Signetics

Linear Products

DESCRIPTION

The TDA1023 is a bipolar integrated circuit for controlling triacs in the timeproportional or burst firing mode. It permits very precise temperature control of heating equipment and is especially suited to the control of panel heaters. The circuit generates positive-going trigger pulses and complies with the regulations on radio interference and mains distortion.

TDA1023 Time-Proportional Triac Trigger

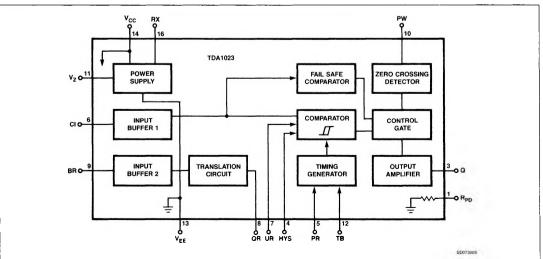
Product Specification

FEATURES

- Adjustable proportional range width
- Adjustable hysteresis
- Adjustable trigger pulse width
- Adjustable firing burst repetition time
- Control range translation facility
- Failsafe operation
- Supplied from the mains
- Provides supply for external temperature bridge

APPLICATIONS

- Triac control
- Temperature control
- Panel heater control


ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic DIP (SOT-38)	-20°C to +75°C	TDA1023N

PIN CONFIGURATION

TDA1023

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage, DC	16	V
16(AV) 16(RM) 16(SM)	Supply current average repetitive peak non-repetitive peak	30 100 2	mA mA A
VI	Input voltage, all inputs	16	v
I _{6; 7; 9; 10}	Input current, CI, UR, BR, PW input	10	mA
V	Voltage on RPD connection (Pin 1)	16	V
V3; 8; 11	Output voltage, Q, QR, VZ output	16	v
– ^I OH(AV) – ^I OH(M)	Output current average peak, max. 300 μs	30 700	mA mA
P _{TOT}	Total power dissipation	500	mW
T _{STG}	Storage temperature range	-65 to +150	°C
T _A	Operating ambient temperature range	-20 to +75	°C

DC ELECTRICAL CHARACTERISTICS V_{CC} = 11 to 16V; T_A = -20°C to +75°C, unless otherwise specified.

CYMDO:			LIMITS			
SYMBOL	PARAMETER	Min	Min Typ Max		UNIT	
Supply: V _{CC} a	nd RX (Pins 14 and 16)					
V _{CC} ∆V _{CC} /∆I ₁₆	Internally stabilized supply voltage at $I_{16}=10\text{mA}$ Variation with I_{16}	12	13.7 30	15	V mV/mA	
l ₁₆ l ₁₆	Supply current at $V_{16-13} = 11$ to 16V; $I_{10} = 1mA$; f = 50Hz; Pin 11 open; $V_{6-13} > V_{7-13}$; Pins 4 and 5 open Pins 4 and 5 grounded			6 7.1	mA mA	
Reference sup	pply output V_Z for external temperature bridge 0(Pin 1	1)				
V _{11 - 13}	Output voltage		8		v	
-l ₁₁	Output current			1	mA	
Control and re	eference inputs CI, BR, and UR (Pins 6, 9, and 7)					
V _{6 - 13}	Input voltage to inhibit the output		7.6		V	
l _{6; 7; 9}	Input current at V _i = 4V			2	μA	
Hysteresis cor	ntrol input HYS (Pin 4)					
$\begin{array}{c} \Delta V_6 \\ \Delta V_6 \end{array}$	Hysteresis, Pin 4 open Pin 4 grounded	9	20 320	40	mV mV	
Proportional ra	ange control input PR (Pin 5)					
$\begin{array}{c} \Delta V_6 \\ \Delta V_6 \end{array}$	Proportional range, Pin 5 open Pin 5 grounded	50	80 400	130	mV mV	
Pulse width co	ontrol input PW (Pin 10)					
tw	Pulse width at I _{10(RMS)} = 1mA; f = 50Hz	100	200	300	μs	
Firing burst re	petition time control input t _B (Pin 12)					
t _B /C _T	Firing burst repetition time, ratio to capacitor CT	320	600	960	ms/µF	

TDA1023

CYMDO:	~	LIMITS			
SYMBOL	PARAMETER	Min	Тур	Max	UNIT
Output of refe	erence buffer QR (Pin 8)	1			
V _{8 - 13} V _{8 - 13} V _{8 - 13}	Output voltage at input voltage V _{9 - 13} = 1.6V V _{9 - 13} = 4.8V V _{9 - 13} = 8V		3.2 4.8 6.4		v v v
Output Q (Pin	3)		•		
V _{OH}	Output voltage HIGH at -I _{OH} = 150mA	10			V
-loh	Output current HIGH			150	mA
Internal pull-de	own resistor R _{PD} (Pin 1)				
R _{PD}	Resistance to V _{EE}	1	1.5	3	kΩ

DC ELECTRICAL CHARACTERISTICS V_{CC} = 11 to 16V; T_A = -20°C to +75°C, unless otherwise specified

FUNCTIONAL DESCRIPTION

The TDA1023 generates pulses to trigger a triac. These trigger pulses coincide with the zero crossings of the mains voltage. This minimizes RF interference and transients on the mains supply. The trigger pulses come in bursts, with the net effect that the load is periodically switched on and off. This further minimizes mains pollution. The average power in the load is varied by varying the duration of the trigger pulse burst in accordance with the voltage difference between the control input CI and the reference input, either UR or BR.

Power Supply: V_{CC} , RX and V_Z (Pins 14, 16, and 11)

The TDA1023 is supplied from the AC mains via resistor R_D to the RX connection (Pin 16), while the V_{EE} connection (Pin 13) is connected to the neutral line (see Figure 5). A smoothing capacitor C_S has to be connected between the V_{CC} and V_{EE} connections.

The circuit contains a string of stabilizer diodes between the RX and V_{EE} connections that limit the DC supply voltage and a rectifier diode between the RX and V_{CC} connections (see Figure 1).

At Pin 11 the device provides a stabilized reference voltage V_Z for an external temperature sensing bridge.

The operation of the supply arrangement is as follows. During the positive half of the mains cycles the current through external voltage dropping resistor R_D charges the external smoothing capacitor C_S until RX reaches the stabilizing voltage of the internal stabilizer diodes. R_D should be chosen such that it can supply the current I_{CC} for the TDA1023 itself plus the average output current I_{3(AV)} plus the current required from the V_Z connection for an external temperature bridge, and recharge the smoothing capacitor C_S (see Figures 7 to 10). Any excess current

is bypassed by the internal stabilizer diodes. Note that the maximum rated supply current must not be exceeded.

During the negative half of the mains cycles, external smoothing capacitor $C_{\rm S}$ has to supply the sum of the currents mentioned above. Its capacitance must be high enough to maintain the supply voltage above the minimum specified limit.

Dissipation in resistor R_D is halved by connecting a diode in series (see Figures 2 and 7 to 10).

A further reduction of dissipation is possible by using a high-quality voltage dropping capacitor $C_{\rm D}$ in series with a resistor $R_{\rm SD}$ (see Figures 2 and 12). A suitable VDR connected across the mains provides protection of the TDA1023 and of the triac against mainsborne transients.

Control and Reference Inputs CI, BR and UR (Pins 6, 9, and 7)

For room temperature control (5°C to 30°C) the best performance is obtained by using the translation circuit. The buffered reference input BR (Pin 9) is used as a reference input, and the output of the reference buffer OR (Pin 8) is connected to the unbuffered reference input UR (Pin 7). In this arrangement, the translation circuit ensures that most of the potentiometer rotation can be used to cover the room temperature range. This provides an accurate temperature scale.

If the translation circuit is not required, the unbuffered reference input UR (Pin 7) is used as a reference input. The buffered reference input BR (Pin 9) must be connected to the reference supply output V_Z (Pin 11).

For proportional power control the unbuffered reference input UR (Pin 7) must be connected to the firing burst repetition time control input TB (Pin 12), and the buffered reference input BR (Pin 9), which is inactive now, must be connected to the reference supply output V_Z (Pin 11).

In all arrangements, the train of output pulses becomes longer when the voltage at the control input Cl (Pin 6) becomes lower.

Proportional Range Control Input PR (Pin 5)

With the proportional range control input PR open, the output duty factor changes from 0% to 100% by a variation of 80mV at the control input CI (Pin 6). For temperature control, this corresponds with a temperature difference of only 1k.

This range may be increased to 400mV, i.e., 5k, by connecting the proportional range control input PR (Pin 5) to ground. Intermediate values are obtained by connecting the PR input to ground via a resistor R5 (see Table 1).

Hysteresis Control Input HYS (Pin 4)

With the hysteresis control input HYS (Pin 4) open, the device has a built-in hysteresis of 20mV. For temperature control this corresponds with 0.25k.

Hysteresis is increased to 320mV, corresponding with 4k, by grounding HYS (Pin 4). Intermediate values are obtained by connecting Pin 4 to ground via a resistor R4. See Table 1 for a set of values for R4 and R5 giving a fixed ratio between hysteresis and proportional range.

Trigger Pulse Width Control Input PW (Pin 10)

The trigger pulse width may be adjusted to the value required for the triac by choosing the value of the external synchronization resistor R_S between the trigger pulse width control input PW (Pin 10) and the AC mains.

TDA1023

The pulse width is inversely proportional to the input current (see Figure 11).

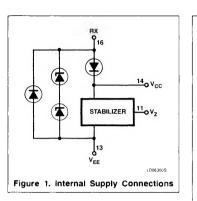
Output Q (Pin 3)

Since the circuit has an open-emitter output, it is capable of sourcing current; i.e., supplying a current out of the output. Therefore, it is especially suited for generating positive-going trigger pulses. The output is current-limited and protected against short-circuits. The maximum output current is 150mA and the output pulses are stabilized at 10V for output currents up to that value.

A gate resistor R_G must be connected between the output Q and the triac gate to limit the output current to the minimum required by the triac (see Figures 3 to 6). This minimizes the total supply current and the power dissipation.

Pull-Down Resistor R_{PD} (Pin 1)

The TDA1023 includes a 1.5Ω pull-down resistor R_{PD} between Pins 1 and 13 (V_{EE}, ground connection), intended for use with sensitive triacs.


Table 1. Adjustment of Proportional Range and Hysteresis. Combinations of Resistor Values Giving Hysteresis > ¼ Proportional Range

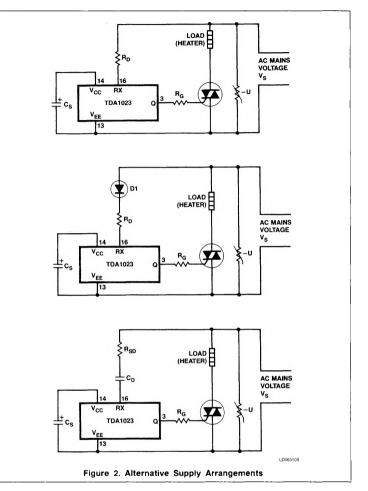
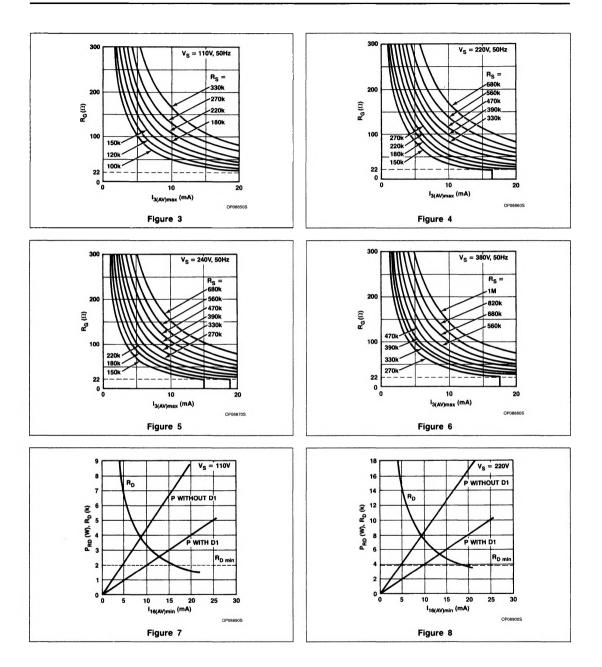
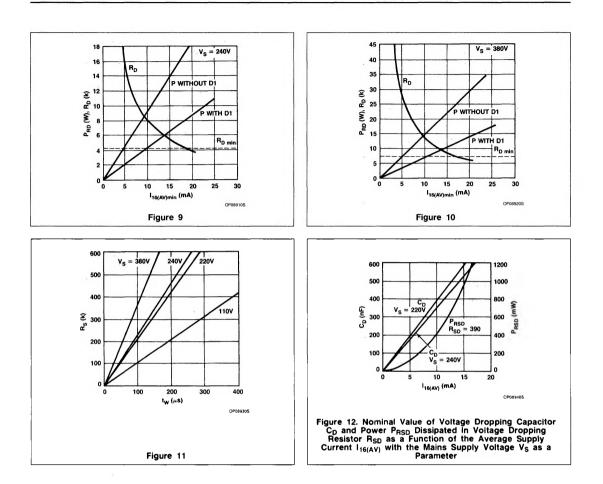
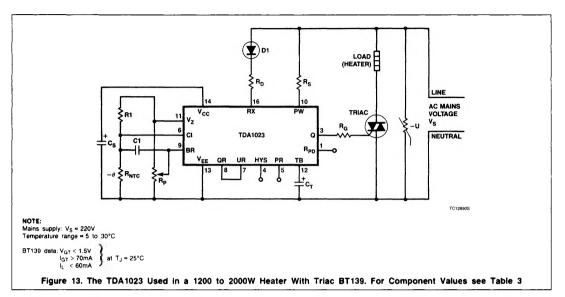

PROPORTIONAL RANGE (mV)	PROPORTIONAL RANGE RESISTOR R5 (kΩ)	MINIMUM HYSTERESIS (mV)	MAXIMUM HYSTERESIS RESISTOR R4 (kΩ)
80	Open	20	Open
160	3.3	40	9.1
240	1.1	60	4.3
320	0.43	80	2.7
400	0	100	1.8

Table 2. Timing Capacitor C_T Values (Electrolytic Capacitors)


	MARKED AC SPECIFICATION		
EFFECTIVE DC VALUE (μ F)	μF	v	
68	47	25	
47	33	40	
33	22	25	
22	15	40	
15	10	25	
10	6.8	40	


TDA1023

TDA1023



.....

Time-Proportional Triac Trigger

TDA1023

Table 3. Temperature Controller Component Values (see Figure 13	Table	3.	Temperature	Controller	Component	Values	(see	Figure	13
---	-------	----	-------------	------------	-----------	--------	------	--------	----

SYMBOL	PARAMETER	VALUE	REMARKS
tw	Trigger pulse width	75µs	See BT139 data sheet
Rs	Synchronization resistor	180kΩ	See Figure 11
RG	Gate resistor	110Ω	See Figure 4
I3(AV)	Maximum average gate current	4.1mA	See Figure 6
R4	Hysteresis resistor	NC	See Table 1
R5	Proportional band resistor	NC	See Table 1
I16(AV)	Minimum required supply current	11.1mA	
RD	Mains dropping resistor	6.2kΩ	See Figure 8
PRD	Power dissipated in RD	4.6W	See Figure 8
CT	Timing capacitor (eff. value)	68µF	See Table 2
VDR	Voltage-dependent resistor	250V _{AC}	Cat. no. 2322 593 62512
D1	Rectifier diode	BYW56	
R1	Resistor to Pin 11	18.7kΩ	1% tolerance
RNTC	NTC thermistor (at 25°C)	22kΩ	B = 4200k
			Сат. по. 2322 642 12223
Rp	Potentiometer	22kΩ	
CI	Capacitor between Pins 6 and 9	47nF	
Cs	Smoothing capacitor	220μ F ; 16V	
If R _D and D	of are replaced by C _D and R _{SD}		<u> </u>
CD	Mains dropping capacitor	470nF]
R _{SD}	Series dropping resistor	390Ω	
PRSD	Power dissipated in R _{SD}	0.6W	
VDR	Voltage-dependent resistor	250V _{AC}	Cat. no. 2322 594 62512