

TLV6713 SBVS331B-JANUARY 2018-REVISED JULY 2018

TLV6713 Micropower, 36-V Comparator With 400-mV Reference

Features

High Supply Voltage Range: 1.8 V to 36 V

Adjustable Threshold: Down to 400 mV

High Threshold Accuracy:

0.25% (Typ)

0.75% Max Over Temperature

Low Quiescent Current: 7 µA (Typ)

Open-Drain Output

Internal Hysteresis: 5.5 mV (Typ)

Temperature Range: -40°C to +125°C

Package: Thin SOT-23-6

Applications

Notebook PCs and Tablets

Smartphones

Digital Cameras

Video Game Controllers

Relays and Circuit Breakers

Portable Medical Devices

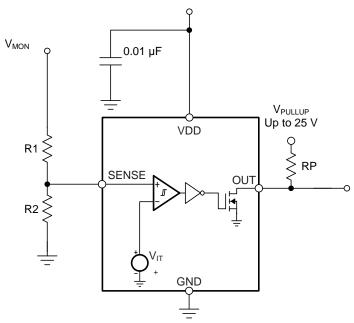
Door and Window Sensors

Portable- and Battery-Powered Products

3 Description

The TLV6713 high voltage comparator operates over a 1.8-V to 36-V range. The device has a precision comparator with an internal 400-mV reference and an open-drain output rated to 25 V for undervoltage detection. Set the monitored voltage with the use of external resistors.

OUT is driven low when the voltage at the SENSE pin drops below the negative threshold, and goes high when the voltage returns above the positive threshold. The comparator in the TLV6713 includes built-in hysteresis for noise rejection, thereby ensuring stable output operation without false triggering.


The TLV6713 is available in a Thin SOT-23-6 package and is specified over temperature range of -40°C to +125°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLV6713	SOT-23 (6)	2.90 mm × 1.60 mm

(1) For all available packages, see the package option addendum at the end of the data sheet.

Typical Application

Table of Contents

1	Features 1		8.3 Feature Description	9
2	Applications 1		8.4 Device Functional Modes	
3	Description 1	9	Application and Implementation	10
4	Revision History2		9.1 Application Information	10
5	Device Comparison Table		9.2 Typical Application	
6	Pin Configuration and Functions	10	Power Supply Recommendations	14
7	Specifications4	11	Layout	15
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	15
	7.2 ESD Ratings		11.2 Layout Example	15
	7.3 Recommended Operating Conditions	12	Device and Documentation Support	16
	7.4 Thermal Information		12.1 Device Support	16
	7.5 Electrical Characteristics		12.2 Receiving Notification of Documentation Updat	tes 16
	7.6 Timing Requirements		12.3 Community Resources	16
	7.7 Typical Characteristics		12.4 Trademarks	16
8	Detailed Description 8		12.5 Electrostatic Discharge Caution	16
•	8.1 Overview 8		12.6 Glossary	16
	8.2 Functional Block Diagram	13	Mechanical, Packaging, and Orderable Information	16

4 Revision History

hanges from Revision A (April 2018) to Revision B		
Changed Typical Application graphic pull-up resistor text from 36V to 25V	1	
Changes from Original (January 2018) to Revision A	Page	
Changed Advance Information to Production Data	1	

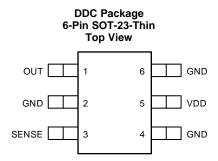

5 Device Comparison Table

Table 1. TLV67xx Integrated Comparator Family

PART NUMBER	CONFIGURATION	OPERATING VOLTAGE RANGE	THRESHOLD ACCURACY OVER TEMPERATURE
TLV6700	Window	1.8 V to 18 V	1%
TLV6703	Non-Inverting Single Channel	1.8 V to 18 V	1%
TLV6710	Window	1.8 V to 36 V	0.75%
TLV6713	Non-Inverting Single Channel	1.8 V to 36 V	0.75%

6 Pin Configuration and Functions

Pin Functions

F	PIN		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	2, 4, 6	_	Ground. Connect all three pins to ground.
OUT	1	0	Comparator open-drain output. This pin is driven low when the voltage at this comparator is less than $V_{\rm IT-}$. The output goes high when the sense voltage rises above $V_{\rm IT+}$.
SENSE	3	I	Comparator input. This pin is connected to the voltage to be monitored with the use of an external resistor divider. When the voltage at this pin drops below the threshold voltage V_{IT} , OUT is driven low.
VDD	5	I	Supply-voltage input. Connect a 1.8-V to 36-V supply to VDD to power the device. It is good analog design practice to place a 0.1-µF ceramic capacitor close to this pin.

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating junction temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Voltage ⁽²⁾	V_{DD}	-0.3	40	
	V _{OUT}	-0.3	28	V
	V _{SENSE}	-0.3	7	
Current	Output pin current		40	mA
Temperature	Operating junction, T _J	-40	125	°C
	Storage, T _{stg}	-40	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/	Flootroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{DD}	Supply pin voltage	1.8		36	V
V _{SENSE}	Input pin voltage	0		1.7	V
V _{OUT}	Output pin voltage	0		25	V
V _{PULLUP}	Pullup voltage	0		25	V
I _{OUT}	Output pin current	0		10	mA
T_J	Junction temperature	-40	25	125	°C

7.4 Thermal Information

		TLV6713	
	THERMAL METRIC (1)	DDC (SOT-23)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	201.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	47.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	51.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	50.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ All voltages are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, 1.8 V \leq V_{DD} < 36 V, and pullup resistor RP = 100 k Ω (unless otherwise noted). Typical values are at $T_J = 25^{\circ}C$ and $V_{DD} = 12$ V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(POR)	Power-on reset voltage ⁽¹⁾	V _{OL} ≤ 0.2 V			0.8	V
V _{IT}	SENSE pin negative input threshold voltage	V _{DD} = 1.8 V to 36 V	397	400	403	mV
V _{IT+}	SENSE pin positive input threshold voltage	V _{DD} = 1.8 V to 36 V	400	405.5	413	mV
V _{HYS}	SENSE pin hysteresis voltage (HYS = V _{IT+} - V _{IT-})		2	5.5	12	mV
V	Low lovel output voltoge	V _{DD} = 1.8 V, I _{OUT} = 3 mA		130	250	mV
V_{OL}	Low-level output voltage	V _{DD} = 5 V, I _{OUT} = 5 mA		150	250	mv
	land compat (at CENCE air)	V _{DD} = 1.8 V and 36 V, V _{SENSE} = 6.5 V	-25	+1	+25	A
I _{IN}	Input current (at SENSE pin)	V _{DD} = 1.8 V and 36 V, V _{SENSE} = 0.1 V	-15	+1	+15	nA
I _{D(leak)}	Open-drain leakage current	V _{DD} = 1.8 V and 36 V, V _{OUT} = 25 V		10	300	nA
I _{DD}	Supply current	V _{DD} = 1.8 V – 36 V		8	11	μΑ
UVLO	Undervoltage lockout ⁽²⁾	V _{DD} falling	1.3	1.5	1.7	V

The lowest supply voltage (V_{DD}) at which output is active; $t_{r(VDD)} > 15 \ \mu s/V$. If less than $V_{(POR)}$, the output is undetermined. When V_{DD} falls below UVLO, OUT is driven low. The output cannot be determined if less than $V_{(POR)}$.

Timing Requirements

	<u> </u>				
			MIN N	XAM MC	UNIT
t _{pd(HL)}	High-to-low propagation delay ⁽¹⁾	V_{DD} = 24 V, ±10-mV input overdrive, R _L = 100 k Ω , V_{OH} = 0.9 × V_{DD} , V_{OL} = 250 mV		9.9	μs
t _{pd(LH)}	Low-to-high propagation delay ⁽¹⁾	V_{DD} = 24 V, ±10-mV input overdrive, R _L = 100 k Ω , V_{OH} = 0.9 × V_{DD} , V_{OL} = 250 mV	2	8.1	μs
t _{d(start)} (2)	Startup delay	V _{DD} = 5 V		155	μs
t _r	Output rise time	V_{DD} = 12 V, 10-mV input overdrive, R _L = 100 kΩ, C _L = 10 pF, V _O = (0.1 to 0.9) × V _{DD}		2.7	μs
t _f	Output fall time	V_{DD} = 12 V, 10-mV input overdrive, R _L = 100 kΩ, C _L = 10 pF, V _O = (0.9 to 0.1) × V _{DD}	0	.12	μs

High-to-low and low-to-high refers to the transition at the input pin (SENSE).

During power on, V_{DD} must exceed 1.8 V for at least 150 µs (typical) before the output state reflects the input condition.

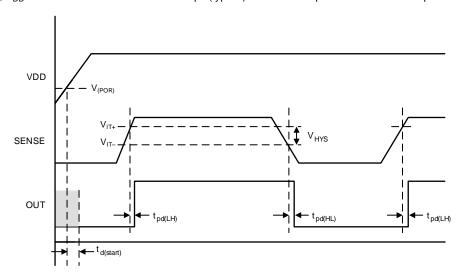
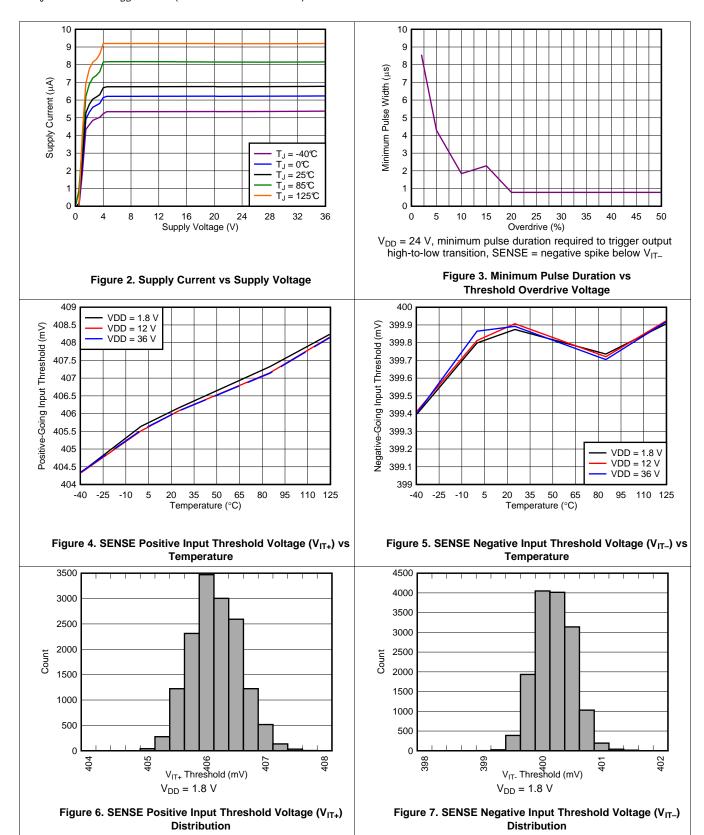
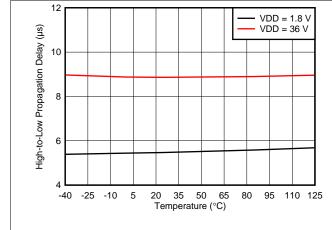



Figure 1. Timing Diagram

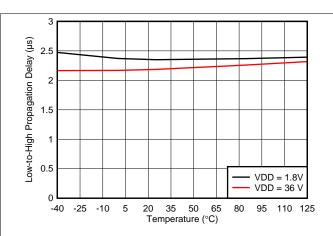
TEXAS INSTRUMENTS

7.7 Typical Characteristics

at $T_J = 25$ °C and $V_{DD} = 12$ V (unless otherwise noted)


Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated


Typical Characteristics (continued)

at $T_J = 25$ °C and $V_{DD} = 12$ V (unless otherwise noted)

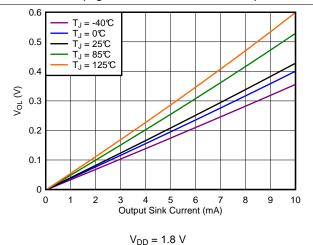
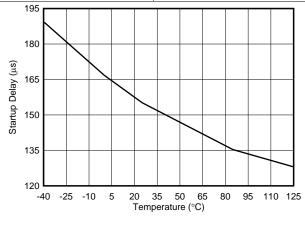

Input step ±200 mV

Figure 8. Propagation Delay vs Temperature (High-to-Low Transition at SENSE)

Input step ±200 mV

Figure 9. Propagation Delay vs Temperature (Low-to-High Transition at SENSE)


V_{DD} = 1.0

T_J = -40℃ $T_J = 0^{\circ}$ 0.5 T_J = 25℃ T_J = 85℃ T_J = 125℃ 0.4 V_{OL} (V) 0.3 0.2 0.1 0 0 9 10

 $V_{DD} = 12 V$

Figure 10. Output Voltage Low vs Output Sink Current

Figure 11. Output Voltage Low vs Output Sink Current

0.6

 $V_{DD} = 5 V$

Figure 12. Start-up Delay vs Temperature

igure 12. Start-up Delay vs Temperature

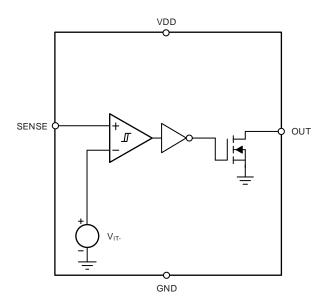
Copyright © 2018, Texas Instruments Incorporated

Product Folder Links: *TLV6713*

Submit Documentation Feedback

8 Detailed Description

8.1 Overview


The TLV6713 combines a comparator and a precision reference for undervoltage detection. The TLV6713 features a wide supply voltage range (1.8 V to 36 V) and a high-accuracy threshold voltage of 400 mV (0.75% over temperature) with built-in hysteresis. The output is rated to 25 V and can sink up to 10 mA.

Set the input pin (SENSE) to monitor any voltage above 0.4 V by using an external resistor divider network. SENSE has very low input leakage current, allowing the use of a large resistor divider without sacrificing system accuracy. The relationship between the input and the output is shown in Table 2. Broad voltage thresholds are supported that enable the device to be used in a wide array of applications.

Table 2. Truth Table

CONDITION	OUTPUT	OUTPUT STATE
SENSE > V _{IT+}	OUT high	Output high impedance
SENSE < V _{IT} _	OUT low	Output sinking

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Input Pin (SENSE)

The TLV6713 combines a comparator with a precision reference voltage. The comparator has one external input and one internal input connected to the internal reference. The falling threshold on SENSE is designed and trimmed to be equal to the reference voltage (400 mV). This configuration optimizes the device accuracy. The comparator also has built-in hysteresis that proves immunity to noise and ensures stable operation.

The comparator input swings from ground to 1.7 V (7 V absolute maximum), regardless of the device supply voltage used. Although not required in most cases, it is good analog design practice to place a 1-nF to 10-nF bypass capacitor at the comparator input for noisy applications to reduce sensitivity to transient voltage changes on the monitored signal.

For the comparator, the output (OUT) is driven to logic low when the input SENSE voltage drops below V_{IT-} . When the voltage exceeds V_{IT+} , OUT goes to a high-impedance state; see Figure 1.

8.3.2 Output Pin (OUT)

In a typical TLV6713 application, the output is connected to a GPIO input of the processor (such as a digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-specific integrated circuit [ASIC]).

The TLV6713 provides an open-drain output (OUT) rated to 25 V, independant of supply voltage, and can sink up to 40 mA.. A pullup resistor is required to hold the line high when the output goes to a high-impedance state. Connect this pullup resistor to a voltage rail that meets the logic requirements of the downstream device. To ensure the proper voltage level, give some consideration when choosing the pullup resistor value. The pullup resistor value is determined by V_{OL} , output capacitive loading, and the open-drain leakage current ($I_{D(leak)}$). These values are specified in the *Electrical Characteristics* table.

Table 2 and *Input Pin (SENSE)* describe how the output is asserted or high impedance. See Figure 1 for a timing diagram that describes the relationship between threshold voltage and the respective output.

8.4 Device Functional Modes

8.4.1 Normal Operation $(V_{DD} > UVLO)$

When the voltage on VDD is greater than 1.8 V for at least 155 μ s, the OUT signal corresponds to the voltage on SENSE, as listed in Table 2.

8.4.2 Undervoltage Lockout ($V_{(POR)} < V_{DD} < UVLO$)

When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage, $V_{(POR)}$, the OUT signal is asserted regardless of the voltage on SENSE.

8.4.3 Power On Reset $(V_{DD} < V_{(POR)})$

When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND $(V_{(POR)})$, OUT is in a high-impedance state.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV6713 is used as a precision voltage supervisor in several different configurations. The monitored voltage (V_{MON}) , VDD voltage, and output pullup voltage can be independent voltages or connected in any configuration. The following sections show the connection configurations and the voltage limitations for each configuration.

9.1.1 Input and Output Configurations

Figure 13 and Figure 14 show examples of the various input and output configurations.

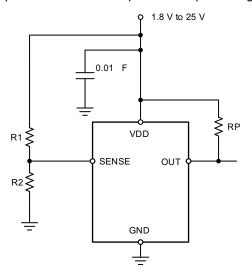
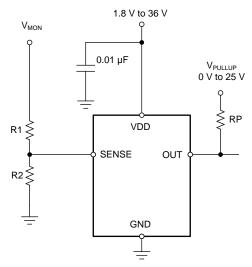



Figure 13. Monitoring the Same Voltage as V_{DD}

Application Information (continued)

NOTE: The input can monitor a voltage higher than V_{DD} (maximum) with the use of an external resistor divider network.

Figure 14. Monitoring a Voltage Other than V_{DD}

9.1.2 Immunity to Input Pin Voltage Transients

The TLV6713 is immune to short voltage transient spikes on the input pin. Sensitivity to transients depends on both transient duration and amplitude; see Figure 3, *Minimum Pulse Duration vs Threshold Overdrive Voltage*.

9.2 Typical Application

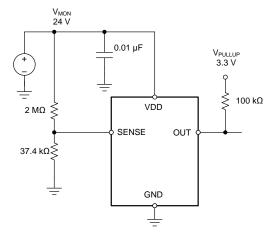


Figure 15. 24-V, 10% Comparator

(1)

Typical Application (continued)

9.2.1 Design Requirements

This typical voltage detector application is designed to meet the parameters listed in Table 3:

Table 3. Design Parameters

PARAMETER	DESIGN REQUIREMENT	DESIGN RESULT
Monitored voltage	24-V nominal, falling (V _{MON(UV)}) threshold 10% nominal (21.6 V)	V _{MON(UV)} = 21.8 V ±2.7%
Output logic voltage	3.3-V CMOS	3.3-V CMOS
Maximum current consumption	30 μΑ	24 μΑ

9.2.2 Detailed Design Procedure

9.2.2.1 Resistor Divider Selection

The resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine $V_{MON(UV)}$.

$$V_{MON(UV)} = \left(1 + \frac{R1}{R2}\right) \times V_{IT}$$

where

- R1 and R2 are the resistor values for the resistor divider on the SENSE pin
- V_{MON(UV)} is the target voltage at which an undervoltage condition is detected

Choose an R_{TOTAL} (= R1 + R2) so that the current through the divider is approximately 100 times higher than the input current at the SENSE pin. Use resistors with high values to minimize current consumption (as a result of low input bias current) without adding significant error to the resistive divider. For details on sizing input resistors, refer to *Optimizing Resistor Dividers at a Comparator Input*, available for download from www.ti.com.

9.2.2.2 Pullup Resistor Selection

To ensure the proper logic-high voltage level (V_{HI}), select a pullup resistor value where the pullup voltage divided by the pullup resistor value does not exceed the sink-current capability of the device. Confirm this voltage level by verifying that the pullup voltage minus the open-drain leakage current ($I_{D(leak)}$) multiplied by the resistor is greater than the desired V_{HI} . These values are specified in the *Electrical Characteristics*.

Use Equation 2 to calculate the value of the pullup resistor.

$$\frac{V_{HI} - V_{pullup}}{I_{D(leak)}} \le RP \le \frac{V_{pullup}}{I_{OUT}}$$
(2)

9.2.2.3 Input Supply Capacitor

Although an input capacitor is not required for stability, for good analog design practice, connect a $0.1-\mu F$ low equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source.

9.2.3 Application Curve

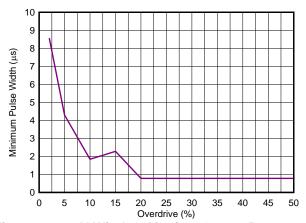


Figure 16. 24-V Window Monitor Output Response

10 Power Supply Recommendations

The TLV6713 has a 40-V absolute maximum rating on the VDD pin, with a recommended maximum operating condition of 36 V. If the voltage supply that provides power to VDD is susceptible to any large voltage transient that may exceed 40 V, or if the supply exhibits high voltage slew rates greater than 1 V/ μ s, then place an RC filter between the supply and VDD to filter any high-frequency transient surges on the VDD pin. In these cases, a 100- Ω resistor and 0.01- μ F capacitor are required, as shown in Figure 17.

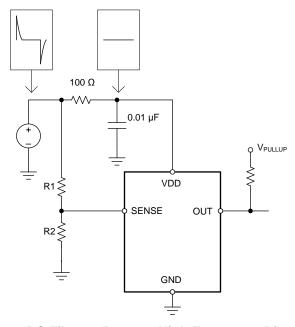


Figure 17. Using a RC Filter to Remove High-Frequency Disturbances on V_{DD}

11 Layout

11.1 Layout Guidelines

- Place R2 and R2 close to the device to minimize noise coupling into the SENSE node.
- Place the VDD decoupling capacitor close to the device.
- Avoid using long traces for the VDD supply node. The VDD capacitor (C_{VDD}), along with parasitic inductance from the supply to the capacitor, might form an LC tank and create ringing with peak voltages above the maximum VDD voltage. If long traces are unavoidable, see Figure 17 for an example of filtering VDD.

11.2 Layout Example

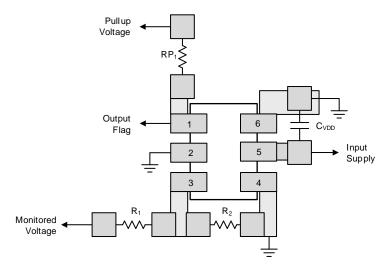


Figure 18. Recommended Layout

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

The *DIP Adapter Evaluation Module* allows conversion of the SOT-23-6 package to a standard DIP-6 pinout for ease of prototyping and bench evaluation.

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

19-Jul-2018

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TLV6713DDCR	ACTIVE	SOT-23-THIN	DDC	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1111	Samples
TLV6713DDCT	ACTIVE	SOT-23-THIN	DDC	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1111	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

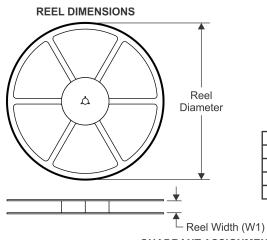
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

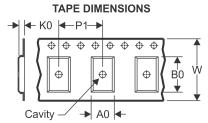
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

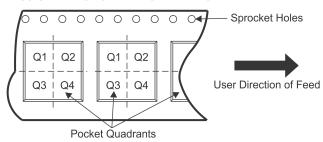
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




19-Jul-2018

PACKAGE MATERIALS INFORMATION

www.ti.com 19-Jul-2018


TAPE AND REEL INFORMATION

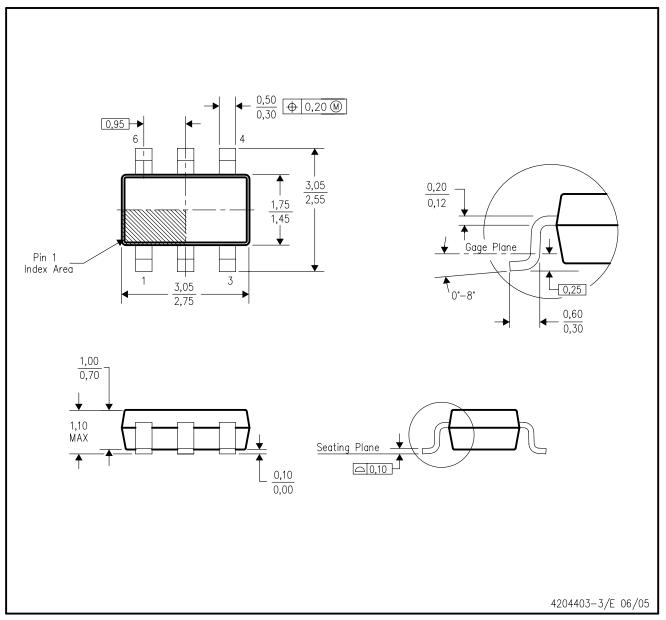
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV6713DDCR	SOT- 23-THIN	DDC	6	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV6713DDCT	SOT- 23-THIN	DDC	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

www.ti.com 19-Jul-2018



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TLV6713DDCR	SOT-23-THIN	DDC	6	3000	195.0	200.0	45.0	
TLV6713DDCT	SOT-23-THIN	DDC	6	250	195.0	200.0	45.0	

DDC (R-PDSO-G6)

PLASTIC SMALL-OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-193 variation AA (6 pin).

DDC (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.