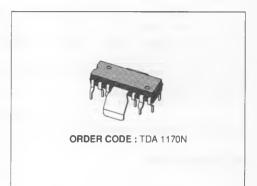
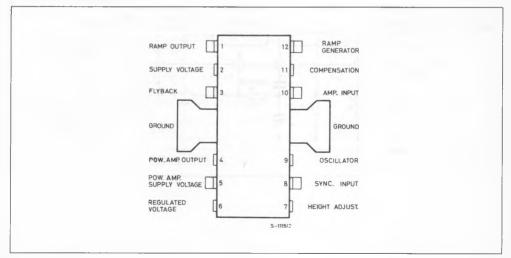
TDA1170N

LOW-NOISE TV VERTICAL DEFLECTION SYSTEM

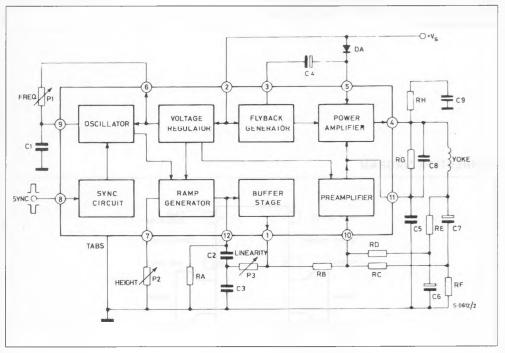

 COMPLETE VERTICAL DEFLECTION SYSTEM

SGS-THOMSON MICROELECTRONICS


- LOW NOISE
- SUITABLE FOR HIGH DEFINITION MONITORS

DESCRIPTION

The TDA 1170N is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise makes this device particularly suitable for use in monitors. The functions incorporated are : synchronization circuit, oscillator and ramp generator, high power gain amplifier, flyback generator, voltage regulator.


CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage at Pin 2	35	V
V4, V5	Flyback Peak Voltage	60	V
V10	Power Amplifier Input Voltage	{ + 10 - 0.5	V V
I _o	Output Peak Current (non repetitive) at t = 2 msec	2	A
I _o	output Peak Current at f = 50 Hz t ≤ 10 µsec	2.5	A
١.	Output Peak Current at f = 50 Hz t > 10 µsec	1.5	A
13	pin 3 DC Current at V4 < V2	100	mA
13	Pin 3 Peak to Peak Flyback Current for f = 50 Hz, t _{fly} ≤ 1.5 msec	1.8	A
I ₈	Pin 8 Current	± 20	mA
Ptot	Power Dissipation : at T _{ab} = 90 °C at T _{amb} = 80 °C (free air)	5 1	W
T _{stg} , T _i	Storage and Junction Temperature	- 40 to 150	°C

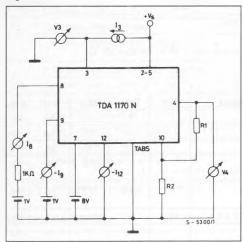
BLOCK DIAGRAM

THERMAL DATA

Rth j-tab	Thermal Resistance Junction-tab	Max	12	°C/W
Rth j-amb	Thermal Resistance Junction-ambient	Max	70	°C/W(°)

(*) Obtained with tabs soldered to printed circuit wth minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $V_S = 35 \text{ V}$, Tamb = 25 °C, unless otherwise specified)


DC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig
l ₂	Pin 2 Quiescent Current	l ₃ = 0		7	14	mA	1b
15	Pin 5 Quiescent Current	I ₄ = 0		8	17	mA	1b
- ₉	Oscillator Bias Current	V9 = 1 V		0.1	1	μA	1a
- I ₁₀	Amplifier Input Bias Current	V10 = 1 V		1	10	μA	1b
- l ₁₂	Ramp Generator Bias Current	V12 = 0		0.02	0.3	μA	1a
- I ₁₂	Ramp Generator Current	I ₇ = 20 μA V12 = 0	18.5	20	21.5	μA	1b
$\frac{\Delta I_{12}}{I_{12}}$	Ramp Generator Non-linearity	$\Delta V12 = 0 \text{ to } 12 \text{ V}$ I ₇ = 20 μA		0.2	1	%	1b
Vs	Supply Voltage Range		10		35	V	1
V1	Pin 1 Saturation Voltage to Ground	l ₁ = 1 mA		1	1.4	V	
V3	Pin 3 Saturation Voltage to Ground	l ₃ = 10 mA		300	450	mV	1a
V4	Qiuescent output Voltage	$V_{s} = 10 V \qquad R1 = 1 k\Omega$ R2 = 1 kΩ	4.1	4.4	4.75	V	1a
		$V_{s} = 35 V \qquad R1 = 3 k\Omega$ $R2 = 1 k\Omega$	8.3	8.8	9.45	V	1a
V4L	Output Saturation Voltage to Ground	$-1_4 = 0.1 A$		0.9	1.2	V	10
		$-1_4 = 0.8 \text{ A}$		1.9	2.3	V	10
V4H	Output Saturation Voltage to Supply	I ₄ = 0.1 A	_	1.4	2.1	V	10
		I ₄ = 0.8 A		2.8	3.2	V	1d
V6	Regulated Voltage at Pin 6		6.1	6.5	6.9	V	1 b
V7	Regulated Voltage at Pin 7	l ₇ = 20 μA	6.2	6.6	7	V	16
$\frac{\Delta V6}{\Delta V_s}$; $\frac{\Delta V7}{\Delta V_s}$	Regulated Voltage Drift with Supply Voltage	$\Delta Vs = 10 \text{ to } 35 \text{ V}$		1		mV/V	16
V10	Amplifier Input Reference Voltage		2.07	2.2	2.3	V	
R8	pin 8 Input Resistance	$V8 \leq 0.4 V$	1			MΩ	1a

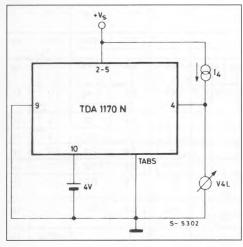
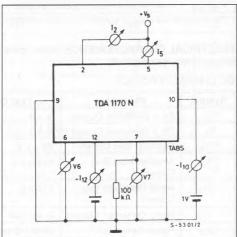
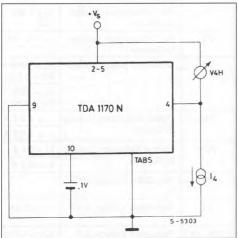
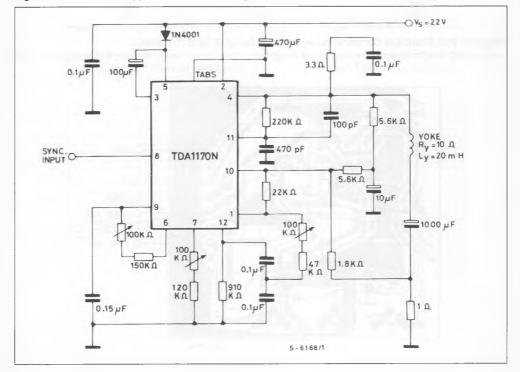

TDA1170N

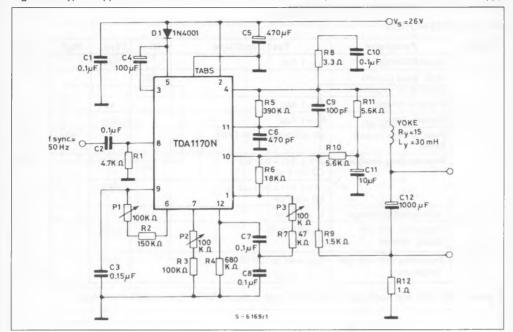
Figure 1 : DC Test Circuits.


Figure 1a.



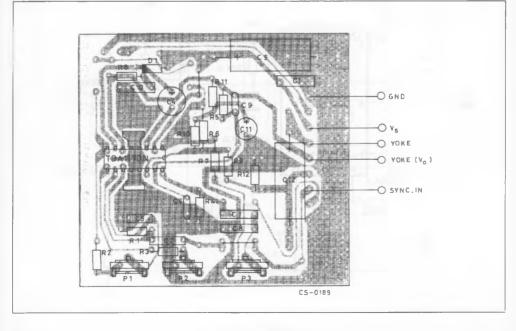


ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, $V_s = 22 V$; F = 50 Hz; T_{amb} = 25 °C, unless otherwise specified)

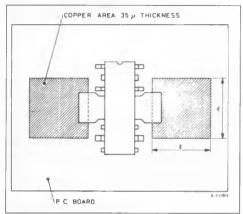

AC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Is	Supply Current	I _y = 1 App		140		mA
18	Sync. Input Current (positive or negative)		500			μA
V4	Flyback Voltage	I _y = 1 App		45		V
t _{fly}	Flyback Time	I _y = 1 App		0.7		ms
Von	Peak to Peak Output Noise	pin 9 Connected to GND			40	mVpp
fo	Free Running Frequency	(P1 + R1) = 300 kΩ C2 = 0.1 μF		42.2		Hz
		(P1 + R1) = 260 kΩ C2 = 0.1 μF		48.5		Hz
Δf	Sychronization Range	I ₈ = 0.5 mA	14			Hz
$\frac{\Delta f}{\Delta V_s}$	Frequency Drift with Supply Voltage	$V_{s} = 10 \text{ to } 35 \text{ V}$		0.005		Hz/V
Δf ΔT _{ab}	Frequency Drift with tab Temperature	T _{tab} = 40 to 120 °C		0.01		Hz/°C

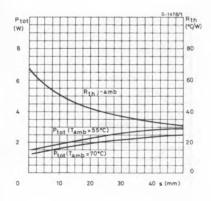
Figure 2 : AC Test and Application Circuit for Large Screen B/W TV Set 10 Ω/20 mH/1 App.



TDA1170N


MOUNTING INSTRUCTION

During soldering the tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.


The external heatsink or printed circuit copper area must be connected to electrical ground.

The junction to ambient thermal resistance can be reduced by soldering the tabs to a suitable copper

area of the printed circuit board (fig. 5) or to an external heatsink (fig. 6).

The diagram of fig. 7 shows the maximum dissipable power P_{tot} and the $R_{th\,j-amb}$ as a function of the side "e" of two equal square copper areas having a thicknessof 35 μ (1.4 mil).

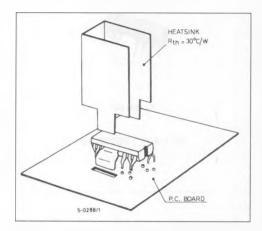
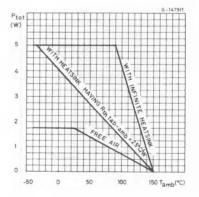



Figure 8 : Maximum Allowable Power Dissipation Versus Ambient Temperature.

