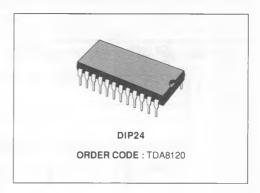
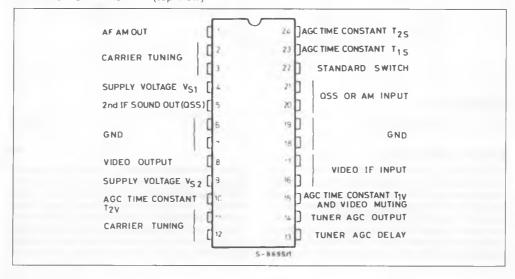


MULTISTANDARD VIDEO IF SYSTEM

- GAIN CONTROLLED IF AMPLIFIER
- VIF OPERATING FREQUENCY UP TO 50 MHz
- SYNCHRONOUS DETECTOR
- WHITE SPOT INVERTER
- VERY LOW DIFFERENTIAL ERROR
- VERY LOW PHASE ERROR
- INTERNAL AGC SWITCH (B/G L)
- AGC TOP. SYNCH. FOR STANDARD B/G
- AGC TOP WHITE FOR STANDARD L
- QUASI SPLIT SOUND FOR STANDARD B/G
- SOUND DETECTOR FOR STANDARD L
- VIDEO MUTING FACILITY
- SEPARATED SOUND OUTPUT
- OPERATES WITHOUT EXTERNAL GATING PULSE


DESCRIPTION

The TDA8120 is a monolithic IC for TV video IF and Sound IF amplification and demodulation that can operate with all the TV standards.


The Video IF section can handle negative (B/G) or positive (L) modulated video signals by means of DC switching.

The Sound IF section acts as a Quasi Split Sound (QSS) subsystem in B/G transmission and allows a second Sound IF with high rejection of the video information.

The DC switch can modify the Sound IF configuration to process AM modulated Sound signals (L). The TDA8120 is assembled in a 24 pin dual in line power package.


CONNECTION DIAGRAM (top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V ₄ V ₉	Supply Voltage V _s	15	V
18, 15, 11	Video Out, QSSout, AF AM Out, DC Output Current	10	mA
122, 115	Pin 22 and Pin 15 Input Current	1	mA
Ptot	Total Power Dissipation (T _{amb} = 70 °C)	2	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C
V ₁₄	Voltage at Pin 14	Vs	

TEST CIRCUIT

THERMAL DATA

Rith i-amb	Thermal Resistance	Max	40	°C/W

CIRCUIT OPERATION

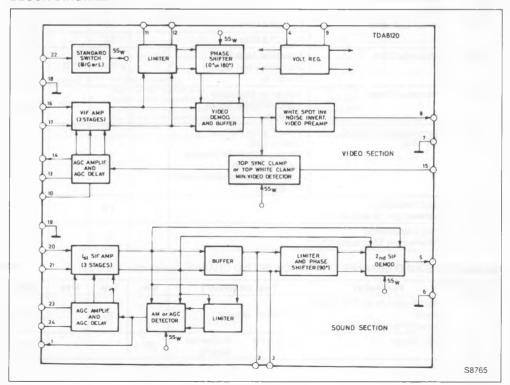
The TDA8120 (see block diagram) consists of a video section and a sound section. The integration of both sections on the same chip requires a high isolation at IF frequencies. This is achieved by physically separating the two sections, with separate power supplies and ground pins. In addition, special care has been taken in the choice of pad positions for the IF inputs and sound/video outputs.

The video section consists of three AC-coupled IF stages with more than 60 dB AGC range, flat amplitude/frequency response from 10 to 85 MHz and linearized phase slope from 30 to 50 MHz. Video carrier regeneration is performed by a tuned limiter. The carrier is then applied to the video demodulator through a special circuit which switches the carrier phase from 0 to 180° so that the video polarity can

be maintained constant when the standard switches from B/G to L. A noise inverter and a white spot inverter are included to eliminate ultra-black and white pulses.

A top sync or a top white clamping circuit and a minimum DC video component detector are implemented by two double comparators the characteristics of which may be controlled by an external control input to adapt to the modulation type for each standard. The voltage at the output of the two comparators is memorized by an external capacitor and used to drive the AGC network, which allows an input regulation of the video carrier from less than $100~\mu V$ to 100~mV. A delayed control storage with current output for the turner AGC completes the video section.

The sound section consists of three IF stages with the same characteristics as the video IF stages and an identical network to control and set the gains of the three IF amplifiers. The output of the third IF stage feeds the AM/AGC detector and the QSS section.


The AM/AGC detector consists of a wideband limiter for AM sound regeneration or video carrier regeneration used to feed the synchronous multiplier and consequently to obtain the AM demodulated audio signal. In addition, a DC voltage proportional to the peak-to-peak value of the video carrier is produced. Two comparators complete the sound AGC loop.

The subsequent QSS section consists of a reference amplifier tuned to the video IF which buffers a wideband limiter to reject completely the video AM information without introducing incidental phase modulation (IPM).

Following the limiter there are a 90° phase shifter and a linear-to-logarithmic converter which drives a linear multiplier as a demodulator for the intercarrier 2nd sound IF. This quadrature multiplier rejects all video components transmitted in DSB that is low frequency components of the video signal.

In addition to the sound and video sections, the TDA8120 includes a block for standard switching (B/G or L) controlled by a TTL-compatible input.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (V_s = 12 V, T_{amb} = 25 °C)

VIDEO IF SECTION $V_1 = 10 \text{ mV}_{rms}$ (black field), $F_0 = 38.9 \text{ MHz}$; unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 4 and pin 9)		10.8	12	13.2	V
Is	Supply Current	V _I = 0		120		mA
V _{8 H}	Top White Level	$V_1 = 0$ $R_L = 1.5 \text{ K}\Omega$		6		V
V ₈ L	Top Synchronous Level			3		V
V ₈	Video Output B/G	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		3		Vpp
V ₈	Video Output L	$R_L = 1.5 \text{ K}\Omega$ M = 100 %		3		V _{pp}
ΔV ₈	Video Output Variat, between Standards B/G and L	M = 100 %		± 2	10	%
- I ₈	Output Current	$R_L = 1.5 \text{ K}\Omega$		4		mA
18	Input Current		2			mA
114	Turner AGC Current Capability			10		mA
S/N	Signal to Noise Ratio	B = 5 MHz D = 90 %	50			dB
ΔV_1	AGC Range	$\Delta V_8 = 1 \text{ dB}$ D = 90 %	60			dB
В	Bandwidth	$\Delta V_8 = -3 \text{ dB}$ D = 90 %	7			MHz
V ₁₆₋₁₇	Input Sensitivity for Full Output Signal	D = 90 %		50		μV
V ₈	Carrier Leakages	F _o = 38.9 MHz		20		mV
		F _o = 77.8 MHz		50		mV
dG	Differential Gain	Subcarrier Modulated Staircase Video Signal D = 90 %			10	%
dφ	Differential Phase	Subcarrier Modulated Staircase Video Signal D = 90 %			10	degree
d _{IM}	Intermodulation Product 1.07 MHz	Video Carrier Relative Level = 0 dB Chroma Subcarrier Relative Level = - 3.2 dB Sound Carrier Relative Level = - 20 dB		50		dB
R _i	Input Resistance (between pin 16 and pin 17)			1.5		ΚΩ
Ci	Input Capacitance (between pin 16 and pin 17)			2		pF

QUASI SPLIT SOUND CHANNEL OR FRENCH SOUND CHANNEL (see notes 1 and 2)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V ₂₀₋₂₁	Input Sensitivity for Full Output Signal (between pin 20 and 21)	R Channel Missing		50		μV
ΔVi	AGC Range	$\Delta V_5 = 1 \text{ dB}$ R Channel Missing	60			dB

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V ₅	Output Voltage Standard B/G	$H_L = 600 \Omega$ AC Coupled $F_0 = 5.5 \text{ MHz}$		100		mVrms
V ₅	Output Voltage Standard B/G	$R_L = 600 \Omega$ $F_0 = 5.74 \text{ MHz}$ AC Coupled		50		mVrms
15	Output Current			2.5		mA
Z ₅	Small Signal Output Impedance (QSS)	$F_0 = 5.5 \text{ MHz or}$ $F_0 = 5.74 \text{ MHZ}$			50	ΚΩ
Ri	Input Resistance (between pin 21 and pin 20)			1.5		ΚΩ
Ci	Input Capacitance (between pin 21 and 20)			2		pF
S/N	Noise Ratio QSS (after SIF limitation and FM demodulation) F _o = 5.50 MHz F _o = 5.74 MHz	Channel R or Channel L Switched off $F_m = 1 \text{ kHz} \Delta_1 = \pm 30 \text{ kHz}$ Carrier Modulated with Syncs. Puises Only. CCIR 468–2 Recomendant.	60 58			dB dB
V ₁	Output Voltage Standard L			0.7		V _{rms}
L ₁	Output Current			2.5		mA
Z ₁	AF Output Impedance (L)				50	Ω
S/N	Noise Ratio AM Standard L	B _N = 20 KHz	46			dB
d	Distortion				3	%
V ₂₂	B/G Operation		2		5	V
V ₂₂	L Operation		0		0.8	V
V ₁₅	Video Muting		8		Vs	V

Notes: 1. QUASI SPLIT SOUND CHANNEL

Video carrier relative level = 0 dB

f= 38.9 MHz

Sound carrier relative level = -13 dB (mono or L) f = 33.4 MHz Sound carrier relative level = -20 dB (R) f = 33.16 MHz

f= 33.16 MHz

V₁ = 10 mV Video carrier modulated with syncs; V₂₂ = 2 V, unless otherwise specified.

2. FRENCH SOUND CHANNEL

 $V_1 = 10 \text{ mV}$ (Carrier level); $f_0 = 39.2 \text{ MHz}$; $F_m = 1 \text{ KHz}$; m = 80 %; $V_{22} = 0.8 \text{ V}$, unless otherwise specified