 0.3 to V _{DD} + 0.3	
Output Current (Per 1 pin)	I _{OUT1}	Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41)	3.2	
	I _{OUT2}	P41	30]
Output Current (Total)	Σ I _{OUT1}	Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41)	120	mA
, ,	Σ I _{OUT2}	P41	30]
Power Dissipation [Topr = 70°C]	PD		350	mW
Soldering Temperature (time)	Tsld		260 (10 s)	
Storage Temperature	Tstg		– 55 to 125] ℃
Operating Temperature	Topr		– 30 to 70]

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit
			f. 0.M.	NORMAL1, 2 mode	4.5		
			fc = 8 MHz	IDLE1, 2 mode	4.5		
			fa 4.2 NALI-	NORMAL1, 2 mode			
Supply Voltage	V_{DD}		fc = 4.2 MHz	IDLE1, 2 mode	2.7	5.5	
			fs =	SLOW mode	2.7		
			32.768 kHz	SLEEP mode			
				STOP mode	2.0		
	V _{IH1}	Except hysteresis input	V _{DD} ≥ 4.5 V V _{DD} <4.5 V		$V_{DD} \times 0.70$.70	V
Input High Voltage	V _{IH2}	Hysteresis input			$V_{DD} \times 0.75$	V_{DD}	
	V _{IH3}				$V_{DD} \times 0.90$		
	V _{IL1}	Except hysteresis input	V _{DD} ≧ 4.5 V			$V_{DD} \times 0.30$	
Input Low Voltage	V_{IL2}	Hysteresis input	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DD = 4.3 V	0	$V_{DD} \times 0.25$	
	V _{IL3}		V	_{DD} <4.5 V		$V_{DD} \times 0.10$	
	fc	XIN, XOUT	V _{DD} = 4.5 to 5.5 V		0.4	8.0	MHz
Clock Frequency		AIN, AUU1	V _{DD} = 2.7 to 5.5 V		0.4	4.2	IVITZ
	fs	XTIN, XTOUT			30.0	34.0	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL1/2 mode and IDLE1/2 mode.

DC Characteristics

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		_	0.9	_	V
Input Current	I _{IN1} I _{IN2}	TEST Open drain ports and tri-state ports RESET, STOP	V _{DD} = 5.5 V V _{IN} = 5.5 V/0 V	_	ı	± 2	μΑ
Input Low Current	I _{IL}	Push-pull ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	_	ı	- 2	mA
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage Current	I _{LO}	Open drain ports, Tri-state ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	-	2	μΑ
Output High Voltage	V _{OH1}	Push-pull ports P4 ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -200 \mu\text{A}$	2.4	_	_	
Output riigh voitage	V _{OH2}	Tri- state ports P1, P5 ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	_	V
Output Low Voltage	V _{OL}	Except XOUT and P41	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	_	-	0.4	
Output Low Current	I _{OL3}	P41	$V_{DD} = 4.5 \text{ V}, V_{OL} = 1.0 \text{ V}$	_	20	_	
Supply Current in NORMAL 1, 2 mode Supply Current in IDLE 1, 2 mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$ $fc = 8 \text{ MHz}$ $fs = 32.768 \text{ kHz}$	_	6	9 4.5	mA
Supply Current in SLOW mode	I _{DD}		V _{DD} = 3.0 V V _{IN} = 2.8 V/0.2 V	_	30	60	
Supply Current in SLEEP mode			fs = 32.768 kHz LCD driver is not enable	_	15	30	μA
Supply Current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$		0.5	10	
Segment Output Low Resistance	R _{OS1}	SEG31 to SEG0					
Common Output Low Resistance	R _{OC1}	COM3 to COM0		_	20	_	1.0
Segment Output High Resistance	R _{OS2}	SEG31 to SEG0					kΩ
Common Output High Resistance	R _{OC2}	COM3 to COM0	$V_{DD} = 5 \text{ V}, V_{DD} - V_{LC} = 3 \text{ V}$	_	200	_	
	V _{O2/3}			3.8	4.0	4.2	
Segment/Common Output Voltage	V _{O1/2}	SEG31 to SEG0 and COM3 to COM0		3.3	3.5	3.7	v
- Catput Voltage	V _{O1/3}			2.8	3.0	3.2	

Note 1: Typical values show those at Topr = 25° C, $V_{DD} = 5 V$.

Note 2: Input Current; The current through pull-up or pull-down resistor is not included.

Note 3: I_{DD} : Except for I_{REF}

Note 4: Output resistors Ros, Roc indicate "on" when switching levels.

Note 5: $V_{O2/3}$ indicates an output voltage at the 2/3 level when operating in the 1/4 or 1/3 duty mode.

Note 6: $V_{O1/2}$ indicates an output voltage at the 1/2 level when operating in the 1/2 duty or static mode.

Note 7: $V_{O1/3}$ indicates an output voltage at the 1/3 level when operating in the 1/4 or 1/3 duty mode.

Note 8: When using LCD, it is necessary to consider values of Ros1/2 and Roc1/2.

Note 9: Times for SEG/COM output switching on: Ros1, Roc1: 26/fc, 2/fs(s)

Ros2, Roc2: $1/(n \cdot f_F)$

(1/n: duty, f_F : frame frequency)

AD Conversion Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V_{AREF}	V > 2.5.V	2.7	_	V_{DD}	
Analog Reference Voltage	V _{ASS}	$V_{AREF} - V_{ASS} \ge 2.5 V$	V _{SS}	_	1.5	V
Analog Input Voltage	V_{AIN}		V _{ASS}	_	V _{AREF}	
Analog Supply Current	I _{REF}	$V_{AREF} = 5.5 \text{ V}, \ V_{ASS} = 0.0 \text{ V}$	_	0.5	1.0	mA
Nonlinearity Error		$V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$	_	_	± 1	
Zero Point Error		V _{AREF} = 5.000 V V _{ASS} = 0.000 V	_	_	± 1	l cp
Full Scale Error		or $V_{DD} = 2.7 \text{ V}, V_{SS} = 0.0 \text{ V}$	_	_	± 1	LSB
Total Error		V _{AREF} = 2.700 V V _{ASS} = 0.000 V	_	_	± 2	

Note: Quantizing error is not contained in those errors.

AC Characteristics - 1

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

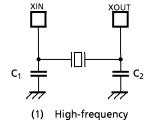
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine Cycle Time		In NORMAL 1, 2 mode	0.5			
	١.	In IDLE 1, 2 mode	0.5	_	10	μ\$
	t _{cy}	In SLOW mode	117.6		122.2	
		In SLEEP mode	117.6	_	133.3	
High Level Clock Pulse Width	t _{WCH}	For external clock operation	62.5			
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 8 MHz	62.5	_	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation	14.7			
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz		_	_	μ S

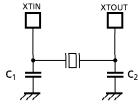
AC Characteristics - 2

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine Cycle Time		In NORMAL 1, 2 mode	0.05		10	
	١.	In IDLE 1, 2 mode	0.95	•		
	t _{cy}	In SLOW mode	117.6		422.2	μ S
		In SLEEP mode	117.6	_	133.3	
High Level Clock Pulse Width	t _{WCH}	For external clock operation	110			
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 4.2 MHz	110	_	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation				
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	_	_	μS

Recomended Oscillating Condition-1


 $(VSS = 0 \text{ V}, VDD = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$


Parameter	Osillator	Frequency	Recommender OScillator		Recomn Cond	
					C ₁	C ₂
			KYOCERA	KBR8.0M	30 pF	30 pF
			Standard/Lead Type	CSA8.00MTZ	built-in	built-in
			(MURATA)	CST8.00MTW	30 pF	30 pF
	Ceramic Resonator	8 MHz	Standard/SMP Type	CSAC8.00MT	30 pF	30 pF
	Ceramic Resonator	0101112	(MURATA)		30 pr	30 pr
High-			Standard/Small ChipType	CSTS8.00MT	built-in	built-in
_			(MURATA)		30 pF	30 pF
frequency		4 MHz	KYOCERA	KBR4.0MS	30 pF	30 pF
		8 MHz	тоуосом	210B 8.0000		
	Crystal Oscillator	4 MHz	тоуосом	204B 4.0000	20 pF	20 pF
Low-frequency	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15 pF	15 pF

Recomended Oscillating Condition-2

(VSS = 0 V, VDD =
$$2.7 \text{ to } 5.5 \text{ V}$$
, Topr = $-30 \text{ to } 70^{\circ}\text{C}$)

Parameter	Osillator	Frequency	Recommender Oscillator		Recomn Cond	
					C ₁	C ₂
			Standard/Lead Type	CSA4.00MG	30 pF	30pF
			(MURATA)	CST4.00MGW	built-in 30 pF	built-in 30 pF
High-	Ceramic Resonator	ramic Resonator 4 MHz	Standard/SMD Type (MURATA)	CSA4.00MGC CSAC4.00MGCM	30 pF	30 pF
frequency				CSTC4.00MG	built-in	built-in
					30 pF	30 pF
			Standard/Small Chip Type	CSTCS/LOOMG	built-in	built-in
			Standard/Smail Chip Type	C31C34.00IVIG	10 pF	10 pF

(2) Low-frequency

Note1: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

Note2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;

http://www.murata.co.jp/search/index.html