The TDA1515 is a monolithic integrated class-B output amplifier in a 13-lead single in-line (SIL) plastic power package. The device is primarily developed for car radio applications, and also to drive lowimpedance loads (down to 1.6 Ω). At a supply voltage Vp = 14.4 V, an output power of 21 W can be delivered into a 4 Ω BTL (Bridge Tied Load), or, when used as stereo amplifier, it delivers 2 x 11 W into 2 Ω or 2 x 6.5 W into 4 Ω .

Special features are:

- flexibility in use mono BTL as well as stereo
- high output power
- low offset voltage at the output (important for BTL)
- large usable gain variation
- very good ripple rejection

• internal limited bandwidth for high frequencies

TDA1515

- low stand-by current possibility (typ. 1 μA), to simplify required switches: TTL drive possible
- low number and small sized external components
- high reliability

The following currently required protections are incorporated in the circuit. These protections also have positive influence on reliability in the applications.

- load dump protection
- a.c. and d.c. short-circuit safe to ground up to Vp = 18 V
- thermal protection

- speaker protection in bridge configuration
- SOAR protection
- outputs short-circuit safe to ground in BTL
- reverse polarity safe

QUICK	REF	EREN	ICE	DATA
-------	-----	------	-----	------

Supply voltage range (operating)	Vp		6	to 18	V
Supply voltage (non-operating)	Vp	max.		28	V
Supply voltage (non-operating; load dump protection)	ν _P	max.		45	V
Repetitive peak output current	ORM	max.		4	Α
Total quiescent current	Itot	typ.		75	mΑ
Stand-by current	lsb	typ.		0	μA
Switch-on current	Iso	<		100	μA
Input impedance	Ž _i	>		1	MΩ
Bridge tied load application (BTL)	٧ _P	=	14.4	13.2	v
Output power at $R_{L} = 4 \Omega$ (with bootstrap)					
d _{tot} = 0.5%	Po	typ.	16	14	W
$d_{tot} = 10\%$	Po	typ.	21	18	W
Supply voltage ripple rejection; $R_S = 0 \Omega$; f = 100 Hz	RR	typ.	50	50	dB
D.C. output offset voltage between the outputs	∆V ₅₋ 9	<	50	50	mV
Stereo application					
Output power at d _{tot} = 10% (with bootstrap)					
$R_{L} = 4 \Omega$	Po	typ.	6.5	6	W
$R_{L} = 2 \Omega$	Po	typ.	11	10	W
Output power at d _{tot} = 0.5% (with bootstrap)	•				
$R_{L} = 4 \Omega$	Po	typ.	5	4.5	W
$R_{L} = 2 \Omega$	Põ	typ.	8	7.5	W
Channel separation	α	>	40	40	dB
Noise output voltage; $R_S = 10 k\Omega$; according to IEC curve-A	Vn	typ.	0.2	0.2	mV

PACKAGE OUTLINE 13-lead SIL; plastic power (SOT-141B).

Fig. 1 Internal block diagram; the heavy lines indicate the signal paths.

TDA1515

RATINGS

Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Supply voltage; operating (pin 10)	VP	max.	18	v
Supply voltage; non-operating	VP	max.	28	v
Supply voltage; during 50 ms (load dump protection)	VP	max.	45	V
Peak output current	юм	max.	6	Α
Total power dissipation	see derati	ng curve Fi	ig. 2	
Storage temperature range	т _{stg}	-55 to +	150	٥C
Crystal temperature	т _с	max.	150	°C
A.C. and d.c. short-circuit safe voltage		max.	18	V
Reverse polarity		max.	10	V

HEATSINK DESIGN EXAMPLE

The derating of 3 K/W of the encapsulation requires the following external heatsink (for sine-wave drive):

21 W BTL (4 Ω) or 2 x 11 W stereo (2 Ω) maximum sine-wave dissipation : 12 W

T_{amb} = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150 - 65}{12} - 3 = 4 \text{ K/W}.$$

2 x 6.5 W stereo (4 Ω) maximum sine-wave dissipation : 6 W T_{amb} = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150-65}{6} - 3 = 11 \text{ K/W}.$$

D.C. CHARACTERISTICS

Supply voltage range (pin 10)	VP		6 to 18	V
Repetitive peak output current	IORM	<	4	А
Total quiescent current	l _{tot}	typ.	75	mΑ
Switching level 11: OFF	V ₁₁	<	1.8	V
ON	V11	>	3	V
Impedance between pins 10 and 6; 10 and 8				
(stand-by position V_{11} < 1.8 V)	ZOFF	>	100	kΩ
Stond by current at $V_{cc} = 0$ to 0.8 V	1.	typ.	1	μA
	'sD	<	200	μA
Switch an autwart (rin 11) at $V_{11} \leq V_{12} \leq 10$		typ.	10	μA
Switch on current (pin 1) at $v_{11} \leq v_{10}$ (note 1)	'SO	<	100	μA

A.C. CHARACTERISTICS

 $T_{amb} = 25 \text{ °C}; V_P = 14.4 \text{ V}; f = 1 \text{ kHz}; unless otherwise specified}$

Bridge tied load application (BTL); see Fig. 3

Output power at $\mathbf{B}_{\mathbf{L}} = 4 \Omega$ (with bootstrap)			45.5	
$V_{\rm D} = 14.4 \text{ V} \cdot \text{d}_{+++} = 0.5\%$	Po	>	15.5	W
	• 0	typ.	16	W
14 - 14 + 100	0	>	20	W
$v_p = 14.4 v; d_{tot} = 10\%$	۲ ₀	typ.	21	W
V _P = 13.2 V; d _{tot} = 0.5%	Po	typ.	14	W
Vp = 13.2 V; d _{tot} = 10%	Po	typ.	18	W
Open loop voltage gain	Go	typ.	75	dB
Closed loop voltage gain (note 2)	G _c	typ.	40 (± 0.5)	dB
Frequency response at -3 dB (note 3)	В	20 Hz	to min. 20	kHz
Input impedance (note 4)	Z _i	>	1	MΩ
Noise input voltage (r.m.s. value) at f = 20 Hz to 20 kHz				
$R_{S} = 0 \Omega$	V _{n(rms)}	typ.	0.2	mν
B 10 HO	M	typ.	0.35	mν
$R_{S} = 10 \text{ ksz}$	vn(rms)	<	0.8	mV
R_S = 10 k Ω ; according to IEC 179 curve A	vn	typ.	0.25	mV
Supply voltage ripple rejection (note 5)		~	42	dB
f = 100 Hz	RR	tvn	50	dB
		typ.	50	uD
D.C. output offset voltage between the outputs	4V5-9	<	50	mν
Loudspeaker protection (all conditions)		typ.	2	mV
maximum d.c. voltage (across the load)	4V5-9	<	1	V
Power bandwidth; -1 dB; d _{tot} = 0.5%	В	3	30 Hz to 30	kHz

Stereo application; see Fig. 4				
Output power at d_{tot} = 10%; with bootstrap (note 6) Vp = 14.4 V; RL = 4 Ω	Po	> typ.	6 6.5	W W
V_{P} = 14.4 V; R _L = 2 Ω	Po	> typ.	10 11	W W
V _P = 13.2 V; R _L = 4 Ω	Po	typ.	6	W
Vp = 13.2 V; RL = 2 Ω	Po	typ.	10	w
Output power at d_{tot} = 0.5%; with bootstrap (note 6) V _P = 14.4 V; R _L = 4 Ω	Po	typ.	5	w
V _P = 14.4 V; R _L = 2 Ω	Po	typ.	8	W
$V_{P} = 13.2 \text{ V}; \text{ R}_{L} = 4 \Omega$	Po	typ.	4.5	W
Vp = 13.2 V; RL = 2 Ω	Po	typ.	7.5	W
Output power at $d_{tot} = 10\%$; without bootstrap VP = 14.4 V; RL = 4 Ω (notes 6, 8 and 9)	Po	typ.	5.5	w
Frequency response at -3 dB (note 3)	В	40 Hz to mi	n. 20	kHz
Supply voltage ripple rejection (note 5)	RR	typ.	50	dB
Channel separation; $R_S = 10 k\Omega$; f = 1 kHz	α	> typ.	40 50	dB dB
Closed loop voltage gain (note 7)	Gc	typ.	40	dB
Noise output voltage (r.m.s. value) at f = 20 Hz to 20 kHz R_S = 0 Ω	∨ _{n(rms)}	typ.	0.15	mV
R _S = 10 kΩ	V _{n(rms)}	typ.	0.25	mV
$R_S = 10 k\Omega$; according to IEC curve A	Vn	typ.	0.2	mV

Notes

- 1. The internal circuit impedance at pin 11 is $> 5 \text{ k}\Omega$ if $V_{11} > V_{10}$.
- 2. Closed loop voltage gain can be chosen between 32 and 56 dB (BTL), and is determined by external components.
- 3. Frequency response externally fixed.
- 4. The input impedance in the test circuit (Fig. 3) is typ. 100 k Ω .
- 5. Supply voltage ripple rejection measured with a source impedance of 0 Ω (maximum ripple amplitude: 2 V).
- 6. Output power is measured directly at the output pins of the IC.
- 7. Closed loop voltage gain can be chosen between 26 and 50 dB (stereo), and is determined by external components.
- 8. A resistor of 56 k Ω between pins 3 and 7 to reach symmetrical clipping.
- 9. Without bootstrap the 100 μ F capacitor between pins 5 and 6 (8 and 9) can be omitted. Pins 6, 8 and 10 have to be interconnected.

Fig. 4 Test/application circuit stereo.

^{1.} Belongs to power supply.