SGS-THOMSON MICROELECTRONICS

TDA2008

12W AUDIO AMPLIFIER (Vs=22V, RL=4 Ω)

The TDA2008 is a monolithic class B audio power amplifier in Pentawatt[®] package designed for driving low impedance loads (down to 3.2Ω). The device provides a high output current capability (up to 3A), very low harmonic and crossover distortion.

In addition, the device offers the following features:

- very low number of external components;
- assembly ease, due to Pentawatt[®] power package with no electrical insulation requirements;

- space and cost saving;
- high reliability;
- flexibility in use;
- thermal protection.

ABSOLUTE MAXIMUM RATINGS

Vs	DC supply voltage	28	V
10	Output peak current (repetitive)	3	А
l _o	Output peak current (non repetitive)	4	Α
Ptot	Power dissipation at $T_{case} = 90^{\circ}C$	20	W
T_{stg}, T_j	Storage and junction temperature	-40 to 150	°C

TYPICAL APPLICATION CIRCUIT

TDA2008

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

DC TEST CIRCUIT

AC TEST CIRCUIT

SGS-THOMSON

TDA2008

THERMAL DATA				
R _{th j-case}	Thermal resistance junction-case			

max 3 °C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $V_s = 22V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage			10		28	v
Vo	Quiescent output voltage (pin 4)				10.5		V
ld	Quiescent drain current (pin 5)				65	115	mA
Po	Output power	d = 10%	R_= 8Ω		8		w
		f = 1 KHz	R _L = 4Ω	10	12		W
V _i (RMS)	Input saturation voltage			300			mV
Vi	Input sensitivity	$f = 1 \text{ KHz}$ $P_{o} = 0.5W$ $P_{o} = 8W$ $P_{o} = 0.5W$ $P_{o} = 12W$	$R_{L} \approx 8\Omega$ $R_{L} \approx 8\Omega$ $R_{L} \approx 4\Omega$ $R_{L} = 4\Omega$		20 80 14 70		mV mV mV mV
8	Frequency response (-3 dB)	$P_o = 1W$ $R_L = 4\Omega$	-	4	0 to 15 0	00	Hz
d	Distortion	f = 1 KHz $P_0 = 0.05 \text{ to } 4W$ $P_0 = 0.05 \text{ to } 6W$	R _L = 8Ω R _L = 4Ω		0.12 0.12	1	% %
Ri	Input resistance (pin 1)	f = 1 KHz		70	150		KΩ
Gv	Voltage gain (open loop)		0.00		80		dB
Gv	Voltage gain (closed loop)	f = 1 KHz	R ^L = 8Ω	39.5	40	40.5	dB
eN	Input noise voltage				1	5	μV
IN	Input noise current	BW= 22Hz to 22 KHz			60	200	рА
SVR	Supply voltage rejection	$V_{ripple} = 0.5V$ $R_g = 10K\Omega$ $R_L = 4\Omega$	f = 100 Hz	30	36	-	dB

APPLICATION INFORMATION

Fig. 1 - Typical application circuit

Fig. 2 - P.C. board and component layout for the circuit of fig. 1 (1:1 scale)

Fig. 3 – 25W bridge configuration application circuit (°)

Fig. 4 - P.C. board and component layout for the circuit of fig. 3 (1:1 scale)

(°) The value of the capacitors C3 and C4 are different to optimize the SVR (Typ. = 40 dB)

Fig. 8 - Distortion vs. frequency

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 10 - Maximum allowable power dissipation vs. ambient temperature

PRACTICAL CONSIDERATIONS

Printed circuit board

The layout shown in Fig. 2 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows.

Assembly suggestion

No electrical insulation is needed between

the package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed 260° C for 12 seconds.

Application suggestions

The recommended component values are those shown in the application circuits of Fig. 1. Different values can be used. The following table is intended to aid the car-radio designer.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
C1	2.2µF	Input DC decoupling.		Noise at switch-on, switch-off.
C2	470µF	Ripple rejection.		Degradation of SVR.
C3	0.1µF	Supply bypassing.		Danger of oscillation.
C4	1000µF	Output coupling.		Higher low frequency cutoff.
C5	0.1µF	Frequency stability.		Danger of oscillation at high frequencies with inductive loads.
R1	(G _V -1) + R2	Setting of gain. (*)		Increase of drain current.
R2	2.2Ω	Setting of gain and SVR.	Degradation of SVR.	
R3	1Ω	Frequency stability.	Danger of oscillation at high frequencies with inductive loads.	

(*) The closed loop gain must be higher than 26dB.