

4W AUDIO AMPLIFIER

- HIGH OUTPUT CURRENT CAPABILITY (UP TO 2A)
- PROTECTION AGAINST CHIP OVERTEM-PERATURE
- LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- SUPPLY VOLTAGE RANGE: 4V TO 20V

The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended for use as low-

frequency power amplifier in wide range of applications in portable radio and TV sets.

ABSOLUTE MAXIMUM RATINGS

Vs	Supply voltage	20	V
10	Peak output current (non repetitive)	2.5	A
10	Peak output current (repetitive	2	Α
Ptot	Total power dissipation at $T_{amb} = 80^{\circ}C$	1	W
101	at $T_{plps} = 60^{\circ}C$	6	W
T_{stg}, T_{J}	Storage and junction temperature	-40 to 150	°C

TEST AND APPLICATION CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-case}	Thermal resistance junction-pins	max	15	°C/W
R _{th l-amb}	Thermal resistance junction-ambient	max	70	°C/W
in j-anib				

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T_{amb} = 25°C, R_{th} (heatsink) = 20°C/W, unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage		4		20	V
Vo	Quiescent output voltage	$V_s = 4V$ $V_s = 14V$		2.1 7.2		v
۱ _d	Quiescent drain current	$V_s = 9V$ $V_s = 14V$		8 10	15 18	mA
Po	Output power		1.8 4 3.1 0.7	2 4.5		w
d	Harmonic distortion	$f = 1 \text{ KHz}$ $V_{a} = 9V \qquad \text{R}_{L} = 4\Omega$ $P_{o} = 50 \text{ mW to } 1.2W$		0.1	0.3	%
Vi	Input saturation voltage (rms)	$V_s = 9V$ $V_s = 14V$	0.8 1.3			V
Ri	Input resistance (pin 8)	f = 1 KHz	55	150		KΩ
η	Efficiency		v	70 65		%
BW	Small signal bandwidth (-3 dB)	$V_s = 14V$ $R_L = 4\Omega$	4	40 to 40,000		Hz
Gv	Voltage gain (open loop)	V _s = 14V f = 1 KHz		75		dB
Gv	Voltage gain (closed loop)	V _s = 14V R _L = 4Ω f = 1 KHz P _o = 1W	39.5	40	40.5	dB
e _N	Total input noise	$ \begin{array}{l} R_{g} = 50\Omega \\ R_{g} = 10 \ K\Omega \end{array} \tag{\circ} $		1.2 2	4	μV
		$R_{g} = 50\Omega$ $R_{g} = 10 K\Omega$ (°°)		2 3		μV
SVR	Supply voltage rejection	$V_s = 12V$ $f_{ripple} = 100 \text{ Hz}$ $R_g = 10 \text{ K}\Omega$ $V_{ripple} = 0.5 \text{ Vrms}$	40	50		dB
T _{sd}	Thermal shut-down case temperature	P _{tot} = 2W		120		°C

Note:

(°) Weighting filter = curve A. (°°) Filter with noise bendwidth: 22 Hz to 22 KHz.

Fig. 2 - P.C. board and components layout of fig. 1 (1: 1 scale)

4/8

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 1.

When the supply voltage V_S is less than 6V, a 68Ω resistor must be connected between pin 2

and pin 3 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

	Recomm. value	Purpose	Larger than	Smaller than	Allowed range	
Components			recommended value	recommended value	Min.	Max.
R1	10 KΩ Increase of gain. Decrease of gain. Increase quiescent current.		9 R3			
R2	100 Ω	Feedback resistors	Decrease of gain.	Increase of gain.		1 ΚΩ
R3	4.7 Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R4	68 Ω	Increase of the output swing with low supply voltage.			39 Ω	220 Ω
C1	2.2 µF	Input DC decoupling.	Higher cost lower noise.	Higher low frequency cutoff. Higher noise.		
C2	0.1 µF	Supply voltage bypass.		Danger of oscillations.		
C3	22 µF	Ripple rejection	Increase of SVR increase of the switch-on time.	Degradation of SVR.	2.2 µF	100µF
C4	2.2 μF	Inverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	0.1 μF	
C5	47 μF	Bootstrap.		Increase of the distortion at low frequency.	10 µF	100µF
C6	0.22 µF	Frequency stability.		Danger of oscillation.		
C7	1000 µF	Output DC decoupling.		Higher low frequency cutoff.		

Fig. 6 – Distortion vs. output power

Fig. 7 – Distortion vs. output power

Fig. 10 - Distortion vs. output power

SGS-THOMSON

51.

Fig. 11 - Distortion vs. output power

6/8

Fig. 15 - Distortion vs. frequency

Fig. 16 - Supply voltage rejection vs. frequency

Fig. 17 – Total power dissipation and efficiency vs. output power

SGS-THOMSON

SI.

7/8

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- 1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_1 cannot be higher than 150° C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increase up to 150°C, the thermal shutdown simply reduces the power dissipation and the current consumption.

MOUNTING INSCTRUCTION

The TDA 1904 is assembled in the Powerdip, in which 8 pins (from 9 to 16) are attached to the frame and remove the heat produced by the chip.

Figure 21 shows a PC board copper area used as a heatsink (I = 65 mm).

The thermal resistance junction-ambient is 35°C.

