TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC9332F

Audio Digital Signal Processor

The TC9332F has a ROM area that holds application programs for digital filters such as equalizers, for dynamic range control of compressors, and for acoustic field control concert hall simulation. These application programs allow real-time digital processing of audio signals.

Thanks to 64 kbit of built- in data delay (audio field control) RAM, no external RAM is necessary and

the built-in voltage-controlled oscillator (VCO) allows easy phase-locked loop configuration.

Features

- 24 bit main bus
- The arithmetic operations block is as follows: Multiplier/adder: 24 bit × 16 bit + 43 bit → 43 bit Accumulator: 43 bit (code extension 4 bit) Logic operator: 24 bit (AND, OR, XOR, NOT) Work register: 32 bit, 39 bit Temporary register: 32 bit Shifter: +4 bit, +1 bit shift
- The structure of the program and internal data memory areas are as follows: Program ROM: 1024 word × 32 bit Data RAM: 128 word × 24 bit Coefficient RAM: 320 word × 16 bit Coefficient ROM: 256 word × 16 bit Offset address RAM: 64 word × 16 bit

 The following five social data parts are provided:
- The following five serial data ports are provided: Serial data input ports: 2 ports (SDI0, SDI1) Serial data output ports: 3 ports (SDO0, SDO1, SDO2) Data word length: 24 bit and 16 bit Data format: MSB/LSB first (input) MSB first (output)
- Built-in RAM for data delay
 Delay RAM: 64 kbit (4096 word × 16 bit)
- Built-in VCO circuit
- Coefficient data and offset data can be set or changed via a microcontroller interface.
- CMOS silicon technology for higher speed.
- 60 pin flat package.

Weight: 1.08 g (typ.)

Pin Connection

Block Diagram

Pin Function

Pin No.	Symbol	I/O	Description of Pin Functions	5	Remarks
1~3	TP8~TP6	0	Test data output terminal, normally open.	—	
4	V _{DD}	_	Power supply terminal.	—	
5	V _{SS}	_	Ground terminal.		—
6~11	TP5~TP0	0	Test data output terminal, normally open.		—
12	V _{SSR}	_	Ground terminal for internal delay RAM (DLRAM).		—
13	V _{DDR}	_	Power supply terminal for internal delay RAM (DLRA	M).	—
14	V _{SS}	_	Ground terminal.		—
15	SDO2				—
16	SDO1	0	Serial data output terminal. Output data length 24 bit or 16 bit, selectable by mici	ocontroller.	—
17	SDO0				—
18	SDI1		Serial data input terminal.		—
19	SDI0		Input data length 24 bit or 16 bit, selectable by micro	controller.	—
20	LR	0	LR clock output terminal (1 fs).		—
21	WCK	0	Word clock output terminal (2 fs).		—
22	FS32	0	Bit clock output terminal (32 fs).		—
23	FS64	0	Bit clock output terminal (64 fs).		—
24	EBC0	I	Bit clock input terminals. Inputs shift clock for SDO0/1/2 data output.	Schmitt input	
25	EBCI1		Bit clock input terminals.	For SDI1 data input	Schmitt input
26	EBCI0		Inputs shift clock for SDI0/1 data input.	For SDI0 data input	Schmitt input
27	ELRO	I	LR clock input terminal. Inputs LR clock for SDO0/1/2 data output.		Schmitt input
28	ELRI1		LR clock input terminals.	For SDI1 data input	Schmitt input
29	ELRI0		Inputs LR clock for SDI0/1 data input.	For SDI0 data input	Schmitt input
30	SYNC	I	Synchronous signal input terminal. The synchronous signal forcibly reset the program co polarity is set by microcontroller.	ounter to "zero", and the	Schmitt input
31	V _{DD}	_	Power supply terminal.		—
32	XI	Ι	Crystal oscillator connection terminal/External clock i	nput terminal.	—
33	ХО	0	Crystal oscillator connection terminal.		—
34	V _{SS}	_	Ground terminal.		_
35	CKSL	I	Clock select terminal. "L": 384 fs, "H": 512 fs		Pull-up resistor, Schmitt input
36	PLOFF	I	External oscillation/built-in VCO mode select termina "L": VCO mode "H": External oscillation mode	Ι.	Pull-down resistor
37	PD	0	Phase-difference output terminal.		Tri-state output
38	V _{SSA}		Analog ground terminal.		—
39	AMPO	0	LPF amplifier output.		—
40	AMPI	Ι	LPF amplifier input.		—
41	V _{DDA}	_	Analog power supply terminal.		—
42~44	TES0 TES2	I	Test terminal, normally high or open.		Pull-up resistor, Schmitt input
45	RST	Ι	Reset signal input terminal.		Pull-up resistor

Pin No.	Symbol	I/O	Description of Pin Functions	Remarks
46	CS	I	Chip select signal input terminal : when \overline{CS} is at low active, data can be sent from the microcontroller.	Schmitt input
47	IFCD	I	Microcontroller command or data input mode select terminal. "H": commands, "L": data.	Schmitt input
48	IFDI	I	Microcontroller data input terminal. Commands and data are received LSB first.	Schmitt input
49	IFDO	0	Data bus (DBUS) data output terminal. Data bus data are sent to microcontroller LSB first.	Open-drain output, Pull-up resister
50	IFCK	Ι	Shift clock input terminal for microcontroller data.	Schmitt input
51	ACK	0	Acknowledge signal output terminal for microcontroller. Acknowledge signal output is when command and data parity are OK.	Open-drain output, Pull-up resistor
52	V _{SS}	_	Ground terminal.	—
53~60	TP16 ~ TP9	0	Test data output terminal, normally open.	_

Description Of Operation

1. Timing generator

(1) Crystal oscillator

As Figure 1 shows, the clocks required for internal operations can be generated by connecting a crystal oscillator and capacitor. (PLOFF = "H")

As Figure 2 shows, clocks can also be externally input to the XI terminal.

For external clock purposes, a crystal with a good starting potential and low CI value is recommended.

Figure 1 Self-exciting crystal oscillation

Figure 2 External clock input

(2) Voltage-controlled oscillator (VCO)

The clocks required for internal operations are generated by an built-in VCO. The signal input from the SYNC pin is used as a reference. Configure the phase-locked loop as shown in Figure 3. A phase-difference (PD) signal is output from the PD terminal.

Figure 3 Example of configuration of a basic PLL circuit

(2-1) Phase-difference output

A phase-difference (PD) signal between the REF and VAR signals are output from the PD terminal the PD signal as shown in Figure 4 below.

Figure 4 Example of phase-difference output timing

2. Setting audio data input/output format (data, channel clock, and bit clock)

The 16 bit/24 bit serial data input/output channel clocks (LR, ELRI0~1 and ELRO0~2) and bit clocks (FS64, FS32, EBCI0~1 and EBCO) can be either internally generated or externally input. The mode setting is effected by the microcontroller interface (control register). Figure 4 shows the data input/output clock pulse selector.

(1) The channel clock, bit clock and data format for data inputs SDI0~1 are selected by LRIS0~1, BCIS0~1 and SIFMT0~1 of control register 2 (CNT-R2). Table 1 (a) and (b) show setting modes for data inputs SDI0~1.

Cor	ntrol Regist (CNT-R2)	ter 2	Format for Data Input SDI0					
LRIS0	BCIS0	SIFMT0	Data	Bit Clock	Channel Clock	Data Format		
0	0	0	16 bit	32 fs (FS32 terminal)	LR terminal	MSB first		
0	0	1	TO DIL	Internally generated	Internally generated	LSB first		
0	1	0	24 hit	64 fs (FS64 terminal)	LR terminal	MSB first, effective data before the change point of LRCK		
0	1	1	24 DIL	Internally generated	Internally generated	LSB first, effective data before the change point of LRCK		
1	0	0		32 fs (EBCI0 terminal)	ELRI0 terminal	MSB first		
1	0	1		terminal	terminal	LSB first		
1	1	0	24 hit	48/64 fs (EBCI0 terminal)	ELRI0 terminal	MSB first, effective data before the change point of LRCK		
1	1	1 1 Éxternally input í terminal		terminal	LSB first, effective data before the change point of LRCK			

Table 1 (a) Setting modes for data input SDI0

Table 1 (b)	Setting modes for data input SDI	1
-------------	----------------------------------	---

Con	trol Regist (CNT-R2)	ter 2	Format for Data Input SDI1					
LRIS1	BCIS1	SIFMT1	Data	Bit Clock	Channel Clock	Data Format		
0	0	0	16 hit	32 fs (FS32 terminal)	LR terminal	MSB first		
0	0	1		Internally generated	Internally generated	LSB first		
0	1	0	24 hit	64 fs (FS64 terminal)	LR terminal	MSB first, effective data before the change point of LRCK		
0	1	1	24 01	Internally generated	Internally generated	LSB first, effective data before the change point of LRCK		
1	0	0	16 bit	32 fs (EBCI1 terminal)	ELRI1 terminal	MSB first		
1	0	1	16 DIL	terminal	terminal	LSB first		
1	1	0	24 hit	48/64 fs (EBCI1 terminal)	ELRI1 terminal	MSB first, effective data before the change point of LRCK		
1	1 1 <td>terminal</td> <td>LSB first, effective data before the change point of LRCK</td>		terminal	LSB first, effective data before the change point of LRCK				

The channel clock, bit clock and data format for data outputs SDO0~2 are selected by LROS0~2, BCOS02 and SOFMT0~1 of control register 2 (CNT-R2).
 Table 2 (a), (b), and (c) show setting modes for data outputs SDO0-2.

	(*: Don't care)									
	Co	ntrol Regis	ster			Formats for Data Output SDO0				
	CN	Γ-R2		CNT-R1	Dete		D# Oleek	Obernel Oleek	Data Farmat	
LROS0	BCOS0	SOFMT0	LROS2	EBCS	Data		BIT CIOCK	Channel Clock	Data Format	
0	0	0	*	0	16 bit	32 fs (FS32 terminal) Internally generated		LR terminal Internally generated	MSB first	
0	1	0	*	0	24 bit	64 fs (Interna	FS64 terminal) ally generated	LR terminal Internally generated	MSB first, effective data after the change point of LRCK	
*	0	0	*	1	16 bit	32 fs (FS32 terminal) 1/ 2 of EBCl0 (64 fs)		ELRO terminal Internally generated	MSB first	
*	1	1	0	0	24 bit	64 fs (Interna	FS64 terminal) ally generated	LR terminal Internally generated (Note 1)	MSB first, effective data after the change point of LRCK (8 clock shift output)	
					16 bit	32 fs	EBCO	EL PO torminal	MSB first	
1	*	0	*	0	04 hit	48 fs	terminal Externally	Externally	MSB first, effective	
	 				24 DIT	64 fs input	input	input	point of LRCK	
1	*	1	1	0	16 bit	48 fs	EBCO terminal	ELRO terminal	MSB first, effective data after the change	
			1 0 24 bit	24 bit	64 fs	Externally input	input	point of LRCK (8 clock shift output)		

Table 2 (a) Setting modes for data output SDO0

Note 1: Clock output from LR terminal is input to ELRO terminal.

Table 2 (b) Setting modes for data output SDO1

(*: Don't care)

									(*: Don't care)
	Co	ntrol Regis	ster				Formats for	Data Output SD	O1
	CN	T-R2		CNT-R1					
LROS1	BCOS1	SOFMT1	LROS2	EBCS	Data		Bit Clock	Channel Clock	Data Format
0	0	0	*	0	16 bit	32 fs (FS32 terminal) Internally generated		LR terminal Internally generated	MSB first
0	1	0	*	0	24 bit	64 fs (FS64 terminal) Internally generated		LR terminal Internally generated	MSB first, effective data after the change point of LRCK
*	0	0	*	1	16 bit	32 fs (FS32 terminal) 1/ 2 of EBCl0 (64 fs)		ELRO terminal Internally generated	MSB first
*	1	1	0	0	24 bit	64 fs (Interna	FS64 terminal) ally generated	LR terminal Internally generated (Note 1)	MSB first, effective data after the change point of LRCK (8 clock shift output)
					16 bit	32 fs	EBCO	EL DO torminal	MSB first
1	*	0	*	0	04 57	48 fs	terminal Externally	Externally	MSB first, effective
					24 bit 64 fs	64 fs input	input	data after the change point of LRCK	
1	*	1	1	0	16 bit	48 fs	EBCO terminal	ELRO terminal	MSB first, effective data after the change
1					24 bit	64 fs	Externally input	input	point of LRCK (8 clock shift output)

Note 1: Clock output from LR terminal is input to ELRO terminal.

								(*: Don't care)	
	Control	Register		Formats for Data Output SDO2					
	CNT-R2		CNT-R1						
LROS2	BCOS2	SOFMT2	EBCS	Data		BIT CIOCK	Channel Clock	Data Format	
0	0	0	0	16 bit	32 fs (Interna	FS32 terminal) ally generated	LR terminal Internally generated	MSB first	
0	1	0	0	24 bit	64 fs (Interna	FS64 terminal) ally generated	LR terminal Internally generated	MSB first, effective data after the changepoint of LRCK	
*	0	0	1	16 bit	32 fs (1/ 2 of	FS32 terminal) EBCI0 (64 fs)	ELRO terminal Internally generated	MSB first	
0	1	1	0	24 bit	64 fs (Interna	FS64 terminal) ally generated	LR terminal Internally generated (Note 1)	MSB first, effective data after the change point of LRCK (8 clock shift output)	
				16 bit	32 fs	EBCO EL DO tom	EL DO torminal	MSB first	
1	*	0	0	04 54	48 fs	48 fs terminal	Externally	MSB first, effective	
				24 Dit	64 fs input	input	input	point of LRCK	
1	*	1	0	16 bit	48 fs EBCO terminal		ELRO terminal	MSB first, effective data after the change	
1	*	*	1	Ŭ	0 24 bit	64 fs	Externally input	input	point of LRCK (8 clock shift output)

Table 2 (c) Setting modes for data output SDO2

Note 1: Clock output from LR terminal is input to ELRO terminal.

Figure 5 Data input/output clock selector

3. Data input and output circuits

- (1) Data input circuits
 - (1-1) Data input

Data are input in twos complement form, MSB first or LSB first, effective data before the change point of LRCK.

Input registers SIR0 and SIR1 are selectable for either 16 bit or 24 bit data length. The channel clock (LRCK) and bit clock (BCK) signals can be externally input independently as the timing signals for the data input to registers SIR0 and SIR1.

Mode using internally generated LRCK and BCK signals is also provided.

Input data are fetched by sensing the rise and fall of LRCK.

Input register SIR0 can select between input data SDI0 and SDI1 using the control registers of the microcontroller interface.

- (1-2) Data input formats
 - When input data are 16 bit/channel, see Figure 6 (a). When BCK is 32 fs, input is MSB first or LSB first.
 - When input data is 24 bit/channel, see Figures 6 (b) and 6 (c). When BCK is 48 fs (external input), input is MSB first or LSB first. When BCK is 64 fs, input is MSB first or LSB first, with effective data before the change point of LRCK.

- (2) Data output circuits
 - (2-1) Data output

Data are output in twos complement form, MSB first, with effective data after the change point of LRCK or 8 clock shift with effective data before the change point of LRCK. Output registers SOR0, SOR1 and SOR2 are selectable for either 16 bit or 24 bit data. The channel clock (LRCK) and bit clock (BCK) signals can be externally input independently as the timing signals for the data output to registers SOR0, SOR1 and SOR2. Mode using internally generated LRCK and BCK signals is also provided. Input data are output to registers SOR0, SOR1 and SOR2 by sensing the rise and fall of LRCK. Output register SIR0 can select between output data SDI0 and SDI1 using the control registers of the microcontroller interface.

- (2-2) Data output formats
 - 16 bit or 24 bit data are output from the data bus starting from the MSB.
 - When output data are 16 bit/channel, see Figure 7 (a).
 - When BCK is 32 fs, output is MSB first.
 - When output data are 24 bit/channel, see Figures 7 (b) and 7 (c).
 When BCK is 48 fs (external output), output is MSB first or the 8 clock shifted highest 16 bit data with effective data before the change point of LRCK.
 When BCK is 64 fs, output is MSB first with effective data after the change point of LRCK or 8 clock shift with effective data before the change point of LRCK.

4. Microcontroller interface circuit

The TC9332F transfers synchronous serial data to the host microcontroller using the \overline{CS} , IFCD, IFCK, IFDI, IFDO and \overline{ACK} terminals. The microcontroller is used to set data modes, set data in the coefficient RAM (CRAM) and offset RAM (OFRAM), set the module sequencer (MSEQ), and read data from the internal data bus (DBUS).

Figure 8 Structure of microcontroller interface block

An example of a connection with the host microcontroller is shown below in Figure 9.

Figure 9 Relationship between host microcontroller and TC9332F

The functions of the signals on the microcontroller interface pins are as shown below:

CS signal (input):	Sets TC9332F data receive to active.
IFCD signal (input):	Distinguishes between command words and data words.
IFCK signal (input):	Data signal shift clock
IFDI signal (input):	Data input signal
ACK signal (output):	Acknowledges result of parity check.
IFDO signal (output):	Data output signal. Outputs data from the data bus (DBUS) starting from
	the LSB. Data are output at the rising edge of the IFCK signal.

(1) Data transmission format

At idle, the $\overline{\mathrm{CS}}$, IFCD, IFCK and IFDI signals are high-level.

There are two transfer modes that can be used, depending on the length of data to be transferred. There are two types of data transmitted : 1 byte command words, and data words composed of either 1 or 2 bytes. The number of bytes per data word varies according to the command type. Data are transmitted LSB first, and the dummy bit at the MSB of the transmitted data is set to "0".

(1-1) 8 bit transfer mode

Set ICKS on bit 3 of control register 1 to low. (Low is the initial value at reset). Efficient data transfer can be carried out over the serial I/O port of an ordinary microcontroller. Figure10 (a) shows an example of timing for the 8 bit transfer mode.

Figure 10 (a) Example of timing for 8 bit transfer mode

(1-2) 9 bit transfer mode

Set ICKS on bit 3 of control register 1 to high. Since low is the initial value at reset, 8 bit data transfer can be performed until ICKS is set to high. The unit of transfer is 9 bit, an 8 bit data plus 1 bit for ODD parity. If the result of the parity check is NG, the TC9332F does not fetch the set data, so always be sure to input the correct parity. Figure 10 (a) shows an example of timing for the 8 bit transfer mode.

(2) Data bus (DBUS) data output format

At idle, the $\overline{\text{CS}}$, IFCD, IFCK and IFDI signals are "H" level.

There are two transfer modes that can be used, depending on the length of data to be transferred. Figure 11 shows examples of timing for the 8 bit and 9 bit transfer modes.

The data transmitted from the microcontroller is a 1 byte command word.

The data output to the microcontroller are the 24 bit on the internal DBUS or the upper 16 bit, and are sent LSB first.

Figure 11 (a) Example of timing for 8 bit transfer mode (3 byte setting)

(3) Control commands

There are 12 commands used to control the TC9332F from a microcontroller. Table 3 shows the commands and command data.

Commandword	Data Word (Ex	Data Word (Exclude Parity Bit) Register/Memory	/Memory		Continuous	
(HEX)	Bit Length Used	Bytes Transmitted	Write Destination	Read Source	Fetch Sync	Transmission
FF~20	_	_	Unused	_	_	—
1F	16	2	CNT-R2	_	Async	No
1E	11	2	CNT-R1	_	Async	No
1D	9	2	CNT-R0	—	sync	No
1C	9 9 4	2 2 1	STAD-R	_	Async	No
1B	4	1	TXW-R	—	Async	No
1A	10	2	MSEQ	—	sync	Yes
19	16	2	CRAM	_	Async	Yes
18	16	2	OFRAM	—	Async	Yes
17	3	1	XINT-R	—	sync	No
16	10	2	BRKA-R	—	Async	No
15	8	1	LC-R	_	Async	No
14	24 Upper 16	3 2	_	IFDO-R	_	No
13~00	_	_	Unused	_	_	_

Table 3 Control commands (Note 2)

Note 2: Settings for STAD-R (1Ch) are as follows:

9 bit: CRAM address

9 bit: OFRAM address

4 bit: MSEQ address

(4) Control registers and dedicated interface registers(4-1) Control register 2 (CNT-R2) (Note 3)

(*: default value)

Bit	Symbol	Description of Functions		
15	I RIS1	Selects channel clock or bit clock for audio serial data input from the	0*	Generates internally
10	ENIOT	SDI1 terminal.	1	ELRI1/EBCI1
14	BCIS1	Selects hit length of audio serial data input from the SDI1 terminal	0*	16 bit
14	DOIDT		1	24 bit
12	SIEMT1	Selects format of audio social data input from the SDI1 terminal	0*	MSB first
13	SIFINITI	Selects format of audio senal data input from the SDT terminal.	1	LSB first
12		Selects a channel clock or bit clock for audio serial data input from the	0*	Generates internally
12	LNIGU	SDI0 terminal.	1	ELRIO/EBCIO
11	PCISO	Selects hit length of quelic social data input from the SDI0 terminal	0*	16 bit
11	BCISU	Selects bit length of audio senal data input from the SDIO terminal.	1	24 bit
10	SIEMTO	Selects format of audio aprial data input from the SDI0 terminal	0*	MSB first
10	SIFINITU	Selects format of audio senal data input from the SDIO terminal.	1	LSB first
0			0*	SDI0
9	SISEL	Selects input terminal for input register SDIO.	1	SDI1
0	10000	Selects a channel clock or bit clock for audio serial data output to the	0*	Generates internally
8	LRUSZ	SDO2 terminal. (Note 4)	1	ELRO/EBCO
7	Selects an internally generated bit clock for audio serial data output to		0*	FS32 (16 bit/ch)
	BC052	he SDO2 terminal.		FS64 (32 bit/ch)
6	SOFMT2	Selects whether audio serial data output to the SDO2 pin are to be effective data after the change point of LRCK or 8 clock shifted.	0*	Effective data after the change point of LRCK
			1	8 clock shifted
5		Selects a channel clock or bit clock for audio serial data output to the	0*	Generates internally
ÿ	EROOT	SDO1 terminal. (Note 4)	1	ELRO/EBCO
1	BCOS1	Selects an internally generated bit clock for audio serial data output to	0*	FS32 (16 bit/ch)
7	BCCC	the SDO1 terminal.	1	FS64 (32 bit/ch)
3	SOFMT1	Selects whether audio serial data output to the SDO1 terminal are to be effective data after the change point of LRCK or 8 clock shifted.	0*	Effective data after the change point of LRCK
			1	8 clock shifted
		Selects a channel clock or hit clock for audio serial data output to the	0*	Generates internally
2	LROS0	So Solver a channel clock of bit clock for audio serial data output to the SDO0 terminal. (Note 4)		ELRO/EBCO terminal input
1	BCOS0	Selects an internally generated bit clock for audio serial data output to	0*	FS32 (16 bit/ch)
	20000	the SDO0 terminal.	1	FS64 (32 bit/ch)
0	SOFMT0	Selects whether audio serial data output to the SDO0 terminal are to be effective data after the change point of LRCK or 8 clock shifted.	0*	Effective data after the change point of LRCK
			1	8 CIOCK SNITTED

Note 3: Normally set only once at initialization.

Data can be set in CNT-R2 asynchronously with the SYNC signal.

Note 4: When a channel clock or bit clock is externally input, (LROS bits 2~0 set to "1"), the data can be output to pins SDO2~0 with 8 clock shifted by setting SOFMT~0. Data can also be output with 8 clock shifted by program (operation) without the above setting.

(4-2)	Control	register	1	(CNT-R1)	(Note 5)
-------	---------	----------	---	----------	----------

(*: default value)

Bit	Symbol	Description of Functions		
10	7ST	Switches coefficient ROM mode table for inverse logarithm of a	0	2-cycle
10	201	number.	1*	1-cycle
q	FMU		0*	Normal
5	LINIO		1	SYNC = ELRI1
8	SYNCS	Selects internal generation or external input (from SYNC terminal) of	0*	Generates internally
0	011100	SYNC signal.	1	Inputs externally
7	SYNCP		0*	Fall
'	GINCI			Rise
6	SYRC	Pesets the coefficient pointer (CP) for each SVNC signal	0*	Enable
0	5110			Disable
5	SYRO	Resets the offset address pointer (OEP) for each SYNC signal		Enable
5	5110		1	Disable
4	FBCS	Modifies LPOS2~0 BCOS2~0 and LR terminal output signals	0*	Disable (normal)
7	LDOO		1	Enable
3		Selects transfer data length by microcontroller interface	0*	8 bit
5			1	9 bit
2	IFOS	Selects output format for data (24 bit) read from IEOP (DBLIS)	0*	Upper 16 bit
-			1	24 bit
1	Divides the delay RAM (DLRAM) into a delay area and a data table		0*	Divides.
1	DLOLI	area.		Does not divide.
		Overwrites when the value of the CRAM or OFRAM pointer matches	0*	Disable
0	ACMPRQ	batch overwrite of the interface buffer RAM.)	1	Enable

Note 5: Normally set only once at initialization.

Data can be set in CNT-R1 asynchronously with the SYNC signal.

Bit	Symbol	Description of Functions		
0	80411	Ponders instruction non-operative and closes the flag	0	Off (RUN)
0	SQALL		1*	On (NOP)
7	BDKDO	Setting this bit to "1" after the break address (BRKA) of the program	0*	Break off
'	DINING	counter is set executes a break.	1	Break on
6		Poguasta data road from DPLIS	0*	Does not request.
0	DDIVINQ	Requests data read nom DBOS.	1	Requests.
5	LONGK	Compares the lean counter value during data read from DRUS	0*	Compares.
5	LOWINK	Compares the loop counter value during data read from DBOS.		Does not compare.
Λ		Selects the counter (LC0 or LC1) to be compared when comparing the		LC0
-	LUGEL	loop counter value during data read from DBUS.	1	LC1
з	INIMT	Mutas input from the SDI0 and SDI1 terminals	0	Mute off
5			1*	Mute on
2		Mutes output to the SDO2 terminal	0	Mute off
2	0011112		1*	Mute on
1		Mutos output to the SDQ1 torminal	0	Mute off
			1*	Mute on
0			0	Mute off
0	0011110		1*	Mute on

(4-3) Control register 0 (CNT-R0) (Note 6)

(*: default value)

Note 6: Data are read from CNT-R0 synchronously with the SYNC signal.

(4-4) Dedicated interface registers

Start address register (STADR) (Note 7)

This register sets the address to start writing data to CRAM, OFRAM and MSEQ. It consists of a presettable up-counter. (9 bit)

	8	7	6	5	4	3	2	1	0
CRAM	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
OFRAM	0	0	0	RA5	RA4	RA3	RA2	RA1	RA0
MSEQ			don't care	!	RA3	RA2	RA1	RA0	

When data are set in MSEQ, data are sent 1 byte at a time.

Note 7: Data are set in STADR asynchronously with the SYNC signal.

Transfer exchange write address register (TXWR) (Note 8)

When ACMPRQ in control register 1 (CNT-R1) is set to "1", this register sets the length of data to be overwritten to CRAM or OFRAM using interface buffer RAM. Overwrites up to 16 word are supported. (4 bit)

TXWR Number Of Words Overwritten TXW3 TXW2 TXW1 TXW0 0 0 0 0 1 2 0 0 0 1 15 1 1 1 0 16 1 1 1 1

Note 8: Data can be set in TXWR asynchronously with the SYNC signal.

Module sequencer (MSEQ) (Note 9)

The module sequencer sets the sequence in which the subroutines grouped in program ROM are called.

It has a 16 word \times 10 bit structure, and data are set by the microcontroller one word at a time at the program ROM sequence start address. Set the 4 bit address of the sequencer, which sets the data store sequence, in STADR.

Data cannot be transferred to the MSEQ using the interface buffer RAM.,

Note 9: MSEQ data is read in synchronously with the SYNC signal.

Coefficient RAM (CRAM) (Note 10)

The coefficient RAM has a 320 word \times 16 bit structure, and data can be changed one word at a time during each sampling period by the microcontroller communication procedure. Using the interface buffer RAM, 16 word can be overwritten during each sampling period.

Note 10: Data can be set in CRAM asynchronously with the SYNC signal. (during continuous setting)

Offset RAM (OFRAM) (Note 11)

The offset RAM has a 64 word \times 16 bit structure, and the overwriting procedure is similar to that of the CRAM.

Note 11: Data can be set in OFRAM asynchronously with the SYNC signal. (during continuous setting)

External interrupt register (XINTR) (Note 12)

The external interrupt register sets data in IFF2-0, which are allocated to the conditional jump flag (F) field. (3 bit)

	Flag Field		Da	D,	Da
IFF2	IFF1	IFF0	D2	D1	D0
Off	Off	Off	0	0	0
Off	Off	On	0	0	1
Off	On	Off	0	1	0
On	Off	Off	1	0	0

Note 12: XINTR data are read synchronously with the SYNC signal.

Break address (BRKAR) register (Note 13)

This register sets the break address. Continuous comparison is made with the program counter (PC) and when BRKRQ of the control register is on, program execution is stopped. Since DBUS data are fetched to IFDOR when the value of the PC matches, it is possible to turn BRKRQ off and read the internal data while program execution is in progress. (10 bit)

Note 13: Data can be set in BRKAR asynchronously with the SYNC signal.

Loop counter compare reference register (LCR) (Note 14)

When reading break or DBUS data, either of loop counters LC0 or LC1 is being compared along with the PC value, this register stores the value of the loop counter to be compared. (8 bit) Which of the loop counters is being compared is set by LCSEL of control register 0 (CNT-R0). When break or DBUS data have been read, LCR is automatically decremented by 1.

Note 14: Data can be set in LCR asynchronously with the SYNC signal.

Interface data output register (IFDOR)

This is a buffer register that can read DBUS data. (24 bit)

The microcontroller can read data from IFDOR serially from the LSB. It is also possible to read only the upper 16 bit by setting IFOS of control register 1 (CNT-R1).

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{DD}	-0.3~6.0	V
Input voltage	V _{IN}	-0.3~V _{DD} + 0.3	V
Power dissipation	PD	1250	mW
Operating temperature	T _{opr}	-40~85	°C
Storage temperature	T _{stg}	-55~150	°C

Electrical Characteristics (unless otherwise specified, Ta = 25°C, V_{DD} = 5 V)

DC characteristics

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Operating power supply voltage	V _{DD}		Ta = −40~85°C	4.75	5.0	5.25	V
Power supply current-1	I _{DD1}	_	f _{opr} = 24.576 MHz	_	75	100	- mA
(no load, external oscillation)			f _{opr} = 18.432 MHz	_	55	75	
Power supply current-2	land		f _{opr} = 24.576 MHz	_	80	100	m۸
(no load, VCO oscillation)	'DD2		f _{opr} = 18.432 MHz	_	65	85	ША

Clock terminals (XI, XO)

Characteristics		Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit
Input voltago	"H" level	V _{IH1}	—	XI torminal	(I torminal		_	_	V
input voltage	"L" level	V _{IL1}	—	Artenninar	-	-	1.5	v	
Output valtage	"H" level	V _{OH1}	—	I _{OH} = −3.0 mA	XO torminal	4.5	_	_	V
Oulput voltage	"L" level	V _{OL1}	_	I _{OL} = 6.0 mA	XO terminar	_	_	0.5	v
Operation power supply voltage		Rfb	_	-	_	_	100	500	kΩ

Input terminals

Characteristics		Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit
Input voltage	"H" level	V _{IH2}	_		(Note 15)	4.2	_	-	V
input voltage	"L" level	V _{IL2}	_			_	_	0.8	v
Input leakage	"H" level	I _{IH2}		V _{IN} = V _{DD} (Note 15)				10	uА
current	"L" level	I _{IL2}		V _{IN} = 0 V	(1010-10)	-10		_	μΛ
Threehold velters	"H" level	VP	_	(Note 1		_	3.2		V
Theshold voltage	"L" level	V _N	_		(Note 10)		1.8		v
Hysteresis voltage		V _H	_		(Note 16)		0.6		V
Input leakage current	"H" level	I _{IH3}	_	$V_{IN} = V_{DD}$	(Noto 16)	_	_	10	
	"L" level	I _{IL3}	_	V _{IN} = 0 V		-10	_	_	μΑ

Note 15: SDI0~1, PLOFF, RST : CKSL, TEST0~2 (Schmitt input terminals with pull-up resistor)

Note 16: SYNC, ELRI0~1, ELRO, EBCI0~1, EBCO, CS, IFCD, IFDI, IFCK (Schmitt input terminals)

Output terminals

Characteristics		Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit	
Output voltage	"H" level	V _{OH2}	—	I _{OH} = −1.0 mA	– (Note 17)	(Noto 17)	4.5	_	_	V
	"L" level	V _{OL2}	_	I _{OL} = 1.0 mA			_	0.5	v	
Output voltage	"H" level	V _{OH3}	—	I _{OH} = −3.0 mA	(Note 18)	4.5	-	_	V	
Output voltage	"L" level	V _{OL3}	—	I _{OL} = 5.0 mA		_	_	0.5	v	
Output voltage	"H" level	V _{OH4}	—	I _{OH} = −0.6 mA	(Note 10)	4.5	_	—	V	
	"L" level	V _{OL4}	—	I _{OL} = 0.6 mA	(Note 19)	_	_	0.5		

Note 17: SDO0~2

Note 18: FS64, FS32, WCK, LR

Note 19: AMPO

Three state output terminals (PD)

Characteristics		Symbol	Test Circuit	Test Co	Min	Тур.	Max	Unit	
Output voltage	"H" level	V _{OH5}	_	I _{OH} = −3.0 mA		4.5	_	-	V
	"L" level	V _{OL5}	—	I _{OL} = 5.0 mA		_	_	0.5	v
Output off-leakage current		IOZ5	_	$V_{OH} = V_{DD}, V_{OL}$	= 0 V	_	_	±10	μA

Open-drain output terminals (IFDO, \overline{ACK})

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
"L" level output voltage	V _{OL7}	_	I _{OL} = 5.0 mA	_	_	0.5	V
Output open leakage current	IOZ7	—	V _{OH} = V _{DD}		—	±10	μA

Pull-up and pull-down resistor terminals

Characteristics	Symbol	Test Circuit Test Condition		Min	Тур.	Max	Unit
Pull-up resistor	RUP	—	(Note 20)	_	35	200	kΩ
Pull-down resistor-1	Rdwn1	—	(Note 21)	_	25	200	kΩ
Pull-down resistor-2	Rdwn2	_	(Note 22)	—	0.25	80	kΩ

Note 20: IFDO, $\overline{\text{RST}}$, $\overline{\text{ACK}}$, CKSL, TES0~2

Note 21: PLOFF

Note 22: XI

AC characteristics

External clock input terminal (XI)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
XI clock cycle	t _{XI}	_	—	40	_	_	ns
XI clock "H" duration	t _{XIH}	_	—	_	20	_	ns
XI clock "L" duration	t _{XIL}	_			20	_	ns

Reset terminal (RST)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Stand-by time	t _{ST}	_	—	250	_	_	μs
Reset pulse width	t _{RST}			0.15	—	—	μs

Audio serial interface (fs = 48 kHz)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
ELRI holding time	t _{LIH}	_	C _L = 30 pF	-75	_	75	ns
SDI data setup time	t _{DIS}	_	C _L = 30 pF	50	-		ns
SDI data hold time	t _{DIH}		C _L = 30 pF	50	_	_	ns
EBCI clock cycle	t _{EBCI}	_	C _L = 30 pF	325			ns
EBCI clock "H" duration	t _{EBIH}	_	C _L = 30 pF	162			ns
EBCI clock "L" duration	t _{EBIL}	_	C _L = 30 pF	162			ns
ELRO hold time	t _{LOH}	_	C _L = 30 pF	-75		75	ns
SDO data output delay time (1)	t _{DO1}		C _L = 30 pF	—	_	65	ns
SDO data output delay time (2)	t _{DO2}	_	C _L = 30 pF	—		65	ns
EBCO clock cycle	t _{EBCO}	_	C _L = 30 pF	325			ns
EBCO clock "H" duration	t _{EBOH}	_	C _L = 30 pF	162		-	ns
EBCO clock "L" duration	t _{EBOL}		C _L = 30 pF	162	_	_	ns
WCK output delay time (1)	t _{DHL1}	_	C _L = 30 pF	—		13	ns
LR output delay time (1)	t _{DHL2}	_	C _L = 30 pF	—		17	ns
FS32 output delay time (1)	t _{DHL3}	_	C _L = 30 pF	_	-	6	ns
WCK output delay time (2)	t _{DLH1}		C _L = 30 pF	—	_	23	ns
LR output delay time (2)	t _{DLH2}		C _L = 30 pF	—	_	27	ns
FS32 output delay time (2)	t _{DLH3}	_	C _L = 30 pF	—		17	ns
BCK clock cycle	t _{BCK}	_	C _L = 30 pF	650	_	_	ns
BCK clock "H" duration	t _{BCH}	_	C _L = 30 pF	325	_	_	ns
BCK clock "L" duration	t _{BCL}		C _L = 30 pF	325	_	_	ns

Microcontroller interface

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
$ \overline{\text{CS}} \downarrow - \text{IFCK} \downarrow \\ \text{setup time} $	t ₁	-	C _L = 10pF, T = 1/ system clock	6T	_	_	ns
I/F clock "H" duration	to	_	C _L = 10pF, T = 1/ system clock	6T	_	—	ns
I/F clock "L" duration	42						
IFCK↑ - IFCD↓ setup time	t3	_	C _L = 10pF, T = 1/ system clock	6T	—	_	ns
IFCD↓ - IFCK↓ setup time	t4	-	C _L = 10pF, T = 1/ system clock	6T	_	_	ns
IFCK∱ - IFCD↑ setup time	t5	-	C _L = 10pF, T = 1/ system clock	6T	_	_	ns
IFCK↑ - CS ↑ setup time	t ₆	-	C _L = 10pF, T = 1/ system clock	6T	_	_	ns
$\overline{\text{CS}}$ "H" duration	t7	_	C _L = 10pF	1/fs	_	_	μs
IFDI data setup time	t ₈	-	C _L = 10pF, T = 1/ system clock	1T	_	_	ns
IFDI data hold time	t9	_	C _L = 10pF, T = 1/ system clock	5T	_	_	ns
IFCK↓ - IFDO↑ propagation delay time	t ₁₀	-	C _L = 10pF, T = 1/ system clock	_	_	168T	ns
IFCK↓ - IFDO↓ propagation delay time				_	_	10T	ns
IFCK↑ - $\overline{ACK} \downarrow$ propagation delay time	t ₁₁	_	C _L = 10pF, T = 1/ system clock	_	_	18T	ns
IFCK↓ - \overline{ACK} ↑ propagation delay time	t ₁₂	-	C _L = 10pF, T = 1/ system clock	_	_	168T	ns
$\overline{CS} \uparrow - \overline{ACK} \uparrow$ propagation delay time	t ₁₃	-	C _L = 10pF, T = 1/ system clock	_	_	168T	ns
\overline{CS} \uparrow - IFDO \uparrow propagation delay time	t ₁₄	_	$C_L = 10pF,$ T = 1/ system clock	_	_	168T	ns
$\begin{array}{rr} IFCD \downarrow & \overline{CS} \downarrow \\ setup time \end{array}$	t ₁₅	_	C _L = 10pF, T = 1/ system clock	2T	_	_	ns
$\begin{array}{rr} IFDO \downarrow - & \overline{CS} \downarrow \\ setup time \end{array}$	t ₁₆	_	C _L = 10pF	0	_	_	ns

AC Characteristics Measurement Points

1. External clock input terminal

2. Reset terminal

3. Audio serial interface

4. Microcontroller interface

At series transfer mode

Package Dimensions

QFP60-P-1414-0.80D

Unit : mm

Weight: 1.08 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.