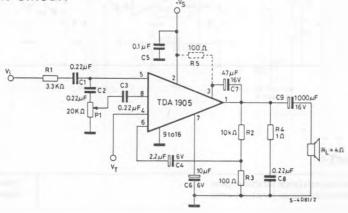

5W AUDIO AMPLIFIER WITH MUTING

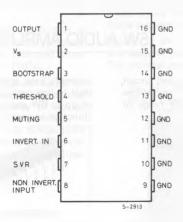
The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets:

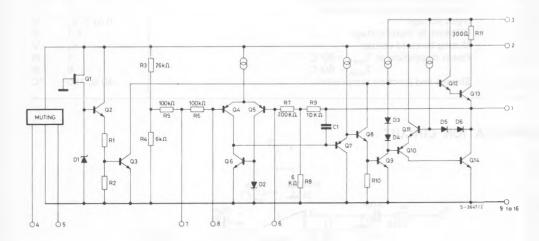
- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise
- voltage range 4V to 30V

The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same


assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6W and a thermal resistance of 15°C/W (junction to pins).

ABSOLUTE MAXIMUM RATINGS

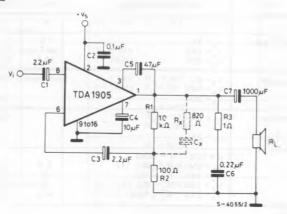

V _s	Supply voltage	30	V
l _o	Output peak current (non repetitive)	3	Α
I _o	Output peak current (repetitive)	2.5	Α
Vi	Input voltage	$0 \text{ to} + V_s$	V
Vi	Differential input voltage	± 7	V
V ₁₁	Muting thresold voltage	V,	V
P _{tot}	Power dissipation at T _{amb} = 80°C	1	W
	$T_{case} = 60^{\circ}C$	6	W
T_{stg}, T_j	Storage and junction temperature	-40 to 150	°C



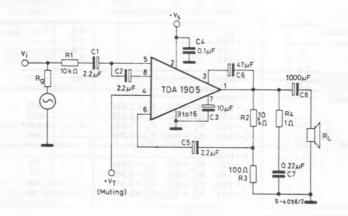
CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM



THERMAL DATA


R _{thj-case} R _{thj-amb}	Thermal resistance junction-pins Thermal resistance junction-amb	max max		°C/W
---	--	------------	--	------

TEST CIRCUITS:

WITHOUT MUTING

WITH MUTING FUNCTION

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25^{\circ}C$, R_{th} (heatsink) = $20^{\circ}C/W$, unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Uni
Vs	Supply voltage		4		30	V
V _o	Quiescent output voltage	V ₅ = 4V V ₅ = 14V V ₅ = 30V	1.6 6.7 14.4	2.1 7.2 15.5	2.5 7.8 16.8	V
¹ d	Quiescent drain current	V _s = 4V V _s = 14V V _s = 30V		15 17 21	35	mA
V _{CE sat}	Output stage saturation voltage	I _C = 1A I _C = 2A		0.5		V
Po	Output power		2.2 5 5 4.5	2.5 5.5 5.5 5.3		w
d	Harmonic distortion			0.1 0.1 0.1 0.1		%
V _I	Input sensitivity			37 49 73 100		mV
Vi	Input saturation voltage (rms)	V _s = 9V V _s = 14V V _s = 18V V _s = 24V	0.8 1.3 1.8 2.4			V
Ri	Input resistance (pin 8)	f = 1KHz	60	100		ΚΩ
l _d	Drain current			380 550 410 295		mA
η	Efficiency			73 71 74 75		%

^(*) With an external resistor of 100Ω between pin 3 and $+V_s$.

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BW	Small signal bandwidth (-3dB)	V _S = 14V R _L = 4Ω P _O = 1W	4	40 to 40,000		Hz
G _v	Voitage gain (open loop)	V _s = 14V f = 1KHz		75		dB
G _v	Voltage gain (closed loop)	$V_s = 14V$ $R_L = 4\Omega$ $f = 1 \text{ KHz}$ $P_0 = 1 \text{ W}$	39.5	40	40.5	dB
eN	Total input noise	$R_0 = 50\Omega$ $R_0 = 1K\Omega$ $R_0 = 10K\Omega$	(°)	1.2 1.3 1.5	4.0	μ∨
		$\begin{array}{c} R_g = 50\Omega \\ R_g = 1K\Omega \\ R_g = 10K\Omega \end{array}$	20)	2.0 2.0 2.2	6.0	μ∨
S/N	Signal to noise ratio] 0 9	(°)	90 92		dB
		$R_L = 4\Omega$ $R_q = 10K\Omega$ $R_g = 0$	o)	87 87		dB
SVR	Supply voltage rejection	$V_s = 18V R_L = 8\Omega$ $f_{ripple} = 100 \text{ Hz}$ $V_{ripple} = 0.5 \text{Vrms}$ $R_g = 10 \text{ K}$	Ω 40	50		dB
T _{sd}	Thermal shut-down case temperature	P _{tot} = 2.5W		115		°C

MUTING FUNCTION

V _{TOFF}	Muting-off threshold voltage (pin 4)		1.9		4.7	V
V _{TON}	Muting-on threshold voltage (pin 4)		0		1.3	v
			6.2		Vs	V
R ₅	Input resistance (pin 5)	Muting off	80	200		ΚΩ
		Muting on		10	30	Ω
R ₄	Input resistance (pin 4)		150			ΚΩ
A _T	Muting attenuation	$R_g + R_1 = 10K\Omega$	50	60		dB

Note:

Weighting filter = curve A. Filter with noise bandwidth: 22 Hz to 22 KHz. See fig. 30 and fig. 31

Fig. 1 - Quiescent output voltage vs. supply voltage

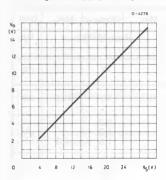


Fig. 2 - Quiescent drain current vs. supply voltage

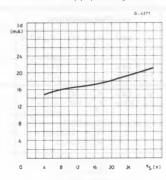


Fig. 3 - Output power vs. supply voltage

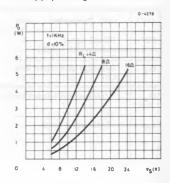


Fig. 4 - Distortion vs. output power ($R_L = 16\Omega$)

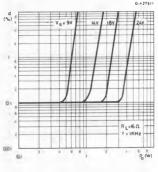


Fig. 5 – Distortion vs. output power ($R_L = 8\Omega$)

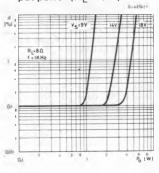


Fig. 6 - Distortion vs. output power ($R_L = 4\Omega$)

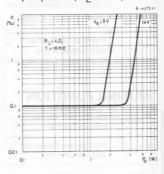


Fig. 7 - Distortion vs. frequency ($R_L = 16\Omega$)

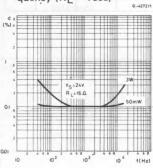


Fig. 8 - Distortion vs. frequency ($R_L = 8\Omega$)

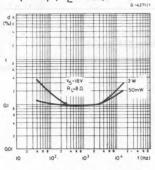


Fig. 9 - Distortion vs. frequency ($R_L = 4\Omega$)

Fig. 10 - Open loop frequency response

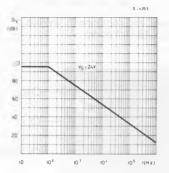


Fig. 11 - Output power vs. input voltage

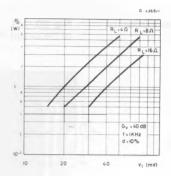


Fig. 12 - Value of capacitor Cx vs. bandwidth (BW) and gain (Gv)

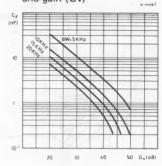


Fig. 13 - Supply voltage rejection vs. voltage gain (ref. to the Muting circuit)

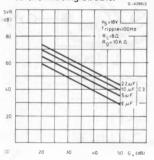


Fig. 14 - Supply voltage rejection vs. source resistance

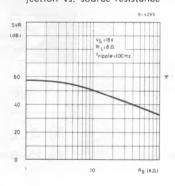


Fig. 15 - Max power dissipation vs. supply voltage (sine wave operation)

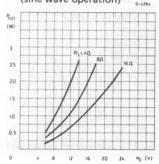


Fig. 16 - Power dissipation and efficiency vs. output power

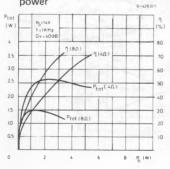


Fig. 17 - Power dissipation and efficiency vs. output

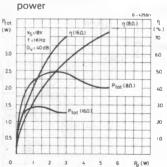
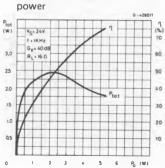
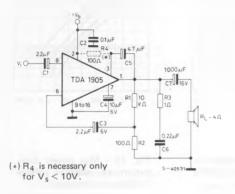




Fig. 18 - Power dissipation and efficiency vs. output

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting

$$P_o = 5.5W (d = 10\%)$$

 $V_s = 14V$
 $I_d = 0.55A$
 $G_v = 40 dB$

Fig. 20 - PC board and components lay-out of the circuit of fig. 19 (1:1 scale)

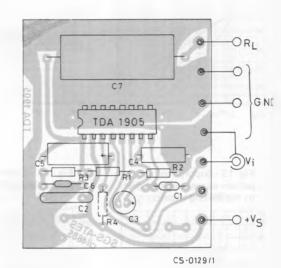


Fig. 21 - Application circuit with muting

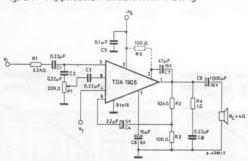
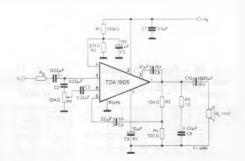



Fig. 22 - Delayed muting circuit

APPLICATION INFORMATION (continued)

Fig. 23 - Low-cost application circuit without bootstrap.

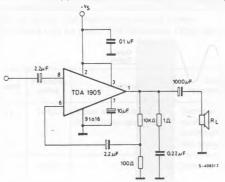


Fig. 24 – Output power vs. supply voltage (circuit of fig. 23)

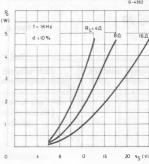


Fig. 25 - Two position DC tone control using change of pin 5 resistance (muting function)

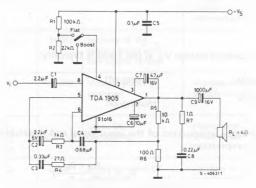


Fig. 26 - Frequency response of the circuit of fig. 25

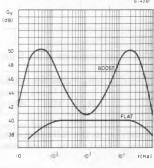


Fig. 27 - Bass Bomb tone control using change of pin 5 resistance (muting function)

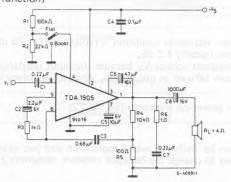
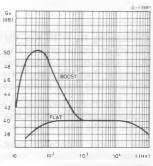




Fig. 28 - Frequency response of the circuit of fig. 27

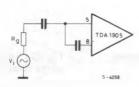
MUTING FUNCTION

The output signal can be inhibited applying a DC voltage V_T to pin 4, as shown in fig. 29

Fig. 29

The input resistance at pin 5 depends on the threshold voltage V_T at pin 4 and is typically:

$$R_5 = 200 \text{ K}\Omega \text{ @ } 1.9\text{V} \leq \text{V}_T \leq 4.7\text{V}$$


muting-off

$$R_5 = 10\Omega$$
 @

$$R_5 = 10\Omega \qquad @ \qquad \begin{array}{ll} 0V \leqslant V_T \leqslant 1.3V \\ 6V \leqslant V_T \leqslant V_s \end{array}$$

muting-on

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression:

$$A_{T} = \frac{V_{i}}{V_{8}} = \frac{R_{g} + (\frac{R_{8} \cdot R_{5}}{R_{8} + 5})}{(\frac{R_{8} \cdot R_{5}}{R_{8} + R_{5}})}$$

where $R_8 \cong 100 \text{ K}\Omega$

Considering $R_0 = 10 \text{ K}\Omega$ the attenuation in the muting-on condition is typically $A_T = 60 \text{ dB}$. In the muting-off condition, the attenuation is very low, tipically 1.2 dB.

A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 4 is greater than 150 K α . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier power-on transients (see fig. 22)
- during switching at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many application and two examples are shown in fig. 25 and 27, where it has been used to change the feedback network, obtaining 2 different frequency response.

APPLICATION SUGGESTION

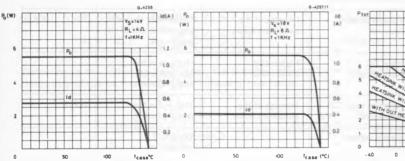
The recommended values of the external components are those shown on the application circuit of fig. 21. When the supply voltage V_s is less than 10V, a 100Ω resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

Component Raccom.		Purpose	Larger than recommended value	Smaller than recommended value	Allowe Min.	d range Max.
R ₉ + R ₁	10ΚΩ	Input signal imped. for muting operation	Increase of the atte- nuation in muting-on condition. Decrease of the input sensitivity.	Decrease of the attenuation in muting on condition.		
R ₂	10ΚΩ	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	9 R ₃	
R ₃	100Ω	- reedback resistors	Decrease of gain.	Increase of gain.		1ΚΩ
R ₄	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R ₅	100Ω	Increase of the output swing with low supply voltage.			47	330
Ρ ₁	20ΚΩ	Volume poten- tiometer	Increase of the switch-on noise.	Decrease of the input impedance and of the input level.	10ΚΩ	100Ks
C ₁ C ₂ C ₃	0.22 μF	Input DC decoupling.	Higher cost lower noise.	Higher low fre- quency cutoff, Higher noise		
C ₄	2.2μF	Inverting input DC decoupling.	Increase of the switch-on noise.	Higher low fre- quency cutoff.	0.1μF	
C ₅	0.1μF	Supply voltage bypass.		Danger of oscillations.		
C ₆	10 μF	Ripple rejection	Increase of SVR increase of the switch-on time	Degradation of SVR	2.2 μF	100 μΕ
C ₇	47μF	Bootstrap.		Increase of the distor- tion at low fre- quency.	10μF	100μF
Cg	0.22μF	Frequency stability.		Danger of oscillation.		
C ₉	1000 μF	Output DC decoupling.		Higher low fre- quency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:


- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T₁ cannot be higher than 150°C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
 If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption.

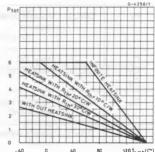

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 30 - Output power and drain current vs. case temperature.

Fig. 31 – Output power and drain current vs. case temperature

Fig. 32 - Maximum allowable power dissipation vs. ambient temperature.

MOUNTING INSTRUCTION: See TDA1904