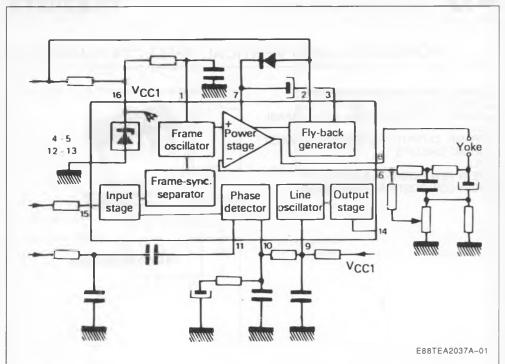


TEA2037A

HORIZONTAL AND VERTICAL DEFLECTION MONITOR

- DIRECT LINE DARLINGTON DRIVE
- DIRECT FRAME-YOKE DRIVE (± 1A)
- COMPOSITE VIDEO SIGNAL INPUT CAPABI-LITY
- FRAME OUTPUT PROTECTION AGAINST SHORT CIRCUITS
- PLL
- VERY FEW EXTERNAL COMPONENT
- VERY LOW COST POWER PACKAGE


Frame osc.		0	16	Vcc1
Flyback generator supply	22		15	Video input
Frame fly-back	23		14	Line ouput
GND	4		13	GND
GND	05		12	GND
Inv. input	6		11	Line fly-back
Frame power supply	07		10	Phase detecto
Frame output	28		90	Line osc.

DESCRIPTION

The TEA2037A is an horizontal and vertical deflection circuit. It uses the same concept as the TEA2017 but optimised for small screens, for a very low cost solution.

January 1989

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VCC1	Supply Voltage	30	V
V2	Flyback Generator Supply Voltage	35	V
V7	Frame Power Supply Voltage	60	V
l8nr	Frame Output Current (non repetitive)	± 1.5	A
18	Frame Output Current (continuous)	± 1	A
V14	Line Output Voltage (external)	60	V
lp14	Line Output Peak Current	0.8	A
IC14	Line Output Continuous Current	0.4	A
Tstg	Storage Temperature	-40, + 150	°C
Tj	Max Operating Junction Temperature	150	°C

THERMAL DATA

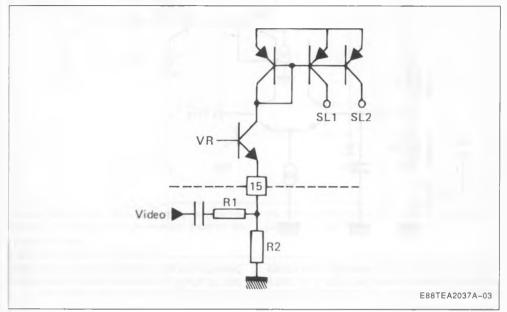
Rth (j-c)	Max Junction-case Thermal Resistance	15	°C/W
Rth (j-a)	Typical Junction-ambient Thermal Resistance (soldered on a 35µm thick 45cm2 PC board copper aera)	45	°C/W
T	Max Recommended Junction Temperature	120	°C

ELECTRICAL CHARACTERISTICS $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter		Min.	Typ.	Max.	Unit
	Supply (shunt regulator)	Pin 16				
ICC1 VCC1 ΔVCC1 LPS	Supply Current Supply Voltage (ICC1 = 15mA) Voltage Variation (ICC1 : 10mA \rightarrow 20mA) Starting Threshold for Line Output Pulses		10 9 - 280	9.8 50	20 10.5 + 280 5	mA V mV V
	Video Input	Pin 15				
V15 MWF	Reference Voltage (I15 = - 1µA) Minimum Width of Frame Pulse (when synchronized with TTL signal)		1.4 50	1.75	2	V µs
	Line Oscillator	Pin 9				
LT9 HT9 BI9 DR9 FLP1 FLP2	Low Threshold Voltage High Threshold Voltage Bias Current Discharge Impedance Free Running Line Period $R = 34.9K\Omega$ Tied to VCC1 C = 2.2nF Tied to Ground Free Running Line Period		2.8 5.4 1.0 62	3.2 6.6 100 1.4 64 27	3.6 7.8 1.8 66	V V nA KΩ μs
0T9 ΔF Δθ				4.6 2		V Hz/°C
	Line Output	Pin 14				
LV14 OPW	Saturation Voltage (I14 = 200mA) Output Pulse Width (line period = 64µs)		20	1.1 22	1.6 24	V µs
	Line Flyback Input	Pin 11				
V11 Z11	Bias Voltage Input Impedance		1.8 4.5	2.4 5.8	3.2 8	ν ΚΩ
	Phase Detector	Pin 10				
110 RI10 LI10	Output Current During Synchro Pulse Current Ratio (positive/negative) Leakage Current		250 0.95 - 2	450 1	800 1.05 + 2	μA μA
CV10	Control Range Voltage		2.60		7.10	V

ELECTRICAL CH	RACTERISTICS	(continued)
---------------	--------------	-------------

Symbol	Parameter		Min.	Тур.	Max.	Unit
	Frame Oscillator	Pin 1				
LT1	Low Threshold Voltage		1.6	2.0	2.3	V
HT1	High Threshold Voltage		2.6	3.1	3.6	V
BI1	Bias Current			30		nA
DR1	Discharge Impedance		300	470	700	Ω
FFP1	Free Running Frame Period		20.5	23	25	ms
	$R = 845K\Omega$ Tied to VCC1					
	C = 180nF Tied to Ground					
MFP	Minimum Frame Period (I15 = - 100µA)			12.8		ms
	With the Same RC					
FFP2	Free Running Frame Period			14.3		ms
	R = 408KΩ					
	C = 220nF					
FPR	Frame Period Ratio = FFP MFP		1.7	1.8	1.9	
FG	Frame Saw-tooth Gain Between Pin 1 and non Inverting the Frame Amplifier	Input of		- 0.4		
ΔF	Vertical Freq. Drift with Temperature (see application fig.	8)		4.10 ⁻³		Hz/°C
Δθ	ventear ried. Britt with reinperatore (see approator ig.	.0)		4.10		112 0
	Frame Power Supply	Pin 7		_		
V7	Operating Voltage (with flyback Generator)		10		58	V
17	Supply Current ($V7 = 30V$)				22	mA
	Flyback Generator Supply	Pin 2				
V2	Operating Voltage		10		30	V
	Frame Output	Pin 8				
	Saturation Voltage to Ground (V7 = 30V)					
LV8A	18 = 0.1A			0.06	0.6	V
LV8B	18 = 1A			0.37	1	V
	Saturation Voltage to V7 (V7 = 30V)					
HV8A	18 = -0.1A			1.3	1.6	V
HV8B	18 = -1A			1.7	2.4	V
	Saturation Voltage to V7 in Flyback Mode (V8 > V7)					
FV8A	18 = 0.1A			1.6	2.1	V
FV8B	18 = 1A			2.5	4.5	V
	Flyback Generator Pin 2 and	d Pin 3				
	* Flyback Transistor on					
	(output = high state)					
	V2 = 30V					
F2DA	V3/2 with $I_3 \rightarrow {}_2 = 0.1A$			1.5	2.1	V
F2DB	$I_3 \rightarrow 2 = 1A$			3.0	4.5	V
FSVA	V2/3 with $I_2 \rightarrow {}_3 = 0.1A$			0.8	1.1	V
FSVB	$I_2 \rightarrow _3 = 1A$			2.2	4.5	V
	 Flyback Transistor off 					
	(output = V7 - 8V)					
	V7 = V2 = 30V					
FCI	Leakage Current Pin 2				170	μΑ

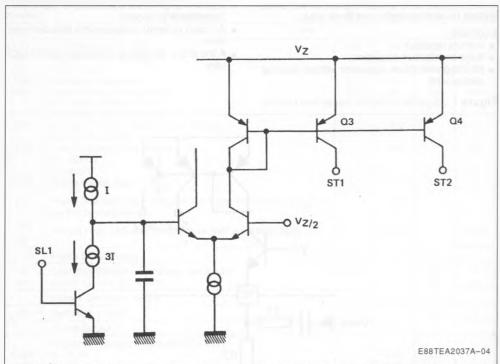

The TEA2037A performs all the video and power functions required to provide signals for the direct drive of the line darlington and frame yoke.

It contains :

- A shunt regulator
- A synchronization separator
- An integrated frame separator without external components

Figure 1 : Synchronization Separator Circuit.

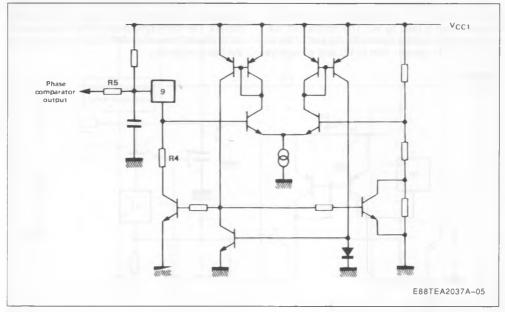
- A saw-tooth generator for the frame
- A power amplifier for direct drive of frame yoke (short circuit protected)
- An open collector output for the line darlington drive
- A line phase detector and a voltage control oscillator



The slice level of sync-separation is fixed by value of the external resistors R_1 and R_2 . V_R is an internally fixed voltage.

TEA2037A

Figure 2 : Frame Separator.



The sync-pulse allows the discharge of the capacitor by a 2 x I current. A line sync-pulse is not able to discharge the capacitor under $V_Z/2$. A frame sync

pulse permits the complete discharge of the capacitor, so during the frame sync-pulse Q3 and Q4 provide current for the other parts of the circuit.

Figure 3 : Line Oscillator.

The oscillator thresholds are internally fixed by resistors. The discharge of the capacitor depends on the internal resistor R4. The control voltage is applied on resistor R5.

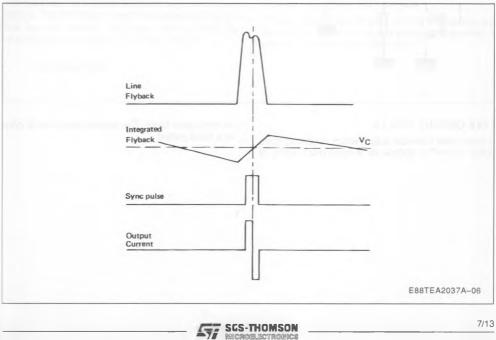
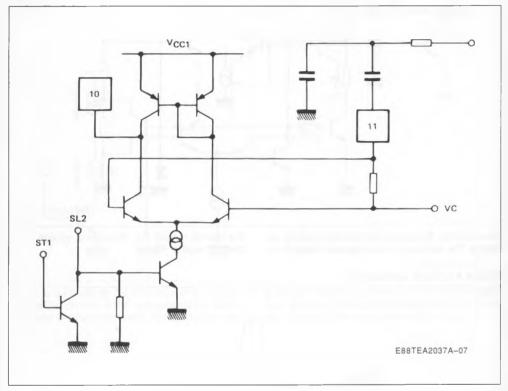



Figure 4 : Phase Comparator.

TEA2037A

The sync-pulse drives the current in the comparator. The line flyback integrated by the external network gives on pin 11 a saw tooth, the DC offset of this saw tooth is fixed by VC. The comparator output provides a positive current for the part of the signal on pin 11 greater than to VC and a negative current for the other part. When the line flyback and the video signal are synchronized, the output of the comparator is an alternatively negative and positive current. The frame sync-pulse inhibits the comparator to prevent frequency drift of the line oscillator on the frame beginning.

Figure 5.

LINE OUTPUT (PIN 14)

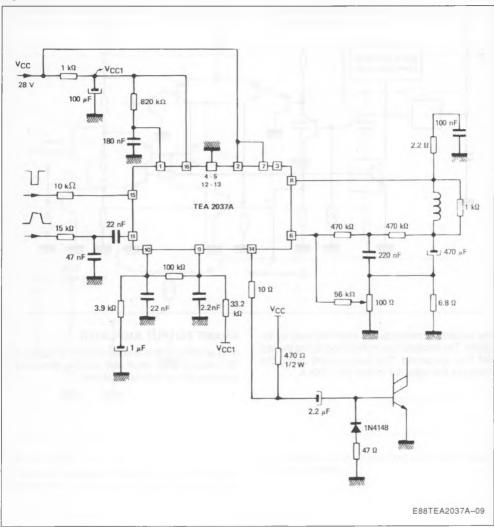
It is an open collector output which is able to drive pulse current of 800mA for a rapid discharging of

the darlington base. The output pulse time is 22 μs for a 64 μs period.

Figure 6 : Frame Oscillator.

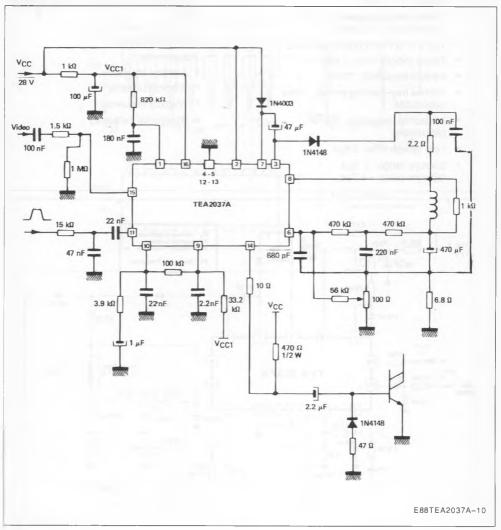
The oscillator thresholds are internally fixed by resistors. The oscillator is synchronized during the last half free run period. The input current during the charge of the capacitor is less than 100nA.

FRAME OUTPUT AMPLIFIER


This amplifier is able to drive directly the frame yoke. Its output is short circuit and overload protected ; it contains also a thermal protection.

TYPICAL APPLICATION FOR DISPLAY UNITS

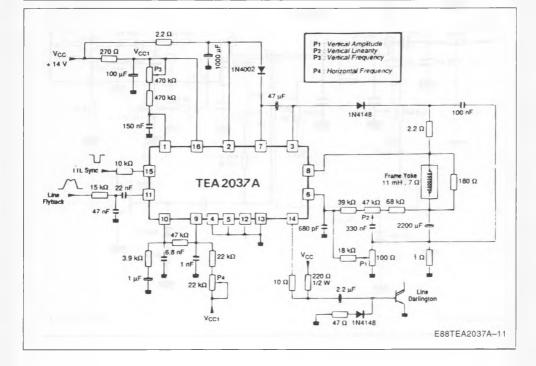
(without flyback generator and with TTL sync-pulse drive ; yoke : 72mH, 40Ω)



TYPICAL APPLICATION FOR DISPLAY UNITS

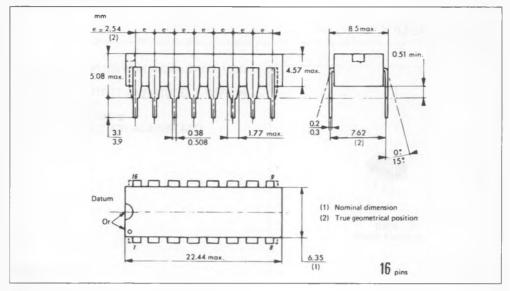
(with flyback generator and video drive ; yoke : 72mH, 40Ω)

Figure 8.



TYPICAL APPLICATION FOR HIGH FREQUENCY MONITOR

CHARACTERISTICS


- · Screen : 14" Colour
- Frame deflection yoke : 11mH, 7Ω, 750mA peak–to–peak
- V_{CC} = + 14V with flyback generator
- Frame flyback time : 0.6ms
- Vertical frequency : 72Hz
- Vertical free-running period : 16ms (adjustable)
- Horizontal frequency : 35kHz (adjustable)
- Line flyback time : 5.5µs
- Capture range : ± 5μs
 (@ sync pulse = 4.7μs)

- Input signal : negative TTL sync (line + frame)
- Dissipated power : 1.4W (heatsink required)
- Adjustments :
 - Vertical amplitude
 - Vertical Linearity
 - Vertical frequency
 - Horizontal frequency

PACKAGE MECHANICAL DATA

16 PINS - PLASTIC DIP

