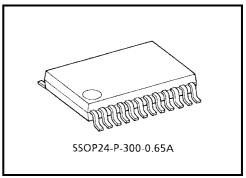
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LVXC3245FS


Dual Supply Octal Configurable Voltage Interface Bus Transceiver

The TC74LVXC3245FS is a dual supply, advanced high-speed CMOS octal configurable voltage interface bus transceiver fabricated with silicon gate CMOS technology.

Designed for use as an interface between a 3.3 V bus and a 3.3V to 5 V bus in mixed 3.3 V/5 V supply systems' it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is intended for 2 way asynchronous communication between data busses.

The direction of data transmission is determined by the level of the DIR input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated. The A-port interfaces with the 3.3-V bus, the B-port with the 3.3V to 5V bus. This device will allow the V_{CCB} voltage source pin and I/O pins on the B port to float when \overline{G} is "H".

Weight: 0.14 g (typ.)

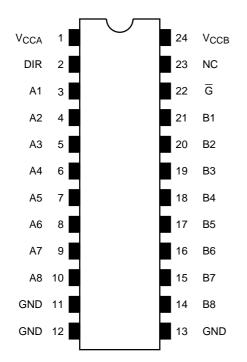
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- Bi-directional interface between 3 V and 5 V buses
- High-speed: tpd = 8.5 ns (max)

 $(V_{CCA} = 3.3 \text{ V}, V_{CCB} = 5.0 \text{ V})$

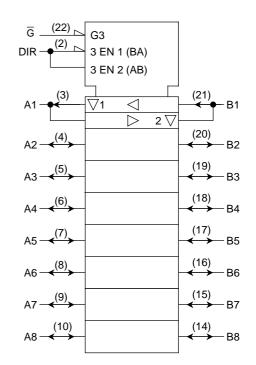
- Low power dissipation: $I_{CC} = 8 \mu A (max) (Ta = 25^{\circ}C)$
- Symmetrical output impedance: IOUTA = ±24 mA (min)


 $I_{OUTB} = \pm 24 \text{ mA (min)}$

 $(V_{CCA} = V_{CCB} = 3.0 \text{ V})$

- Low noise: VOLP = 1.5 V (max)
- Flexible V_{CCB} operating range
- Allows B port and VCCB to float simultaneously when $\overline{\mathrm{G}}$ is "H"
- Package: SSOP (shrink small outline package)

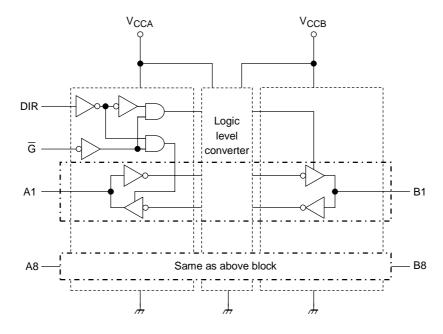
Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result. All floating (high impedance) bus pin must have their input levels fixed by means of pull-up or pull-down resistors.


Pin Assignment (top view)

Truth Table

Inp	Inputs		Function			
G	DIR	Outputs	A-Bus	B-Bus		
L	L	A = B	Output	Input		
L	Н	B=A	Input	Output		
Н	Х	Z	High impedance			

IEC Logic Symbol



X: Don't care

Z: High impedance

TOSHIBA

Block Diagram

Maximum Ratings

Characteristics		Symbol	Rating	Unit
Supply voltage range		V _{CCA}	-0.5 to 7.0	V
	(Note 2)	V _{CCB}	-0.5 to 7.0	v
DC input voltage	(DIR,\overline{G})	V _{IN}	-0.5 to V _{CCA} + 0.5	V
DC bus I/O voltage		V _{I/OA}	-0.5 to V _{CCA} + 0.5	V
DC bus i/O voltage		V _{I/OB}	-0.5 to V _{CCB} + 0.5	v
Input diode current		I _{IK}	±20	mA
Output diode current		I _{I/OK}	±50	mA
DC output current		I _{OUTA}	±50	mA
		I _{OUTB}	±50	ША
DC Vee/ground current		I _{CCA}	±200	mA
DC V _{CC} /ground current		I _{CCB}	±200	ША
Power dissipation		PD	180	mW
Storage temperature		T _{stg}	-65 to 150	°C

Note 2: Don't supply a voltage to $V_{\mbox{CCB}}$ terminal when $V_{\mbox{CCA}}$ is in the OFF state.

Recommended Operating Conditions

Characteristics		Symbol	Rating	Unit
Supply voltage		V _{CCA}	2.7 to 3.6	V
		V _{CCB}	3.0 to 5.5	v
Input voltage	(DIR, \overline{G})	V _{IN}	0 to V _{CCA}	V
Bus I/O voltage		V _{I/OA}	0 to V _{CCA}	V
Bus I/O Voltage		V _{I/OB}	0 to V _{CCB}	v
Operating temperature		T _{opr}	-40 to 85	°C
			0 to 8	
Input rise and fall time		dt/dv	(V _{CCA} = 2.7 to 3.6 V)	ns/V
		u/uv	0 to 8	113/ V
			(V _{CCB} = 3.0 to 5.5 V)	

Electrical Characteristics

DC Characteristics

		Sym-	Sym- Test Condition					Ta = 25°C			Ta = -40 to 85°C							
Characters	SUCS	bol			V _{CCA} (V)	V _{CCB} (V)	Min	Тур.	Max	Min	Max	Unit						
				2.7	3.0	2.0			2.0									
Input H	VIHA	DIR, G, An		3.0	3.6	2.0	—		2.0	_								
Input voltage	Н				3.6	5.5	2.0	_		2.0	_	V						
(V _{CCA})	a				2.7	3.0			0.8		0.8	v						
	L-level	VILA	DIR, G, An		3.0	3.6			0.8		0.8							
	Γ				3.6	5.5		—	0.8	_	0.8							
	e				2.7	3.0	2.0	—		2.0	—							
	H-level	VIHB	Bn		3.0	3.6	2.0	—	_	2.0	—							
Input voltage	4				3.6	5.5	3.85	—	—	3.85	—	V						
(V _{CCB})	e			2.7	3.0			0.8		0.8								
	L-level	V _{ILB}	Bn		3.0	3.6			0.8			0.8						
	-			3.6	5.5			1.65		1.65								
		Рона Voha								I _{OH} = −100 μA	3.0	3.0	2.9	3.0	_	2.9	—	
				I _{OH} = -12 mA	3.0	3.0	2.56	—		2.46	_							
	H-level			I _{OH} = -24 mA	3.0	3.0	2.35	_		2.25	_							
Quitout			V _{INA} = V _{IHA} or	I _{OH} = -12 mA	2.7	3.0	2.3	_	_	2.2	_							
voltage	-		V _{ILA} V _{INB} = V _{IHB} or	I _{OH} = -24 mA	2.7	4.5	2.1	_		2.0	_	V						
(V _{CCA})			VILB	I _{OL} = 100 μA	3.0	3.0		0.0	0.1		0.1							
	L-level			I _{OL} = 24 mA	3.0	3.0		_	0.36		0.44							
	L-le	Vola		I _{OL} = 12 mA	2.7	3.0			0.36		0.44							
				I _{OL} = 24 mA	2.7	4.5		_	0.42		0.5							

DC Characteristics (continued)

("haractoristics")		Sym-	2 Lest Condition				Ta = 25°C			Ta = -40 to 85°C		Unit	
Characteri	SUCS	bol	Test Cond			$V_{CCB}(V)$	Min	Тур.	Max	Min	Max	Onit	
			I _{OH} = -100 μA	3.0	3.0	2.9	3.0		2.9	_			
	H-level	V _{OHB}		I _{OH} = -12 mA	3.0	3.0	2.56			2.46			
Output	Р-Н	топь	V _{INA}	I _{OH} = -24 mA	3.0	3.0	2.35			2.25			
voltage (V _{CCB})			= V _{IHA} or V _{ILA} VINB	I _{OH} = -24 mA	3.0	4.5	3.86	_	_	3.76	_	V	
(1008)			$= V_{IHB}$ or V_{ILB}	I _{OL} = 100 μA	3.0	3.0		0.0	0.1	_	0.1		
	L-level	V _{OLB}		I _{OL} = 24 mA	3.0	3.0		_	0.36	_	0.44		
				I _{OL} = 24 mA	3.0	4.5			0.36		0.44		
		I _{OZA}	$V_{INA} = V_{IHA} \text{ or } V_{IL}$	A	3.6	3.6		_	±0.5		±5.0		
3-state out	out	·02A	$V_{INB} = V_{IHB}$ or V_{ILB} $VI/OA = V_{CCA}$ or GND $VI/OB = V_{CCB}$ or GND		3.6	5.5		—	±0.5	—	±5.0	μA	
Off-state current		I _{OZB}			3.6	3.6			±0.5		±5.0		
		ЧОZВ			3.6	5.5	_	—	±0.5	—	±5.0		
Input leaka	ge	I _{IN}	V _{IN} (DIR, \overline{G})		3.6	3.6	_	—	±0.1	—	±1.0	μA	
current		'IN	$= V_{CCA}$ or GND		3.6	5.5		—	±0.1	—	±1.0	μΛ	
		I _{CCT}	PER INPUT: V _{INA} = V _{CCA} –0.6 V V _{INA} = V _{CCB} –0.6 V		3.6	3.6		_	0.35	_	0.5	mA	
Quiescent supply current		I _{CCA1}	$\begin{array}{l} An = V_{CCA} \ or \ GND \\ \\ Bn = Open, \\ \\ \overline{G} = V_{CCA} \\ \\ DIR = V_{CCA}, \\ \\ \\ \\ V_{CCB} = Open \end{array}$		3.6	Open	—		5		50	μΑ	
		I _{CCA2}	$V_{INA} = V_{IHA} \text{ or } V_{ILA}$		3.6	3.6	_	—	5	—	50		
			$V_{INB} = V_{IHB}$ or V_{ILB}		3.6	5.5			5		50		
		ICCB	$V_{INA} = V_{IHA}$ or V_{IL}	A	3.6	3.6			5		50		
		ICCB	$V_{INB} = V_{IHB} \text{ or } V_{IL}$	В	3.6	5.5			8	_	80		

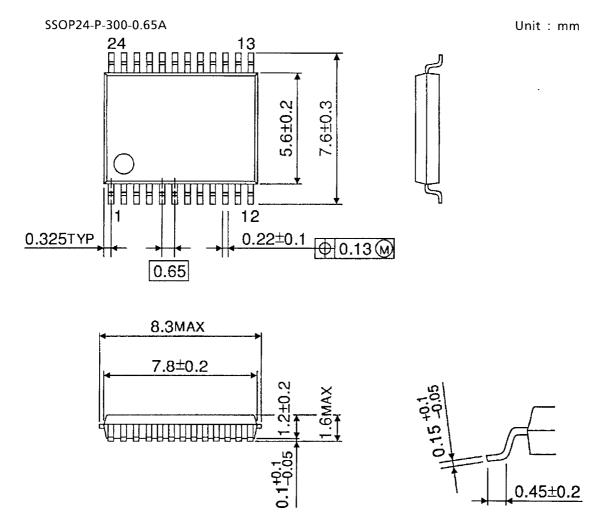
AC Characteristics (input: $t_r = t_f = 3 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit			
Characteristics	Cymbol		VCCA(V)	VCCB(V)	Min	Тур.	Max	Min	Max	Offic			
Propagation delay time	t _{pLH}			5.0 ± 0.5	_	5.7	8.0	1.0	8.5	ns			
$(An \rightarrow Bn)$	t _{pHL}	lanut An		3.3 ± 0.3	_	6.2	8.5	1.0	9.0	115			
3-state output enable time	t _{pZL}	Input: An Output: Bn		5.0 ± 0.5	_	6.5	9.5	1.0	10.0	20			
$(\overline{G} \rightarrow Bn)$	t _{pZH}	(DIR = "H")	2.7 ~3.6	3.3 ± 0.3	_	7.4	10.5	1.0	11.5	ns			
3-state output disable time	t _{pLZ}			5.0 ± 0.5	_	7.3	9.5	1.0	10.0	20			
$(\overline{G} \rightarrow Bn)$	t _{pHZ}			3.3 ± 0.3		6.6	9.5	1.0	10.0	ns			
Propagation delay time	t _{pLH}	- Input: Bn Output: An 2.7 - - (DIR = "L")		5.0 ± 0.5	_	4.6	7.5	1.0	8.0	20			
$(Bn \rightarrow An)$	t _{pHL}			3.3 ± 0.3	_	5.2	7.5	1.0	8.0	ns			
3-state output enable time	t _{pZL}		2.7 ~ 3.6	5.0 ± 0.5	_	7.0	10.5	1.0	11.5	- ns			
$(\overline{G} \rightarrow An)$	t _{pZH}			3.3 ± 0.3	_	7.0	10.5	1.0	11.5				
3-state output disable time	t _{pLZ}				() () () () () () () () () () () () () (5.0 ± 0.5	_	6.1	9.5	1.0	10.0	ns
$(\overline{G} \rightarrow An)$	t _{pHZ}			3.3 ± 0.3	_	6.0	9.5	1.0	10.0	115			
Output to output skew	t _{osLH}	(Note 3)	2.7 ~ 3.6	5.0 ± 0.5	_		1.5		1.5	ns			
	t _{osHL}	(Note 5)		3.3 ± 0.3	—		1.5		1.5				
Input capacitance	C _{INA}	DIR, \overline{G}			_	5	10	_	10	pF			
Bus input capacitance	C _{I/O}	An, Bn			—	8				pF			
		$A \rightarrow B$ (DIR = "H")				4			_				
Power dissipation capacitance	C _{PDA}	$B \rightarrow A$ (DIR = "L")	3.3 ± 0.3	5.0 ± 0.5	_	38	_		_	pF			
(Note 4)	C _{PDB}	$A \rightarrow B$ (DIR = "H")			_	88			—				
	OPDB	$B \rightarrow A$ (DIR = "L")			_	7		_					

Note 3: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:


 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8$ (per bit)

Noise Characteristics (Ta = 25°C, input: $t_r = t_f = 3 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$)

						_		Unit
Characteristics		Symbol	Test Condition	VCCA (V)	VCCB (V)	Тур.	Limit	
Quiet output maximum	V _{OL} (A)	V _{OLPA}	Input: Bn	3.3	3.3	_	0.9	
dynamic	VOL (A)	V OLPA	Output: An	3.3	5.0	_	0.9	
Quiet output mimimum)/a. (A)	Varia	(DIR = "L")	3.3	3.3	_	-0.9	
dynamic	V _{OL} (A)	V _{OLVA}		3.3	5.0	_	-0.9	V
Quiet output maximum)/ (D)	M		3.3	3.3	_	0.8	V
dynamic	V _{OL} (B)	V _{OLPB}	Input: An Output: Bn (DIR = "H")	3.3	5.0		1.5	
Quiet output mimimum dynamic	V _{OL} (B)	V _{OLVB}		3.3	3.3		-0.8	
				3.3	5.0		-1.2	
Minimum high level dynamic			Input: An	3.3	3.3		2.0	V
input voltage	V _{IH} (A)	VIHDA		3.3	5.0	_	2.0	v
Maximum low level dynamic	$\lambda (, (\Delta))$		Input: An	3.3	3.3	_	0.8	V
input Voltage	V _{IL} (A)	Vilda		3.3	5.0	_	0.8	v
Minimum high level dynamic)/(P)	V	Input: Pp	3.3	3.3	2.0	_	V
input voltage	V _{IH} (B)	VIHDB	Input: Bn	3.3	5.0	3.5	_	v
Maximum low level dynamic	V _{IL} (B)	M	Input: Bn	3.3	3.3	0.8		V
input voltage	VIL (B)	V _{ILDB}		3.3	5.0	1.5	_	V

TOSHIBA

Package Dimensions

Weight: 0.14 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.