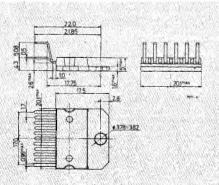


LINEAR INTEGRATED CIRCUIT

10 + 10W HIGH QUALITY STEREO AMPLIFIER

The TDA 2009 is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt[®] package, specially designed for high quality stereo applications as Hi-Fi TV and music centers. Its main features are:

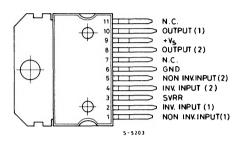
- High output power (10 + 10W min. @ d = 0.5%)
- High current capability (up to 3.5A)
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt[®] package.


ABSOLUTE MAXIMUM RATINGS

$\overline{V_s}$	Supply voltage	28	v
l _o	Output peak current (repetitive f ≥ 20 Hz)	3.5	Α
l _o	Output peak current (non repetitive, $t = 100 \mu s$)	4.5	Α
P _{tot}	Power dissipation at T _{case} = 90°C	20	W
T_{stg} , T_j	Storage and junction temperature	-40 to 150	°C

ORDERING NUMBER: TDA 2009

MECHANICAL DATA


Dimensions in mm



CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{th\ j-case}$	Thermal resistance junction-case	max	3	°C/W

Fig. 1 - Test circuit ($G_v = 36 \text{ dB}$)

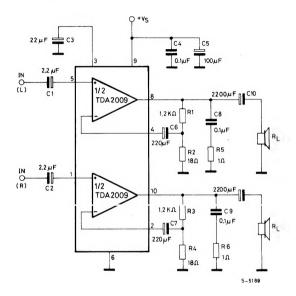
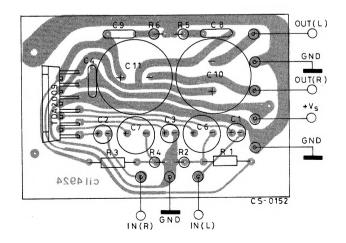



Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1:1 scale)

ELECTRICAL CHARACTERISTICS (Refer to the **stereo** application circuit, $T_{amb} = 25^{\circ}C$, $G_v = 36$ dB, unless otherwise specified)

Parameters		Tes	Test conditions		Min.	Тур.	Max.	Unit
Vs	Supply voltage			8		28	V	
v _o	Quiescent output voltage	V _s = 23V			11		V	
I _d	Total quiescent drain current	V _s = 23V			80	120	mA	
Po	Output power (each channel)	$ f = 40 \text{ Hz to } 16 \text{ KHz} $ $ d = 0.5\% $ $ V_{S} = 23V \qquad R_{L} = 4 \Omega $ $ R_{L} = 8 \Omega $ $ V_{S} = 18V \qquad R_{L} = 4 \Omega $ $ R_{L} = 8 \Omega $		10 5.5	12 7 7 4		w w w	
d	Distortion (each channel)				0.1 0.05		%	
СТ	Cross talk (°°°)	R _L = ∞		f = 1 KHz		60		dB
		R _g = 10 K	Ω	f = 10 KHz		50		dB
Vi	Input saturation voltage (rms)			300			m∨	
Ri	Input resistance	f = 1 KHz	f = 1 KHz non inverting input		70	200		ΚΩ
				inverting input		10		ΚΩ
fL	Low frequency roll off (-3 dB)	D 40				15		Hz
f _H	High frequency roll off (-3 dB)	$ R_L = 4\Omega$			80		KHz	
G _v	Voltage gain (open loop)	f = 1 KHz	f = 1 KHz			85		dB
G _v	Voltage gain (closed loop)	f = 1 KHz		35.5	36	36.5	dB	
ΔG _v	Closed loop gain matching					0.5		dB
e _N	Total input noise voltage	$R_g = 10 \text{ K}\Omega \text{ (°)}$ $R_g = 10 \text{ K}\Omega \text{ (°°)}$		_	1.5		μ∨	
)		2		μ∨
SVR	Supply voltage rejection (each channel)	R _g = 10 KΩ f _{ripple} = 100 Hz V _{ripple} = 0.5V			55		dB	
TJ	Thermal shut-down junction temperature				145		°c	

Fig. 3 - Output power vs. supply voltage

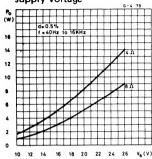


Fig. 4 - Output power vs. supply voltage

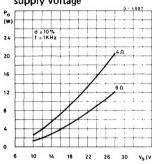


Fig. 5 - Distortion vs. output power

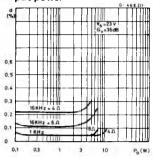


Fig. 6 - Distortion vs. frequency

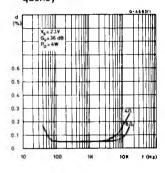


Fig. 7 - Quiescent current vs. supply voltage

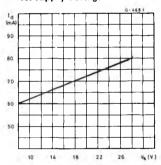


Fig. 8 Supply voltage rejection vs. value of capacitor C3

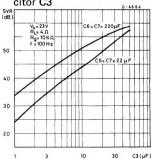


Fig. 9 - Supply voltage rejection vs. frequency

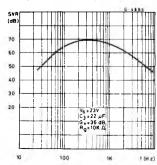


Fig. 10 - Total power dissipation an efficiency vs. output power

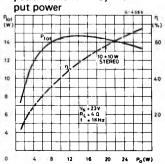
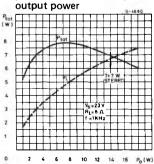



Fig. 11 - Total power dissipation and efficiency vs.

APPLICATION INFORMATION

Fig. 12 - Typical application circuit

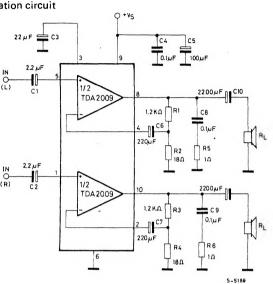


Fig. 13 - 10 + 10W stereo amplifier with tone balance and loudness control

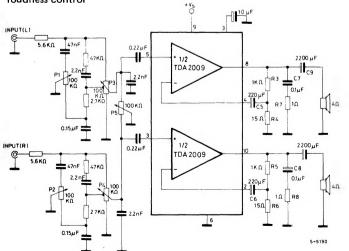
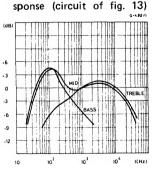
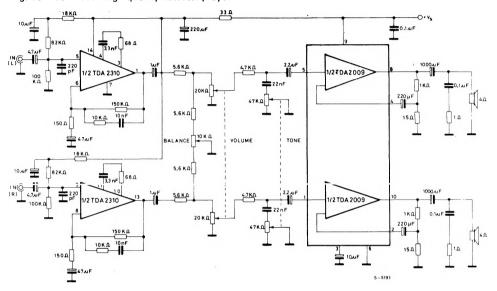
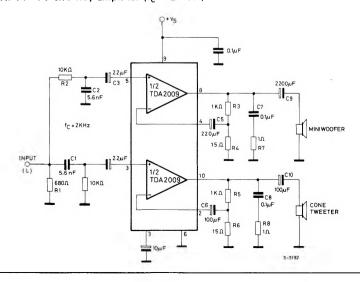
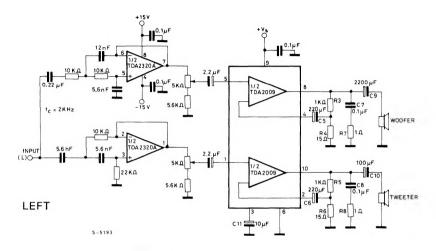



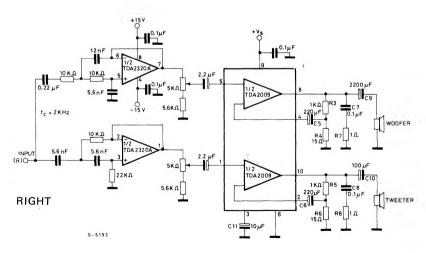
Fig. 14 - Tone control response (circuit of fig. 13)

APPLICATION INFORMATION (continued)

Fig. 15 - 10 + 10W high quality cassette player


Fig. 16 - 20W Hi-Fi TV two way amplifier ($f_c = 2 \text{ KHz}$)



APPLICATION INFORMATION (continued)

Fig. 17 - High quality 20 + 20W two way amplifier for stereo music center

APPLICATION INFORMATION (continued)

Fig. 18 - 18W bridge amplifier (d = 0.5%, $G_v = 42 \text{ dB}$)

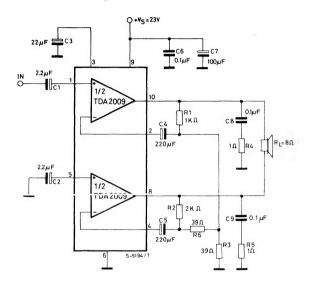
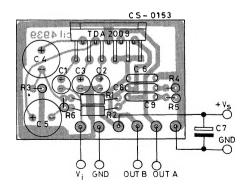
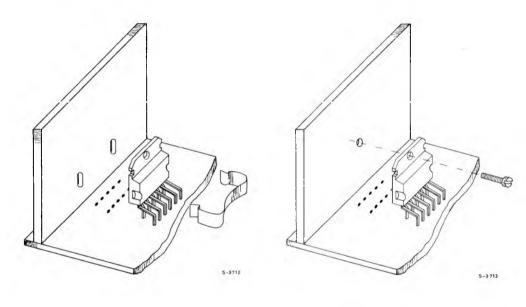



Fig. 19 - P.C. board and components layout of the circuit of fig. 18 (1:1 scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 12. Different values can be used; the following table can help the designer.


Component	Recomm. value	Purpose	Larger than	Smaller than
R1 and R3	1.2 ΚΩ		Increase of gain	Decrease of gain
R2 and R4	18 Ω	Close loop gain setting	Decrease of gain	Increase of gain
R5 and R6	1 Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	2.2 μF	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	22 μF	Ripple rejection	Better SVR. Increase of the switch-on time	Degradation of SVR.
C6 and C7	220 μF	Feedback Input DC decoupling.		
C8 and C9	0.1 μF	Frequency stability.		Danger of oscillation.
C10 and C11	1000 μF to 2200 μF	Output DC decoupling.		Higher low-frequency cut-off.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the MULTIWATT[®] package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 20 - Mounting examples

