

TDA8178F

TV VERTICAL DEFLECTION BOOSTER

ADVANCE DATA

- POWER AMPLIFIER
- FLYBACK SUPPLY VOLTAGE SEPARATED
- THERMAL PROTECTION
- REFERENCE VOLTAGE
- CURRENT LIMITED TO GND

DESCRIPTION

Designed for Monitors and high performance TVs, the TDA8178F vertical deflection booster is able to work with a flyback voltage more than the double of Vs.

The TDA8178F operates with supplies up to 50V, Flyback supply voltage up to 100V and provides up to 2App output current to drive to yoke.

The TDA8178F is offered in HEPTAWATT package.

BLOCK DIAGRAM

June 1989

TDA8178F

PIN CONNECTION (top view)

APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage (pin 2)	50	V
Vf	Flyback Supply Voltage	100	V
VF-VS	Difference between Flyback Supply Voltage and Supply Voltage	50	V
Vi, Vi	Amplifier Input Voltage	+ Vs	
lo	Output Peak Current (non repetitive, t = 2ms)	2	A
lo	Output Peak Current at f = 50 or 60Hz t \leq 10µs	2	A
Ιo	Output Peak Current at f = 50 or 60Hz t > 10µs	1.8	A
l ₃	Pin 3 Peak Flyback Current at f = 50 or 60Hz, $t_{fly} \le 1.5ms$	1.8	A
Ptot	Total Power Dissipation at T _{case} = 70°C	20	W
Tstg	Storage Temperature	- 40 to 150	°C
Ti	Junction Temperature	0 to 150	°C

THERMAL DATA

Rth J-C	Thermal Resistance Junction-case	Max	3	°C/W

ELECTRICAL CHARACTERISTICS

(refer to the test circuits, $V_s = 48V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
Vs	Operating Supply Voltage Range		10		48	V	
l ₂	Pin 2 Quiescent Current	$l_3 = 0$ $l_5 = 0$		10	20	mA	1a
l ₆	Pin 6 Quiescent Current	$l_3 = 0$ $l_5 = 0$		20	40	mA	1a
I ₁	Amplifier bias Current	$V_{1} = 1V$		- 0.2	- 1	μΑ	1a
V ₅	Quiescent Output Voltage	$V_s = 48V$ $R_a = 3.9K\Omega$		24.2		- V	1d
		$V_s = 35V$ $R_a = 5.6K\Omega$		17.5			
V _{5L}	Output Saturation Voltage to GND	I ₅ = 1A		1.2	1.5	V	1c
V _{5H}	Output Saturation Voltage to Supply	- I ₅ = 1A		2.2	2.6	V	1b
V _{D5-6}	Forward Voltage Diode between Pin 5-6	I _D = 1A		1.5		V	
V _{D3-6}	Forward Voltage Diode between Pin 3-6	I ₃ = 1A		2		V	
V ₇	Internal Reference		2.15	2.2	2.25	V	1a
$\Delta V_7 / \Delta V_s$	Reference Voltage Drift Versus V _s	V _s = 15 to 50V		1	2	mV/V	1a
Κ _T	Reference Voltage Drift Versus T _j	$K_{T} = \frac{\Delta V_{7}.10^{6}}{\Delta T_{j}.V_{7}}$ Tj = 0 to 125°C		100	150	ppm/°C	1a
R ₁	Input Resistance			200		KΩ	
Tj	Junction Temperature for Thermal Shutdown			140		°C	

TDA8178F

Figure 1 : DC Test Circuits.

Figure 1a : Measurement of I_1 ; I_2 ; I_6 ; V_7 ; $\Delta V_{7/\Delta}V_s$.

S1: (a) I2 and I8; (b) I1.

Figure 1b : Measurement of V5H.

Figure 1d : Measurement of V5.

SGS-THOMSON MICROELECTRONICS

70