

TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB1230AN

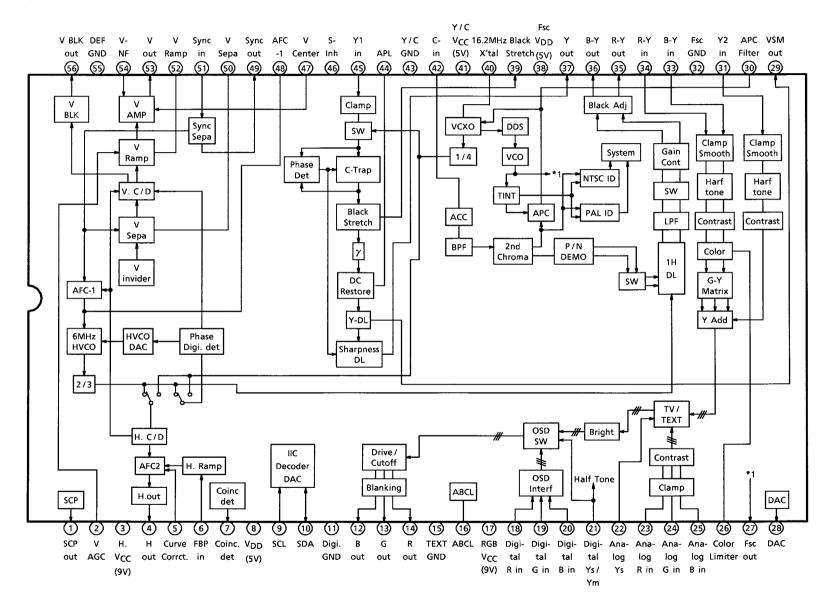
VIDEO.CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC SYSTEM COLOR TV

TB1230AN that is a signal processing IC for the PAL / NTSC color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56-pin shrink DIP plastic package.

TB1230AN incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL/ NTSC discrimination circuit in the chroma section, and an automatic 50 / 60Hz discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates $4.43 \mathrm{MHz},\, 3.58 \mathrm{MHz}$ and M / N-PAL clock signals for color demodulation, there is a horizontal PLL circuit built in the IC. The PAL demodulation circuit which is an adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system.

Weight: 5.55g (Typ.)

Also, TB1230AN makes it possible to set or control various functions through the built-in I^2C bus line.


1

FEATURES

- Video section
 - Built-in trap filter
 - · Black expansion circuit
 - Variable DC regeneration rate
 - · Y delay line
 - · Sharpness control by aperture control
 - γ correction
 - VSM output
- Chroma section
 - Built-in 1H Delay circuit
 - PAL base band demodulation system
 - One crystal color demodulation circuit (4.43MHz, 3.58MHz, M / N-PAL)
 - Automatic system discrimination, system forced mode
 - 1H delay line also serves as comb filter in NTSC demodulation
 - Built-in band-pass filter
 - Color limiter circuit
 - Fsc output

- Synchronizing deflecting section
 - Built-in horizontal VCO resonator
 - Adjustment-free horizontal / vertical oscillation by count-down circuit
 - Double AFC circuit
 - Vertical frequency automatic discrimination circuit
 - Horizontal / vertical holding adjustment
 - Vertical ramp output
 - Vertical amplitude adjustment
 - Vertical linearity / S-shaped curve adjustment
 - SCP (Sand Castle Pulse) output
- Text section
 - Linear RGB input
 - OSD RGB input
 - Cut / off-drive adjustment
 - RGB primary signal output

BLOCK DIAGRAM

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	SCP OUTPUT	Output terminal of Sand Castle Pulse. (SCP) To connect drive resistor for SCP.	SCP BLK	Horizontal blanking 7.3V Clamping pulse 4.5V 2.6V Vertical blanking
2	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.	2 300Ω 2 300Ω 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	_
3	H-V _{CC} (9V)	V _{CC} for the DEF block (deflecting system). Connect 9V (Typ.) to this pin.	_	_
4	Horizontal Output	Horizontal output terminal.	3 300Ω	5.0V 0.2V
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01µF capacitor between this pin and GND.	3 3 3 3 3 3 3 3 3 3 3 3 3 3	4.5V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse. The threshold of Horizontal AFC2 detection is set H.V _{CC} -2V _f (V≈0.75V) Confirming the power supply voltage, determine the high level of FBP.	3 3 200Ω AFC2 NS:	H-Vcc

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H. synchronizing signal or V. synchronizing signal.	3 2000 Ω T	ı
8	V _{DD} (5V)	V _{DD} terminal of the LOGIC block. Connect 5V (Typ.) to this pin.	_	-
9	SCL	SCL terminal of I ² C bus.	9 10kΩ 2scl 2sc	I
10	SDA	SDA terminal of I ² C bus.	10 10kΩ SDA SDA NO	ı
11	Digital GND	Grounding terminal of LOGIC block.	_	_
12 13 14	B Output G Output R Output	R, G, B output terminals.	12 13 14 100Ω 100Ω	<u>'</u> '
15	TEXT GND	Grounding terminal of TEXT block.	_	
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.	16 3kΩ 9 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.4V at Open
17	RGB-V _{CC} (9V)	V _{CC} terminal of TEXT block. Connect 9V (Typ.) to this pin.	_	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
18 19 20	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.	18 500Ω 17 17 20 20 mm	OSD 3.0V TEXT 2.0V —GND
21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).	(2) 1κΩ (2) 1κΩ (3) 1κΩ	OSD
22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).	(2) 1kΩ	Analog RGB ——0.5V TV ——GND
23 24 25	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5V _{p-p} (100 IRE).	23 24 25 28Ω 28Ω 28Ω 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	100IRE = 0.5V _{p-p} 4.6V GND
26	Color Limiter	To connect filter for detecting color limit.	300Ω 10kΩ Color Color Ilimiter	_
27	FSC Output	Output terminal of FSC.	200Ω 400 μΑ 400 μΑ	3.58MHz 3.58MHz Other 500mVp-p

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
28	1Bit DAC Output Terminal	Enable to change slave address to 8Ah by a connecting V _{CC} with this terminal.	30002 30002 30002	4.5V (Date: (1)) 2.0V (Date: (0))
29	VSM Output Terminal	Power output the signal that is primary differentiated Y signal. Enable to change output amplifier and phase by the Bus.	150 MA 33.5KD	_
30	APC Filter	To connect APC filter for chroma demodulation.	30000	DC 3.2V
31	Y ₂ Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level: 0.7V _{p-p}	31	0.7V _{p-p}
32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc V _{DD}) at the shortest distance from both.	_	_
33 34	B-Y Input R-Y Input	Input terminal of B-Y or R-Y signal. Input signal through a clamping capacitor.	33 34 34 34 34 34 34 34 34 34 34 34 34	DC 2.5V AC B-Y: $650\text{mV}_{\text{p-p}}$ R-Y: $510\text{mV}_{\text{p-p}}$ (with input of PAL-75% color bar signal)

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
35 36	R-Y Output B-Y Output	Output terminal of demodulated R-Y or B-Y signal. There is an LPF for removing carrier built in this pin.	(41) (35) (36) (37) (38) (37) (38) (37) (38) (38) (38) (38) (38) (38) (38) (38	DC 1.9V AC B-Y: 650mV _{p-p} R-Y: 510mV _{p-p} (with input of PAL-75% color bar signal)
37	Y Output	Output terminal of processed Y signal. Standard output level : 0.7V _{p-p}	\$\frac{\text{\tince}\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\tetin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\tint{\text{\text{\tetin}\tint{\text{\texicl{\text{\texi}}\tint{\text{\tiint{\text{\text{\texi}\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texit}	0.7V _{p-p}
38	Fsc V _{DD}	V _{DD} terminal of V _{DDS} block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.	I	_
39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.	(a) (b) (c) (c) (c) (c) (d) (d) (d)	DC 1.6V
40	16.2MHz X'tal	To connect 16.2MHz crystal clock for generating sub-carrier. Lowest resonance frequency (f ₀) of the crystal oscillation can be varied by changing DC capacity. Adjust f ₀ of the oscillation frequency with the board pattern.	40 1,5kΩ 8	DC 4.1V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	Y / C V _{CC} (5V)	V _{CC} terminal of Y / C signal processing block.	_	_
42	Chroma Input	Chroma signal input terminal. Input negative 1.0V _{p-p} sync composite video signal to this pin through a coupling capacitor.	41 42 1κΩ 1κΩ 1κΩ 1κΩ 1κΩ 1κΩ 1κΩ 1κΩ	DC 2.4V AC : 300mV _{p-p} burst
43	Y / C GND	Grounding terminal of Y / C signal processing block.	_	_
44	APL	To connect filter for DC regeneration compensation. Y signal after black expansion can be monitored by opening this pin.	41 1kΩ 15kQ 15	DC 2.2V
45	Y ₁ Input	Input terminal of Y signal. Input negative 1.0V _{p-p} sync composite video signal to this pin through a clamping capacitor.	41 45 200Ω 2kΩ 41 41 41	1.0V _{p-p}
47	DC Output Terminal For V Centering	Enable to control output DC voltage by the bus.	100 µA 1100 µA 114Ω	DC 2.7~6.3V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.	48 C35 M	DC 5.0V
49	Sync Output	Output terminal of synchronizing signal separated by sync separator circuit. Connect a pull-up resistor to this pin because it is an open-collector output type.	3 49 7 7 7	
50	V-Sepa.	To connect filter for vertical synchronizing separation.	3 50Ω Coor Coor T	DC 5.9V
51	Sync Input	Input terminal of synchronizing separator circuit. Input signal through a clamping capacitor to this pin. Negative 1.0V _{p-p} sync.	(S) 500Ω (S)	1.0V _P 2.7V GND
52	V-Ramp	To connect filter for generating V-ramp waveform.	(52) 14kΩ	1.9V _{p-p}

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
53	Vertical Output	Output terminal of vertical ramp signal.	3	<u>т</u>
54	V-NF	Input terminal of vertical NF signal.		2
55	DEF GND	Grounding terminal of DEF (deflection) block.	_	_
56	V BLK Output	Output terminal of V blanking	300Ω 1kΩ G	5V V blanking

TOSHIBA

BUS CONTROL MAP WRITE DATA

Slave address : 88H (Pin28-High : 8AH)

BLOCK	SUB ADDR	MSB 7	6	5	4	3	2	1	LSB 0	PRE	SET
	00	Uni-Color Uni-Color								1 0 0 0	0 0 0 0
	01	BRIGHT									0 0 0 0
	02				CO	LOR				1 0 0 0	0 0 0 0
VIDEO / TEXT	03	*				TINT				0 1 0 0	0 0 0 0
	04	P/NKIL	ND SW			SHARI	PNESS			0 0 1 0	0 0 0 0
	05	DTrp-SW	R-Mon	B-Mon		Y	SUB CONTRAS	ST		1 0 0 1	0 0 0 0
	06				RGB-CC	NTRAST				1 0 0 0	0 0 0 0
_	07	*	*	*	*	*	*	*	*	1 0 0 0	0 0 0 0
	08	Υγ	WPL SW	0	BLUE BA	CK MODE		Y-DL SW		0 0 0 0	0 1 0 0
VIDEO / TEXT	09				G DRI\	/E GAIN				1 0 0 0	0 0 0 0
	0A				B DRI\	/E GAIN				1 0 0 0	0 0 0 0
DEF	0B		HOF	RIZONTAL POSIT	TION		AFC	MODE	H-CK SW	1 0 0 0	0 0 0 1
TEXT (P / N)	0C	R CUT OFF								0 0 0 0	0 0 0 0
	0D		G CUT OFF							0 0 0 0	0 0 0 0
ILXI (I / N)	0E				B CUT OFF				0 0 0 0	0 0 0 0	
	0F	B. S. OFF	C-TRAP	OFST SW	C-TOF	P/N GP	CLL SW	WBLK SW	WMUT SW	0 0 0 0	0 0 0 0
SYSTEM	10	1	358 Trap	F-B/W		X'tal MODE		COLOR	SYSTEM	0 0 0 0	0 0 0 0
STOTEW	11		R-Y BLAC	K OFFSET			B-Y BLAC	K OFFSET		1 0 0 0	1 0 0 0
P/N	12	CLL I	EVEL	PN CI	O ATT	ТО	FQ	TOF	F-FO	1 0 0 1	1 0 1 0
Vi / C	13	V-MODE	VSM PHASE	VSM	GAIN		AP Q	C-TR/	AP FO	1 0 1 1	1 0 1 0
VIDEO (DEF)	14	BLA	CK STRETCH PO	TNIC		DC TRAN RATE		APA-CON	NFO/SW	1 0 0 0	0 0 1 0
VIDEO (DEI)	15		ABL POINT			ABL GAIN		HALF TO	ONE SW	0 0 0 0	0 0 0 0
	16		H BLK PHASE		VF	REQ		V OUT PHASE		0 0 0 0	0 0 0 0
	17				V-AMPLITUDE				*	1 0 0 0	0 0 0 0
GEOMETRY	18			V CENT	TERING			COINCID	ENT DET	1 0 0 0	0 0 1 0
	19			V	S-CORRECTIO	N			DRG SW	1 0 0 0	0 0 0 0
	1A			V LINEARITY			V-CD MD	DRV CNT	VAGC SP	0 0 0 0	0 0 0 1
	1B	MUTE	MODE			WIDE V-BLK S	START PHASE			0 1 1 1	1 1 1 1
DEF-V	1C	BLK SW			WIDE	V-BLK STOP P	HASE			0 0 0 0	0 0 0 0
DCI - V	1D	NOISE D	ET LEVEL			WIDE P-MUTE	START PHASE			1 0 1 1	1 1 1 1
	1E	N COMB			WIDE	P-MUTE STOP F	PHASE			0 0 0 0	0 0 0 0

Note: * Data is ignored.

READ-IN DATA Slave address : 89H (Pin28-High : 8BH)

I		MSB							LSB
ı		7	6	5	4	3	2	1	0
	00	PORES	COLOR	SYSTEM	X'	tal	V-FREQ	V-STD	N-DET
	01	LOCK	RGBOUT	Y ₁ -IN	UV-IN	Y ₂ -IN	Н	V	V-GUARD

BUS CONTROL FUNCTION WRITE FUNCTION

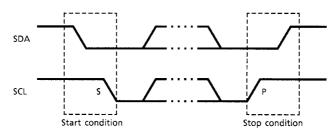
ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	_	8bit	-18dB~0dB	80h MAX - 5.0dB
BRIGHT	_	8bit	-1V~1V	80h 0V
COLOR	_	8bit	~0dB	80h -6dB
TINT	_	7bit	-45°~45°	40h 0°
P / N KIL	P / N KILLER sensitivity control	1bit	Normal / Low	00h NORMAL
SHARPNESS	_	6bit	-6dB~12dB	20h +3dB
DTrp-SW	Trap ON / OFF	1bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1bit	Normal / Monitor	00h Normal
B-Mon	(Pin 35 : Bo, Pin 36 : Ro)	1bit	Normal / Monitor	00h Normal
Y SUB CONTRAST	_	5bit	-3dB~+3dB	10h 0dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8bit	-18dB~0dB	80h MAX - 5.0dB
Υγ	γ ON / OFF	1bit	OFF / 95 IRE	00h ON
WPL SW	White peak limit level	1bit	130 IRE / OFF	00h 130 IRE
BLUE BACK MODE	Luminance selector switch	2bit	IRE; OFF, 40, 50, 50	00H OFF
Y-DL SW	Y-DL TIME (28, 33, 38, 43, 48)	3bit	280~480ns after Y IN	04h 480ns
G DRIVE GAIN	_	8bit	-5dB~3dB	80h 0dB
B DRIVE GAIN	_	8bit	-5dB~3dB	80h 0dB
HORIZONTAL POSITION	Horizontal position adjustment	5bit	−3µs~+3µs	10h 0µs

Note:

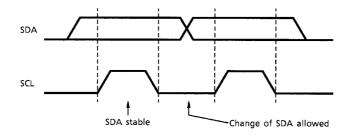
ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
AFC MODE	AFC1 detection sensitivity selector	2bit	dB; AUTO, 0, -10, -10	00h AUTO
H-CK SW	HOUT generation clock selector	1bit	384fh-VCO, FSC-VCXO	01h FSC-VCXO
R CUT OFF	_	8bit	-0.5~0.5V	00h −0.5V
G CUT OFF	_	8bit	-0.5~0.5V	00h −0.5V
B CUT OFF	_	8bit	-0.5~0.5V	00h −0.5V
B. S. OFF	Black expansion ON / OFF	1bit	ON / OFF	00h ON
C-TRAP	Chroma Trap ON / OFF SW	1bit	ON / OFF	00h ON
FST SW	Adjustment of Black level of color difference	1bit	OFF / ON	00h OFF
C-TOF	P / N TOF ON / OFF SW	1bit	ON / OFF	00h ON
P / N GP	PAL GATE position	1bit	Standard / 0.5µs delay	00h Standard
CL-L SW	COLOR LIMIT ON / OFF	1bit	ON / OFF	00h ON
WBLK SW	WIDE V-BLK ON / OFF	1bit	OFF / ON	00h OFF
WMUT SW	WIDE Picture-MUTE ON / OFF	1bit	OFF / ON	00h OFF
3.58 Trap	C Trap-f ₀ , force	1bit	AUTO / Forced 3.58MHz	00h AUTO
	3.58MHz switch			
F-B / W	Force B / W switch	1bit	AUTO / Forced B / W	00h AUTO
X'tal MODE	APC oscillation frequency selector switch	3bit	000 ; European system AUTO 001 ; 3N 010 ; 4P 011 ; 4P (N inhibited) 100 ; S.American system	European 00h
			AUTO 101; 3N 110; MP 111; NP	system AUTO
COLOR SYSTEM	Chroma system selection	2bit	AUTO, PAL, NTSC	00h AUTO
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
CLL LEVEL	Color limit level adjustment	2bit	91, 100, 108, 116%	02h 108%

3N; 3.58-NTSC, 4P; 4.43-PAL, MP; M-PAL, NP; N-PAL European system auto; 4.43-PAL, 4.43-NTSC, 3.58-NTSC S. American system auto; 3.58-NTSC, M-PAL, N-PAL

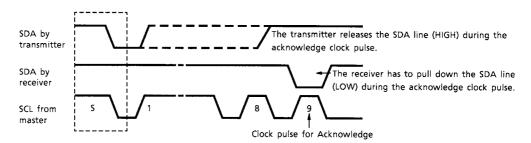
ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
PN CD ATT	P / N color difference amplitude adjustment	2bit	+1~-2dB STEP 1dB	01h OdB
TOF Q	TOF Q adjustment	2bit	1.0, 1.5, 2.0, 2.5	02h 2.0
TOF F ₀	TOF f ₀ adjustment	2bit	kHz; 0, 500, 600, 700	02h 600kHz
VSM PHASE	VSM output phase	2bit	+20ns, +20ns, 0ns, 0ns	02h Ons
VSM GAIN	VSM output gain	2bit	0dB, 0dB, -6dB, OFF	03h OFF
C-TRAP Q	Chroma trap Q control	2bit	1.0, 1.5, 2.0, 2.5	02h 2.0
C-TRAP F ₀	Chroma trap f ₀ control	2bit	kHz; -100, -50, 0, +50	02h 0kHz
BLACK STRETCH POI	Black expansion start point setting	3bit	28~70% IRE×0.4	05h 56% IRE
DC TRAN RATE	Direct transmission compensation degree selection	3bit	100~130% APL	00h 100%
APA-CON PEAK F ₀	Sharpness peak frequency selection	2bit	kHz ; 2.5, 3.1, 4.2, OFF	02h 4.2kHz
ABL POINT	ABL detection voltage	3bit	ABL point ; 6.5V~5.9V	00h 6.5V
ABL GAIN	ABL sensitivity	3bit	Brightness ; 0~-2V	00h 0V
HALF TONE SW	Halftone gain selection	2bit	−3dB, −6dB, OFF, OFF	00h −3dB
H BLK PHASE	Horizontal blanking end position	3bit	0~3.5µs step 0.5µs	00h 0μs
V FREQ	Vertical frequency	2bit	AUTO, 60Hz Forced 60, 50, 60	00h AUTO
V OUT PHASE	Vertical position adjustment	3bit	0~7H STEP 1H	00h 0H
V-AMPLITUDE	Vertical amplitude selection	7bit	-50~50%	40h 0%
1bit DAC	1bit DAC output	1bit	LOW, HIGH	00h LOW
V CENTERING	V Centering	6bit	1~4V	20h 2.5V
COINCIDENT MODE	Discriminator output signal selection	2bit	00; DSYNC 01; DSYNC×AFC 10; Field counting 11; VP is present.	02h Field counting
V S-CORRECTION	Vertical S-curve correction	7bit	Reverse S-curve, S-curve	40h —
V-MODE	Force Sync Mode Selection	1bit	TELETEXT / Normal	01h Normal
DRG SW	Drive reference axis selection	1bit	R/G	00h R
V LINEARITY	Vertical linearity correction	5bit	(one side)	00h —
ND SW	Noise Det SW	1bit	Normal, Low	00h Normal
V-CD MD	Vertical count-down mode selection	1bit	AUTO / Force synchronization	00h AUTO


ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
DRV CNT	All drive gains forced centering switch	1bit	OFF / Force centering	00h OFF
VAGC SP	Vertical ramp time constant selection	1bit	Normal / High speed	01h High speed
MUTE MODE	OFF, RGB mute, Y mute, transverse	2bit	OFF, RGB, Y, Transverse	01h RGB
WIDE V-BLK START PH	Vertical pre-position selection	6bit	-64~-1H STEP 1H	3Fh −1H
BLK SW	Blanking ON / OFF	1bit	ON / OFF	00h ON
WIDE V-BLK STOP PH	Vertical post-position selection	7bit	0~128H STEP 1H	00h 0H
NOISE DET LEVEL	Noise detection level selection	2bit	ND SW Normal : 0.15, 0.125, 0.1, 0.075 Low : 0.5, 0.475, 0.45, 0.425	02h 0.1
WIDE P-MUTE START PH	Video mute pre-position selection	6bit	-64~-1H STEP 1H	3Fh -1H
N COMB	1H addition selection	1bit	OFF / ADD	00h OFF
WIDE P-MUTE STOP PH	Video mute post-position selection	7bit	0~128H STEP 1H	00h 0H

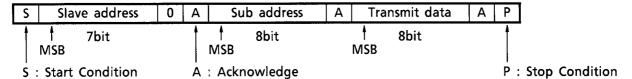
READ-IN FUNCTION


ITEM	DESCRIPTION	NUMBER OF BITS	
PONRES	0 : POR cancel, 1 : POR ON	1bit	
COLOR SYSTEM	00 : B / W, 01 : PAL	2bit	
COLOR STSTEW	10 : NTSC, 11 :	2011	
	00 : 4.433619MHz		
X'tal	01 : 3.579545MHz	2bit	
	10 : 3.575611MHz (M-PAL)	2011	
	11 : 3.582056MHz (N-PAL)		
V-FREQ	0 : 50Hz, 1 : 60Hz	1bit	
V-STD	0 : NON-STD, 1 : STD	1bit	
N-DET	0 : Low, 1 : High	1bit	
LOCK	0 : UN-LOCK, 1 : LOCK	1bit	
RGBOUT, Y ₁ -IN	Self-diagnosis	1bit each	
UV-IN, Y ₂ -IN, H, V	0 : NG, 1 : OK	TDIL EACTI	
V-GUARD	Detection of breaking neck	1bit	
V-GUARD	0 : Abnormal, 1 : Normal	TOIL	

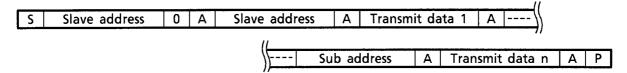
DATA TRANSFER FORMAT VIA I²C BUS


Start and stop condition

Bit transfer



Acknowledge



Data transmit format 1

Data transmit format 2



Data receive format

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

Optional data transmit format : Automatic increment mode

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CCMAX}	12	V
Permissible Loss	P _{DMAX}	2190 (Note)	mW
Power Consumption Declining Degree	1 / Q _{ja}	17.52	mW / °C
Input Terminal Voltage	V _{in}	GND-0.3~V _{CC} +0.3	V
Input Signal Voltage	e _{in}	7	V _{p-p}
Operating Temperature	T _{opr}	-20~65	°C
Conserving Temperature	T _{stg}	-55~150	°C

Note: In the condition that IC is actually mounted. See the diagram below.

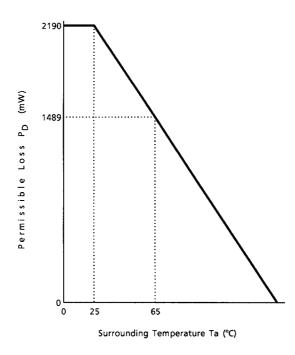


Fig. Power consumption declining curve relative to temperature change

RECOMMENDED CONDITION IN USE

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.25	V
Supply Voltage	Pin 8, pin 38, pin 41	4.75	5.0	5.25	V
Video Input Level		0.9	1.0	1.1	
Chroma Input Level	100% White, negative sync	0.9	1.0	1.1	V _{p-p}
Sync Input Level		0.9	1.0	2.2	
FBP Width	_	11	12	13	μs
Incoming FBP Current (Note)	_	_	_	1.5	mA
H. Output Current	_	_	1.0	2.0	IIIA
RGB Output Current	_	_	1.0	2.0	
Analog RGB Input Level	-	_	0.7	8.0	V
OCD DCD Input Lovel	In TEXT input	0.7	1.0	1.3	V
OSD RGB Input Level	In OSD input	_	4.2	5.0	
Incoming Current to Pin 49	Sync-out	_	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $H.V_{CC}-2V_f$ ($V_f\approx 0.75V$). Confirming the power supply voltage, determine the high level of FBP.

ELECTRICAL CHARACTERISTIC (Unless otherwise specified, H, RGB V_{CC} = 0V, V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V, Ta = 25±3°C) CURRENT CONSUMPTION

PIN No.	CHARACTERISTIC	SYMBOL	TEST CIR-CUIT	MIN	TYP.	MAX	UNIT
3	H.V _{CC} (9V)	I _{CC1}	_	16.0	19.0	23.5	
8	V _{DD} (5V)	I _{CC2}	I	8.8	11.0	14.0	
17	RGB V _{CC} (9V)	I _{CC3}	_	25.0	31.5	39.0	mA
38	Fsc V _{CC} (5V)	I _{CC4}	_	6.8	8.5	11.0	
41	Y / C V _{CC} (9V)	I _{CC5}	_	80	100	130	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR-CUIT	MIN	TYP.	MAX	UNIT
16	ABCL	V ₁₆	_	5.9	6.4	6.9	V
18	OSD R Input	V ₁₈	_	_	0	0.3	V
19	OSD G Input	V ₁₉	_	_	0	0.3	V
20	OSD B Input	V ₂₀	_	_	0	0.3	V
21	Digital Ys	V ₂₁	_	_	0	0.3	V
22	Analog Ys	V ₂₂	_	_	0	0.3	V
23	Analog R Input	V ₂₃	_	4.2	4.6	5.0	V
24	Analog G Input	V ₂₄	_	4.2	4.6	5.0	V
25	Analog B Input	V ₂₅	_	4.2	4.6	5.0	V
28	DAC	V ₂₈	_	1.7	2.0	2.3	V
31	Y ₂ Input	V ₃₁	_	1.7	2.0	2.3	V
33	B-Y Input	V ₃₃	_	2.2	2.5	2.8	V
34	R-Y Input	V ₃₄	_	2.2	2.5	2.8	V
35	R-Y Output	V ₃₅	_	1.5	1.9	2.3	V
36	B-Y Output	V ₃₆	_	1.5	1.9	2.3	V
37	Y ₁ Output	V ₃₇	_	1.9	2.3	2.7	V
40	16.2MHz X'tal Oscillation	V ₄₀	_	3.6	4.1	4.6	V
42	Chroma Input	V ₄₂	_	2.0	2.4	2.8	V
50	V-Sepa.	V ₅₀	_	5.4	5.9	6.4	V

AC CHARACTERISTIC Video section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp	_	(Note Y ₁)	2.0	2.2	2.4	V
Chromo Tran Fraguency	ftr3	_	(Note V.)	3.429	3.58	3.679	MHz
Chroma Trap Frequency	ftr4	_	(Note Y ₂)	4.203	4.43	4.633	IVITZ
Chroma Trap Attenuation	Gtr3a	_	(Note Va)	20	26	52	
(3.58MHz)	Gtr3f	_	(Note Y ₃)	20	20	52	٩D
(4.43MHz)	Gtr4	_	(Note Y ₄)	20	26	52	dB
(D-Trap)	Gtrs	_	(Note Y ₅)	18	26	52	
Yγ Correction Point	үр	_	(Note Y ₆)	90	95	99	_
Yγ Correction Curve	үс	_	(Note Y ₇)	2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Zo44	_	(Note Y ₈)	15	20	25	kΩ
DC Transmission	Adrmax		(Nata X/)	0.11	0.13	0.15	
Compensation Amplifier Gain	Adrcnt	_	(Note Y ₉)	0.44	0.06	0.08	times
Maximum Gain of Black Expansion Amplifier	Ake	_	(Note Y ₁₀)) 1.20 1.5 1.65	unes		
	VBS9MX	_		65	77.5	80	- IRE
	VBS9CT	_		55	62.5	70	
	VBS9MN	_		48	55.5	63	
Black Expansion Start Point	VBS2MX	_	(Note Y ₁₁)	35	42.5	50	
	VBS2CT	_		25	31.5	38	
	VBS2MN	_		19	25.5	32	
Black Peak Detection Period (Horizontal)	TbpH	_	(Note Y ₁₂)	15	16	17	μs
(Vertical)	TbpV	_		33	34	35	Н
	fp25	_		1.5	2.5	3.4	
Picture Quality Control Peaking Frequency	fp31	_	(Note Y ₁₃)	1.9	3.1	4.3	MHz
	fp42	_		3.0	4.2	5.4	
	GS25MX	_		12.0	14.5	17.0	
Picture Quality Control Maximum Characteristic	GS31MX	_	(Note Y ₁₄)	12.0	14.5	17.0	
	GS42MX	_		10.6	13.5	16.4	
	GS25MN	_		-22.0	-19.5	-17.0	
Picture Quality Control Minimum Characteristic	GS31MN	_	(Note Y ₁₅)	-22.0	-19.5	-17.0	
	GS42MN	_		-19.5	-16.5	-13.5	dB
	GS25CT	_		6.0	8.5	11.0	
Picture Quality Control Center Characteristic	GS31CT	_	(Note Y ₁₆)	6.0	8.5	11.0	
	GS42CT	_		4.6	7.5	10.4	
Y Signal Gain	Gy	_	(Note Y ₁₇)	-1.0	0	1.6	
Y Signal Frequency Characteristic	Gfy	_	(Note Y ₁₈)	-6.5	0	1.0	
Y Signal Maximum Input Range	Vyd		(Note Y ₁₉)	0.9	1.2	1.5	V

Chroma section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N _{eAT}	_		30	35	90	m\/
	3N _{F1T}	_		68	85	105	mV _{p-p}
ACC Characteristic f = 2.59	3N _{AT}	_		0.9	1.0	1.1	
ACC Characteristic $f_0 = 3.58$	3N _{eAE}	_		18	35	_	ļ <u>"</u>
	3N _{F1E}	_		71	85	102	times
	3N _{AE}	_	(NI-4- Q)	0.9	1.0	1.1	
	4N _{eAT}	_	(Note C ₁)	18	35	_	
	4N _{F1T}	_		71	85	102	mV _{p-p}
	4N _{AT}	_		0.9	1.0	1.1	F F
$f_0 = 4.43$	4N _{eAE}	_		18	35	_	
	4N _{F1E}	_		71	85	102	times
	4N _{AE}	_		0.9	1.0	1.1	
	3Nfo ₀	_		3.43	3.579	3.73	
Band Pass Filter Characteristic	3Nfo ₅₀₀	_		3.93	4.079	4.23	
f _o = 3.58	3Nfo ₆₀₀	_		4.03	4.179	4.33	
	3Nfo ₇₀₀	_	44 .	4.13	4.279	4.43	
	4Nfo ₀	_	(Note C ₂)	4.28	4.433	4.58	
	4Nfo ₅₀₀	_		4.78	4.933	4.58	
$f_0 = 4.43$	4Nfo ₆₀₀	_		4.88	5.033	5.18	
	4Nfo ₇₀₀	_		4.98	5.133	5.28	
	fo ₀	_					
Band Pass Filter, -3dB Band	fo ₅₀₀	_					
Characteristic $f_0 = 3.58$	fo ₆₀₀	_		1.64	1.79	1.94	
	fo ₇₀₀	_					
	fo ₀	_	(Note C ₃)				MHz
fo	fo ₅₀₀	_					
f _o = 4.43	fo ₆₀₀	_		2.07	2.22	2.37	
	fo ₇₀₀	_					
	Q ₁	_		_	3.58	_	
Band Pass Filter, Q	Q _{1.5}	_			2.39	_	
Characteristic Check $f_0 = 3.58$	Q _{2.0}	_		1.64	1.79	1.94	
	Q _{2.5}	_		_	1.43	_	
	Q ₁	_	(Note C ₄)	_	4.43	_	
	Q _{1.5}	_		_	2.95	_	
$f_0 = 4.43$	Q _{2.0}	_		2.07	2.22	2.37	
	Q _{2.5} —						

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	fo ₀	_		1.45	1.60	1.75	
1 / 2 f _C Trap Characteristic	fo ₅₀₀	_		1.70	1.85	2.00	
f _O = 3.58	fo ₆₀₀	_		1.75	1.90	2.06	
	fo ₇₀₀	_	(Note C ₅)	1.80	1.95	2.10	MHz
	fo ₀	_	(Note C5)	1.85	2.00	2.15	IVII IZ
f _O = 4.43	fo ₅₀₀	_		2.00	2.15	2.30	
1 ₀ – 4.43	fo ₆₀₀	_		2.05	2.20	2.35	
	fo ₇₀₀	_		2.10	2.25	2.40	
	3ΝΔθ1	_		35.0	45.0	55.0	
Tint Control Range	3ΝΔθ2	_	(Nata O.)	-55.0	-45.0	-35.0	
$(f_0 = 600kHz)$	4ΝΔθ1	_	(Note C ₆)	25.0	45.0	FF 0	0
	4ΝΔθ2	_		35.0	45.0	55.0	
Tint Control Variable Range	3ΝΔθΤ	_	(Nata C.)	70.0	00.0	110.0	
(f _O = 600kHz)	4ΝΔθΤ	_	(Note C ₇)	70.0	90.0	110.0	
	3T0Tin	_	(Note C ₈)	00	40	47	L:4
	3EθTin	_		39	40	47	bit
Tint Control Chamataristic	3N∆Tin	_		73	80	87	Step
Tint Control Characteristic	4TθTin	_		20	40	47	hit
	4EθTin	_		39	40	47	bit
	4N∆Tin	_		73	80	87	Step
	4.433PH	_		350	500	1500	
APC Lead-In Range	4.433PL	_		-350	-500	-1500	
(Lead-In Range)	3.579PH	_		350	500	1700	
	3.579PL	_	(Nata C.)	-350	-500	-1700	
	4.433HH	_	(Note C ₉)	400	500	1100	Hz
(Variable Dance)	4.433HL	_		-400	-500	-1100	
(Variable Range)	3.579HH	_		400	500	1100	
	3.579HL	_		-400	-500	-1100	
	3.58β3	_		1.50	2.2	2.90	
ADC Control Consistinists	4.43β3	_	(Note 0)	1.70	2.4	3.10	
APC Control Sensitivity	M-PALβM	_	(Note C ₁₀)	1.50	2.0	2.00	_
	N-PALβN	_		1.50	2.2	2.90	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-VTK1	_		1.8	2.5	3.2	
	3N-VTC1	_		2.2	3.2	4.0	
	3N-VTK2	_		2.5	3.6	4.5	
	3N-VTC2	_		3.2	4.5	5.6	
	4N-VTK1	_		1.8	2.5	3.2	
	4N-VTC1	_		2.2	3.2	4.0	
	4N-VTK2	_		2.5	3.6	4.5	
	4N-VTC2	_		3.2	4.5	5.6	
	4P-VTK1	_		1.8	2.5	3.2	
Killer On anation In mot Leave	4P-VTC1	_	(1)-4- (2)	2.2	3.2	4.0	
ler Operation Input Level 4P-VTK2 — (Note C ₁₁) 2.5 3.6 4.5							
	4P-VTC2	_		3.2	4.5	5.6	
	MP-VTK1	_		1.8	2.5	3.2	
	MP-VTC1	_		2.2	3.2	4.0	.,
	MP-VTK2	_		2.5	3.6	4.5	- mV _{p-p}
	MP-VTC2	_		3.2	4.5	5.6	
	NP-VTK1	_		1.8	2.5	3.2	
	NP-VTC1	_		2.2	3.2	4.0	
	NP-VTK2	_		2.5	3.6	4.5	
	NP-VTC2	_		3.2	4.5	5.6	
	3NeB-Y	_		320	380	460	
	3NeR-Y	_		240	290	350	
Color Difference Output	4NeB-Y	_		320	380	460	
(Rainbow Color Bar)	4NeR-Y	_		240	290	350	
	4PeB-Y	_	(Note C ₁₂)	360	430	520	
	4PeR-Y	_		200	240	290	
	4Peb-y	_		540	650	780	
(75% Color Bar)	4Per-y	_		430	510	610	
	3NG _{R / B}	_		0.69	0.77	0.86	
Demodulation Relative Amplitude	4NG _{R / B}	_	(Note C ₁₃)	0.70	0.77	0.85	times
·	4PG _{R / B}	_	, 10/	0.49	0.56	0.64	
	3NθR-B	_		85	93	100	
Demodulation Relative Phase	4NθR-B	_	(Note C ₁₄)	87	93	99	0
	4PθR-B	_	(14/	85	90	95	1
	3N-SCB	_			-		
	3N-SCR	_					
Demodulation Output Residual Carrier	4N-SCB	_	(Note C ₁₅)	0	5	15	mV _{p-p}
	4N-SCR	_					

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-HCB	_					m)/
Demodulation Output Residual Higher	3N-HCR	_	(Note C ₁₆)	0	10	30	
Harmonic	4N-HCB	_		U	10	30	mV _{p-p}
	4N-HCR	_					
	B-Y - 1dB	_		-1.20	-0.9	-0.60	
Color Difference Output ATT Check	B-Y - 2dB	_	(Note C ₁₇)	-2.30	-1.7	-1.55	dB
	B-Y+1dB	_		0.60	0.8	1.20	
16.2MHz Oscillation Frequency	ΔfoF	_	(Note C ₁₈)	-2.0	0	2.0	kHz
16.2MHz Oscillation Start Voltage	VFon1	_	(Note C ₁₉)	3.0	3.2	3.4	V
f _{sc} Free-Run Frequency (3.58M)	3fr	ı		-100	50	200	
(4.43M)	4fr	_	(Note C ₂₀)	-125	25	175	Hz
(M-PAL)	Mfr	_		-123	25	173	
(N-PAL)	Nfr	_		-140	10	160	
f Output Amplitudo	4.43e27	_	(Note Car)	420	500	580	m\/
f _{sc} Output Amplitude	3.58e27	_	(Note C ₂₁)	420	500	560	mV _{p-p}
f Output DC Voltage	3.58eV27	_		2.6	2.9	3.2	V
f _{sc} Output DC Voltage	0th V27	_	_	1.6	1.9	2.2	V

DEF section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO		(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	_	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	fH1	_	(Note DH3)	15.5	15.625	15.72	kHz
H. Output Frequency 2	fH2	_	(Note DH4)	15.62	15.734	15.84	KIIZ
H. Output Duty 1	Нф1	_	(Note DH5)	39	41	43	%
H. Output Duty 2	Нф2	_	(Note DH6)	35	37	39	70
H. Output Duty Switching Voltage 1	V ₅₋₁	_	(Note DH7)	1.2	1.5	1.8	
H. Output Voltage	VHH	_	(Note DH8)	4.5	5.0	5.5	V
H. Output Voltage	VHL	_	(Note Dno)	_	_	0.5	V
H. Output Oscillation Start Voltage	VHS	_	(Note DH9)	_	5.0	_	
H. FBP Phase	φFBP	_	(Note DH10)	6.2	6.9	7.6	
H. Picture Position, Maximum	HSFTmax	_	(Note DH11)	17.7	18.4	19.1	
H. Picture Position, Minimum	HSFTmin	_	(Note DH12)	12.4	13.1	13.8	μs
H. Picture Position Control Range	ΔHSFT	_	(Note DH13)	4.5	5.3	6.1	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Distortion Correction Control Range	ΔНСС	_	(Note DH14)	0.5	1.0	1.5	μs / V
H. BLK Phase	φBLK	_	(Note DH15)	6.2	6.9	7.6	
H. BLK Width, Minimum	BLKmin	_	(Note DH16)	9.8	10.5	11.3	
H. BLK Width, Maximum	BLKmax	_	(Note DH17)	13.2	14.0	14.7	
P / N-GP Start Phase 1	SPGP1	_	(Note DH18)	3.45	3.68	3.90	μs
P / N-GP Start Phase 2	SPGP2	_	(Note DH19)	3.95	4.18	4.40	
P / N-GP Gate Width 1	PGPW1	_	(Note DH20)	1.65	1.75	1.85	
P / N-GP Gate Width 2	PGPW2	_	(Note DH21)	1.70	1.75	1.85	
Noise Detection Level 1	NL1	_	(Note DH22)	0.15	0.2	0.25	
Noise Detection Level 2	NL2	_	(Note DH23)	0.1	0.18	0.26	.,
Noise Detection Level 3	NL3	_	(Note DH24)	0.1	0.15	0.2	V
Noise Detection Level 4	NL4	_	(Note DH25)	0.08	0.13	0.2	
V. Ramp Amplitude	Vramp	_	(Note DV1)	1.62	2.0	2.08	
V. NF Maximum Amplitude	VNFmax	_	(Note DV2)	3.2	3.5	3.8	V _{p-p}
V. NF Minimum Amplitude	VNFmin	_	(Note DV3)	0.8	1.0	1.2	
V. Amplification Degree	GVA	_	(Note DV4)	20	26	32	dB
V. Amplifier Max. Output	Vvmax	_	(Note DV5)	5.0	_	_	V
V. Amplifier Min. Output	Vvmin	_	(Note DV6)	0	_	1.5	v
V. S-Curve Correction, Max. Correction Quantity	V _S	_	(Note DV7)	9	11	13	
V. Reverse S-Curve Correction, Max. Correction Quantity	V _{SR}	_	(Note DV8)	9 	11	13	%
V. Linearity Max. Correction Quantity	V_{L}	_	(Note DV9)	9	20	31	

		TEST					
CHARACTERISTIC	SYMBOL	CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	φAFCf	_	(Note DV10)	2.6	3.2	3.8	
AFC-MASK Stop Phase	φAFCe	_	(Note DV11)	4.4	5.0	5.6	
VNFB phase	φVNFB	_	(Note DV12)	0.45	0.75	1.05	
V. Output Maximum Phase	Vømax	_	(Note DV13)	7.3	8.0	8.7	
V. Output Minimum Phase	Vφmin	_	(Note DV14)	0.5	1.0	1.5	Н
V. Output Phase Variable Range	ΔVφ	_	(Note DV15)	6.3	7.0	7.7	п
50 System VBLK Start Phase	V50BLKf	_	(Note DV16)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	_	(Note DV17)	20	23	26	
60 System VBLK Start Phase	V60BLKf	_	(Note DV18)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	_	(Note DV19)	15	18	21	
Pin 56 VBLK Max Voltage	V56H	_		4.7	5.0	5.3	V
Pin 56 VBLK Min Voltage	V56L	_		0	_	0.3	V
V. Lead-In Range 1	VAcaL	_	(Note DV20)	_	232.5	_	
V. Leau-III Karige 1	VAcaH	_	(Note DV20)	_	344.5	_	Hz
V Lond In Dance 2	V60caL	_	(Note DV21)	_	232.5	_	ПZ
V. Lead-In Range 2	V60caH	_	(Note DV21)	_	294.5	_	
W-VBLK Start Phase	SWVB	_	(Note DV22)	9		88	
W-PMUTE Start Phase	SWP	_	(Note DV23)	9	_	00	Н
W-VBLK Stop Phase	STWVB	_	(Note DV24)	10		100	
W-PMUTE Stop Phase	STWP	_	(Note DV25)	10	_	120	
V Centering Center Voltage	V51	_	(Note DV26)		4.55		
V Centering Max Voltage	V51Max	_	(Note DV27)		6.30		
V Centering Min Voltage	V51Min	_	(Note DV28)		2.75		V
Pin 28 DAC Output Voltage (High)	V28H	_		4.0	4.5	5.0	
Pin 28 DAC Output Voltage (Low)	V28L	_		_	0	0.1	

1H DL section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
1HDL Dynamic Range, Direct	VNBD	_	(Note H ₁)	0.8	1.2	_	
Tibe Byllamic Nange, Birect	VNRD	_	(Note 11)	0.0	1.2		
1HDL Dynamic Range, Delay	VPBD	_	(Note H ₂)	0.8	1.2		V
Tibe byfiaille Nailge, belay	VPRD	_	(Note 112)	0.0	1.2		V
1HDL Dynamic Range, Direct+Delay	VSBD	_	(Note H ₃)	0.9	1.2		
Tribe byfiainic Nailge, bliedt belay	VSRD	_	(Note 113)	0.9	1.2		
Frequency Characteristic, Direct	GHB1	_	(Note H₄)	-3.0	-2.0	0.5	
Frequency Characteristic, Direct	GHR1	_	(Note H ₄)	-3.0	-2.0	0.5	
Fraguency Characteristic Delay	GHB2	_	(Note II.)	-8.2	-6.5	-4.3	
Frequency Characteristic, Delay	GHR2	_	(Note H ₅)	-0.2	-0.5	-4.3	
AC Coin Direct	GBY1	_	(Note III.)	2.0	0.5	2.0	٩D
AC Gain, Direct	GRY1	_	(Note H ₆)	-2.0	-0.5	2.0	dB
AC Coin Dolov	GBY2	_	(Note II.)	2.4	0.5	1.1	
AC Gain, Delay	GRY2	_	(Note H ₇)	-2.4	-0.5	1.1	
Direct Delay AC Coin Difference	GBYD	_	(Note II.)	-1.0	0.0	1.0	
Direct-Delay AC Gain Difference	GRYD	_	(Note H ₈)	-1.0	0.0	1.0	
Color Difference Output DC Stenning	VBD	_	(Note III.)	- 5	0.0	5	mV
Color Difference Output DC Stepping	VRD	_	(Note H ₉)	-5	0.0	5	IIIV
411 Dalay Overstite	BDt	_	(Note 11)	00.7	04.0	C4.4	
1H Delay Quantity	RDt	_	(Note H ₁₀)	63.7	64.0	64.4	μs
Color Difference Output	Bomin	_		22	36	55	
DC-Offset Control	Bomax	_	(1)-4-11	-55	-36	-22	
Bus-Min Data	Romin	_	(Note H ₁₁)	22	36	55	.,
Bus-Max Data	Romax	_		-55	-36	-22	mV
Color Difference Output DC-Offset	Bo1	_	/Nat-11 \	4	4	0	
Control / Min. Control Quantity	Ro1	_	(Note H ₁₂)	1	4	8	
NITOO Mada Oaka (NITOO OOM O.)	GNB	_	(1)	-0.90	0	1.20	-ID
NTSC Mode Gain / NTSC-COM Gain	GNR	_	(Note H ₁₃)	0.92	0	1.58	dB

Text section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcp31	_		1.7	2.0	2.3	
Y Color Difference Clamping Voltage	Vcp33	_	(Note T ₁)	2.2	2.5	2.8	
	Vcp34	_		2.2	2.5	2.0	
	Vc12mx	_		2.50	3.00	3.50	
	Vc12mn	_		0.21	0.31	0.47	
	D12c80	_		0.83	1.24	1.86	V
	Vc13mx	_		2.50	3.00	3.50	V
Contrast Control Characteristic	Vc13mn	_	(Note T ₂)	0.21	0.31	0.47	
	D13c80	_		0.83	1.24	1.86	
	Vc14mx	_		2.50	3.00	3.50	
	Vc14mn	_		0.21	0.31	0.47	
	D14c80	_		0.83	1.24	1.86	
	Gr	_					
AC Gain	Gg	_	(Note T ₃)	2.8	4.0	5.2	times
	Gb	_					
Frequency Characteristic	Gf	_	(Note T ₄)	_	-1.0	-3.0	dB
Y Sub-Contrast Control Characteristic	ΔVscnt	_	(Note T ₅)	3.0	6.0	9.0	
Y ₂ Input Range	Vy2d	_	(Note T ₆)	0.7	_	_	
	Vn12mx	_		1.6	2.3	4.3	
	Vn12mn	_		0.17	0.35	0.42	
	D12n80	_		0.67	1.16	1.68	
	Vn13mx	_		1.6	2.3	4.3	V
	Vn13mn	_		0.17	0.35	0.42	
Unicolor Control Characteristic	D13n80	_	(Note T ₇)	0.67	1.16	1.68	
	Vn14mx	_		1.6	2.3	4.3	
	Vn14mn	_		0.17	0.26	0.42	
	D14n80	_		0.67	1.16	1.68	
	ΔV13un	_		16	20	24	dB
	Mnr-b	_		0.70	0.77	0.85	
Relative Amplitude (NTSC)	Mng-b	_	(Note T ₈)	0.30	0.34	0.38	times
	θnr-b	_		87	93	99	_
Relative Phase (NTSC)	θng-b	_	(Note T ₉)	235	241.5	248	•
	Mpr-b	_		0.50	0.56	0.63	
Relative Amplitude (PAL)	Mpg-b	_	(Note T ₁₀)	0.30	0.34	0.38	times
	θpr-b			86	90	94	
Relative Phase (PAL)	θpg-b	_	(Note T ₁₁)	232	237	242	۰

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcmx	_		1.50	1.80	2.10	V _{p-p}
Color Control Characteristic	e _{col}	_	(Note T ₁₂)	80	128	160	step
	Δ_{col}	_		142	192	242	step
	e _{cr}	_					
Color Control Characteristic, Residual Color	e _{cg}	_	(Note T ₁₃)	0	12.5	25	m\/
	e _{cb}	_					mV _{p-p}
Chroma Input Range	Vcr	_	(Note T ₁₄)	700	_	_	
Brightness Central Characteristic	Vbrmx	_	(Note T)	3.05	3.45	3.85	
Brightness Control Characteristic	Vbrmn	_	(Note T ₁₅)	1.05	1.35	1.65	V
Brightness Center Voltage	Vbcnt	_	(Note T ₁₆)	2.05	2.30	2.55	
Brightness Data Sensitivity	ΔVbrt	_	(Note T ₁₇)	6.3	7.8	9.4	\/
RGB Output Voltage Axes Difference	ΔVbct	_	(Note T ₁₈)	-150	0	150	mV
White Peak Limit Level	Vwpl	_	(Note T ₁₉)	2.63	3.25	3.75	
Out off Our trad Object standards	Vcomx	_	(NI-4- T.)	2.55	2.75	2.95	.,
Cutoff Control Characteristic	Vcomn	_	(Note T ₂₀)	1.55	1.75	1.95	V
Cutoff Center Level	Vcoct	_	(Note T ₂₁)	2.05	2.3	2.55	
Cutoff Variable Range	ΔDcut	_	(Note T ₂₂)	2.3	3.9	5.5	mV
Drive Wariahla Dan va	DR+	_	(NI-4- T.)	2.7	3.85	5.0	-ID
Drive Variable Range	DR-	_	(Note T ₂₃)	-6.5	-5.6	-4.7	dB
DC Regeneration	TDC	_	(Note T ₂₄)	0	50	100	mV
RGB Output S / N Ratio	SNo	_	(Note T ₂₅)	_	-50	-45	dB
Blanking Bulga Outrott Lavel	Vv	_	(NI-4- T.)	0.7	4.0	4.0	
Blanking Pulse Output Level	Vh	_	(Note T ₂₆)	0.7	1.0	1.3	V
Blanking Pulse Delay Time	t _{don}	_	(Note T ₂₇)	0.05	0.25	0.45	μs
Dianking Fulse Delay Filme	t _{doff}	_	(Note 12/)	0.05	0.35	0.85	μδ
RGB Min. Output Level	Vmn	_	(Note T ₂₈)	0.8	1.0	1.2	
RGB Max. Output Level	Vmx	_	(Note T ₂₉)	6.85	7.15	7.45	V
Halftone Ys Level	Vthtl	_	(Note T ₃₀)	0.7	0.9	1.1	
Halftone Gain 1	G3htl3	_	(Note T ₃₁)	-4.5	-3.0	-1.5	dB
Halftone Gain 2	G6htl3	_	(Note T ₃₂)	- 7.5	-6.0	-4.5	αв
Text ON Ys Level	Vttxl	_	(Note T ₃₃)	1.8	2.0	2.2	
Text / OSD Output, Low Level	Vtxl13	_	(Note T ₃₄)	-0.45	-0.25	-0.05	
Text RGB Output, High Level	Vmt13	_	(Note T ₃₅)	1.15	1.4	1.85	
OSD Ys ON Level	Vtosl	_	(Note T ₃₆)	2.8	3.0	3.2	V
OSD RGB Output, High Level	Vmos13	_	(Note T ₃₇)	1.75	2.15	2.55	
Text Input Threshold Level	Vtxtg	_	(Note T ₃₈)	0.7	1.0	1.3	
OSD Input Threshold Level	Vosdg	_	(Note T ₃₉)	1.7	2.0	2.3	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	T _{Rosr}	_					
OSD Mode Switching Rise-Up Time	T _{Rosg}	_	(Note T ₄₀)	_	40	100	ns
	T _{Rosb}	_					
	t _{PRosr}						
OSD Mode Switching Rise-Up Transfer Time	t _{PRosg}		(Note T ₄₁)	_	40	100	ns
	t _{PRosb}						
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRos}	1	(Note T ₄₂)	_	15	40	ns
	TFosr	_					
OSD Mode Switching Breaking Time	T _{Fosg}		(Note T ₄₃)	_	30	100	ns
	T _{Fosb}						
	t _{PFosr}	_					
OSD Mode Switching Breaking Transfer Time	t _{PFosg}	_	(Note T ₄₄)	_	30	100	ns
	t _{PFosb}	_					
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Δt _{FRos}	-	(Note T ₄₅)	_	20	40	ns
	TRoshr	_					
OSD Hi DC Switching Rise-Up Time	TRoshg	_	(Note T ₄₆)	_	20	100	ns
	TRoshb	_					
	t _{PRohr}						
OSD Hi DC Switching Rise-Up Transfer Time	t _{PRohg}	_	(Note T ₄₇)	_	20	100	ns
	t _{PRohb}	_					
OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	Δt_{PRoh}	_	(Note T ₄₈)	_	0	40	ns
	TFoshr	_					
OSD Hi DC Switching Breaking Time	TFoshg	_	(Note T ₄₉)	_	20	100	ns
	TFoshb	_					
	t _{PFohr}	_					
OSD Hi DC Switching Breaking Transfer Time	t _{PFohg}		(Note T ₅₀)	_	20	100	ns
	t _{PFohb}	_					
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFoh}	_	(Note T ₅₁)	_	0	40	ns

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vc12mx	_		2.10	2.5	2.97	
	Vc12mn	_		0.21	0.31	0.47	
	D12c80	_		0.84	1.25	1.87	
	Vc13mx	_		2.10	2.5	2.97	
RGB Contrast Control Characteristic	Vc13mn	_	(Note T ₅₂)	0.21	0.31	0.47	V
	D13c80	_		0.84	1.25	1.87	
	Vc14mx	_		2.10	2.5	2.97	
	Vc14mn	_		0.21	0.31	0.47	
	D14c80	_		0.84	1.25	1.87	
Analog RGB AC Gain	Gag	_	(Note T ₅₃)	4.0	5.1	6.3	times
Analog RGB Frequency Characteristic	Gfg	_	(Note T ₅₄)	-0.5	-1.75	-3.0	dB
Analog RGB Dynamic Range	Dr24	_	(Note T ₅₅)	0.5	_	_	
RGB Brightness Control	Vbrmxg	_	(Note T-s)	3.05	3.25	3.45	V
Characteristic	Vbrmng	_	(Note T ₅₆)	1.05	1.25	1.45	V
RGB Brightness Center Voltage	Vbcntg	_	(Note T ₅₇)	2.05	2.25	2.45	
RGB Brightness Data Sensitivity	ΔVbrtg	_	(Note T ₅₈)	6.3	7.8	9.4	mV
Analog RGB Mode ON Voltage	Vanath	_	(Note T ₅₉)	8.0	1.0	1.2	V
	T _{Ranr}	_					
Analog RGB Switching Rise-Up Time	TRang	_	(Note T ₆₀)	_	50	100	
	TRanb	_					
	t _{PRanr}	_					
Analog RGB Switching Rise-Up Transfer Time	t _{PRang}	_	(Note T ₆₁)	_	20	100	
	t _{PRanb}	_					
Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	∆t _{PRas}		(Note T ₆₂)	ı	0	40	ne
	TFanr	_					ns
Analog RGB Switching Breaking Time	TFang	_	(Note T ₆₃)	_	50	100	
	TFanb	_					
	t _{PFanr}	_					
Analog RGB Switching Breaking Transfer Time	t _{PFang}	_	(Note T ₆₄)	_	30	100	
	t _{PFanb}	_					
Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	Δt _{PFas}	_	(Note T ₆₅)	_	0	40	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	TRanhr	_					
Analog RGB Hi Switching Rise-Up Time	TRanhg	_	(Note T ₆₆)	_	50	100	
	TRanhb	_					
	t _{PRahr}	_					
Analog RGB Hi Switching Rise-Up Transfer Time	t _{PRahg}	_	(Note T ₆₇)	_	20	100	
	t _{PRahb}	_					
Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRah}		(Note T ₆₈)	_	0	40	
	t _{Fanhr}	_					ns
Analog RGB Hi Switching Breaking Time	t _{Fanhg}	_	(Note T ₆₉)	_	50	100	
	t _{Fanhb}	_					
Analan DOD Hi Outtakin Danakin s	t _{PFahr}	_					
Analog RGB Hi Switching Breaking Transfer Time	t _{PFahg}	_	(Note T ₇₀)	_	20	100	
	t _{PFahb}	_					
Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFah}		(Note T ₇₁)	_	0	40	
TV-Analog RGB Crosstalk	Crtvag	_	(Note T ₇₂)	-80	-50	-40	dB
Analog RGB-TV Crosstalk	Crantg	_	(Note T ₇₃)	-00	-50	-40	ив
	Vablpl	_		5.5	5.6	5.7	
ABL Point Characteristic	Vablpc	_	(Note T ₇₄)	5.7	5.8	5.9	V
	Vablph	_		5.9	6.0	6.1	
ACL Characteristic	Vcal	_	(Note T ₇₅)	-19	-16	-13	dB
	Vabll	_		-0.3	0	0.3	
ABL Gain Characteristic	Vablc	_	(Note T ₇₆)	-1.3	-1.0	-0.7	V
	Vablh	_		-2.3	-2.0	-1.7	

TEST CONDITION VIDEO SECTION

						ST CON	NDITION					, RGB \	_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S ₄₂	W MOD S ₄₄	E S ₄₅	S ₅₁	04H	SUB-A 08H	DDRES 0FH	S & BUS 10H	3 DATA 13H	14H	MEASURING METHOD
Y ₁	Y Input Pedestal Clamping Voltage	A	C	В	A	A	20H	04H	80H	00H	BAH	03H	 (1) Short circuit pin 45 (Y₁ IN) in AC coupling. (2) Input synchronizing signal to pin 51 (SYNC IN).
													(3) Measure DC voltage at pin 45, and express the measurement result as VYclp.
													(1) Set the 358 TRAP mode to AUTO by setting the bus data.
													(2) Set the bus data so that chroma trap is ON and f_0 is 0.
V	Chroma Trap												(3) Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y_1 IN).
Y ₂	Frequency	1	1	А	В	1	1	1	1	1	1	1	(4) While observing waveform at pin 37 37 (Y _{1out}), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as flr3.
													(5) Change the frequency of the signal 1 to 4.43MHz (PAL) and perform the same measurement as the preceding step 4. The obtained frequency shall be expressed as flr4.
													(1) Set the 358 TRAP mode to AUTO by setting bus data.
													(2) Set the bus data so that Q of chroma trap is 1.5.
													(3) Set the bus data so that f_0 of chroma trap is 0.
													(4) Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y_1 IN).
Y ₃	Chroma Trap Attenuation (3.58MHz)	↑	↑	↑	↑	↑	1	1	Vari- able	Vari- able	Vari- able	↑	(5) While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 (Y _{1out}) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 (Y _{1out}) with the chroma trap being turned off. Gtr = 20log (VToff / VTon)
													(6) Change f ₀ of the chroma trap to −100kHz, −50kHz, 0 and +50kHz, and perform the same measurement as the preceding steps 4 and 5 with the respective f ₀ settings.
													(7) Change Q of the chroma trap to 1, 1.5, 2 and 2.5, and perform the same measurement as the preceding steps 4 through 6. The maximum Gtr shall be expressed as Gtr3a.
													(8) Set the 358 TRAP mode to the forces 358 mode by setting bus data, and perform the same measurement as the preceding steps 2 through 7 (Gtr3f).

						ST CO	NDITION					, RGB ∖	(_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S ₄₂	SW MOD	E S ₄₅	S ₅₁	04H	SUB-A 08H	DDRES 0FH	S & BUS 10H	DATA 13H	14H	MEASURING METHOD
		339	342	544	545	<u> </u>	0411	0011	0111	1011	1311	1411	(1) Set the 358 TRAP mode to AUTO by setting bus data.
													(2) Set the bus data so that Q of chroma trap is 1.5.
	Chroma Trap								Vari-	Vari-	Vari-		(3) Set the bus data so that f ₀ of chroma trap is 0.
Y ₄	Attenuation (4.43MHz)	Α	С	Α	В	Α	20H	04H	able	able	able	03H	(4) Input TG7 sine wave signal whose frequency is 4.43MHz and video amplitude is 0.5V to pin 45 (Y ₁ IN).
													(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y ₃ . The measurement result shall be expressed as Gtr4.
													(1) Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON.
													(2) Set the bus data so that Q of chroma trap is 1.5.
Y ₅	Chroma Trap Attenuation	†	↑	†	1	↑	1	1	1	†	↑	↑	(3) Set the bus data so that f ₀ of chroma trap is 0.
. 3	(SECAM)	'	'	<u>'</u>	'	'	'	'	'	'	'	'	(4) Input SECAM signal whose amplitude in video period is 0.5V to pin 45 (Y ₁ IN).
													(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y_3 to find the maximum attenuation (Gtrs).
													(1) Connect the power supply to pin 45 (Y ₁ IN).
													(2) Turn off Y _V by setting the bus data.
Y ₆	Υγ Correction	↑	↑	↑	↑	↑	<u> </u>	Vari- able	80H	00H	ВАН	↑	(3) While raising the supply voltage from the level measured in the preceding item Y ₁ , measure voltage change characteristic of Y ₁ output at pin 37.
	Point				, '			able					(4) Set the bus data to turn on Y _γ
													(5) Perform the same measurement as the above step 3.
													(6) Find a gamma (γ) point from the measurement results of the steps 3 and 5.
													γp = Vr÷0.7
Y ₇	Yγ Correction Curve	1	1	1	1	1	1	1	1	1	1	1	From the measurement in the above item Y_6 , find gain of the portion that the γ correction has an effect on.

						ST CON	NDITION					, RGB \	(_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S ₄₂	W MOD	E S ₄₅	S ₅₁	04H	SUB-A 08H	DDRES 0FH	S & BUS 10H	DATA 13H	14H	MEASURING METHOD
Y ₈	APL Terminal Output Impedance	A	C	В	-45 A	A	20H	04H	80H	00Н	ВАН	03Н	 Short circuit pin 45 (Y₁ IN) in AC coupling. Input synchronizing signal to pin 51. Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). Raise the voltage at pin 44 by 0.1V, and measure the current (lin) at that time. Zo44 (Ω) = 0.1V+lin (A)
Y ₉	DC Transmission Compensation Amplifier Gain	î	î	Î	î	Î	Î	1	1	1	î	Vari- able	 (1) Set the bus data so that DC transmission factor correction gain is maximum. (2) In the condition of the Note Y₈, observe Y_{1out} waveform at pin 37 and measure voltage change in the video period. (3) Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2. Pin 19 waveform AV₁ Pin 44 + 0.1V Pin 44 + 0.2V Adr = (ΔV₂ - ΔV₁)÷0.1V÷Y₁ gain
Y ₁₀	Maximum Gain of Black Expansion Amplifier	1	1	А	В	î	1	1	00Н	1	1	E3H	 Set the bus data so that black expansion is on and black expansion point is maximum. Input TG7 sine wave signal whose frequency is 500kHz and video amplitude is 0.1V to pin 45 (Y₁ IN). While impressing 1.0V to pin 39 (Black Peak Hold), measure amplitude (Va) of Y_{1out} signal at pin 37. While impressing 3.5V to pin 39 (Black Peak Hold), measure amplitude (Vb) of Y_{1out} signal at pin 37. Akc = Va÷Vb

					TES	ST CON	DITION	(Unles	s othe	rwise s	pecifie	d : H, F	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD	E		S	UB-AD	DRES	S & Bl	JS DAT	Ά	MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	WEXCONTRO WETTOD
Y ₁₁	Black Expansion Start Point	Α	С	А	Α	А	20H	04H	00Н	00Н	ВАН	Vari- able	 Set the bus data so that black expansion is on and black expansion point is maximum. Supply 1.0V to pin 39 (Black Peak Hold). Supply 2.9V to the APL of pin 44. Connect the power supply to pin 45 (Y1 IN). While raising the supply voltage from the level measured in the preceding item Y1, measure voltage change at pin 37 (Y1out). Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4 Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. While supplying 2.2V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum.
Y ₁₂	Black Peak Detection Period (Horizontal) Black Peak Detection Period (Vertical)	В	↑	↑	↑	↑	1	†	↑	↑	↑	ЕЗН	In the condition of the Note Y ₁ , measure waveform at pin 39 (Black Peak Hold).

					TE	ST CO	NDITION	l (Unless	s otherw	ise spec	ified : H	, RGB \	_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD						S & BUS			MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	
													(1) Set the bus data so that picture quality control frequency is 2.5MHz.
													(2) Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 $(Y_1 \ IN)$ and pin 51 (Sync. IN).
	Picture Quality				_		0511	0411	0011	0011	DALL	Vari-	(3) Maximize the picture quality control data.
Y ₁₃	Control Peaking Frequency	A	С	Α	В	A	3FH	04H	80H	00H	BAH	able	(4) While observing Y _{1out} of pin 37, find an SG frequency as the waveform amplitude is maximum (fp25).
													(5) Set the bus data so that picture quality control frequency is 3.1MHz and 4.2MHz, and perform the same measurement as the above steps 2 through at the respective frequencies (fp31, fp42).
													(1) Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y ₁ IN) and pin 51 (Sync. IN).
													(2) Set the picture quality control data to maximum.
													(3) Set the picture quality control frequency is 2.5MHz by setting the bus data.
													(4) Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5MHz.
													GS25MX = 20log (Vp25 / V100k)
Y ₁₄	Picture Quality Control Maximum	1	1	1	1	1	1	1	1	1	↑	↑	(5) Set the picture quality control frequency data to 3.1MHz by setting the bus data.
	Characteristic												(6) Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1MHz.
													GS31MX = 20log (Vp31 / V100k)
													(7) Set the picture quality control frequency to 4.2MHz by setting the bus data.
													(8) Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2MHz.
													GS42MX = 20log (Vp42 / V100k)

2001-09-04 39

					TE	ST CON	NDITION	l (Unless	otherw	ise spec	ified : H	, RGB V	cc =	9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C)
NOTE	ITEM			W MOD	E			SUB-A	DDRES	S & BUS	DATA		_	MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H		ME 10011110 ME 11100
													(1)	In the condition of the Note Y_{14} , set the picture quality control bus data to minimum.
Y ₁₅	Picture Quality Control Minimum	A	С	А	В	А	00H	04H	80H	00H	BAH	Vari- able	(2)	Perform the same measurement as the steps 3 through 8 of the Note Y_{14} to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz.
	Characteristic											abic		GS25MN = 20log (Vp25 / V100k)
														GS31MN = 20log (Vp31 / V100k)
														GS42MN = 20log (Vp42 / V100k)
													(1)	In the condition of the Note Y_{14} , set the picture quality control bus data to center.
Y ₁₆	Picture Quality Control Center	↑	↑	↑	↑	↑	20H	↑	↑	↑	↑	↑	(2)	Perform the same measurement as the steps 3 through 8 of the Note Y_{14} to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz.
	Characteristic													GS25CT = 20log (Vp25 / V100k)
														GS31CT = 20log (Vp31 / V100k)
														GS42CT = 20log (Vp42 / V100k)
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₇	Y Signal Gain	1	1	1	1	1	1	1	1	1	1	03H	(2)	Input TG7 sine wave signal whose frequency is 100kHz and video level is 0.5V to pin 45 (Y_1 IN) and pin 51 (Sync. IN). (Vyi100)
													(3)	Measure amplitude of Y1 output at pin 37 (Vyout). Gy = 20log (Vyout / Vyi100)
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
	Y Signal												(2)	Input TG7 sine wave signal whose frequency is 6MHz and video level is 0.5V to pin 45 (Y $_1$ IN) and pin 51 (Sync. IN). (Vyi6M)
Y ₁₈	Frequency Characteristic	1	T	↑	T	1	1	1	T	T	T	T	(3)	Measure amplitude of Y ₁ output at pin 37 (Vyo6M). Gy6M = 20log (Vyo6M / Vyi6M)
													(4)	Find Gfy from the result of the Note Y17 Gfy = Gy6M – Gy

					TE	ST CO	NDITION	l (Unless	otherw	ise spec	ified : H	, RGB \	/cc =	9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C)
NOTE	ITEM		S	SW MOD	E			SUB-A	DDRES	S & BUS	S DATA			MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H		MEASONING METHOD
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₉	Y Signal Maximum Input Range	Α	С	Α	В	Α	20H	04H	80H	00H	ВАН	03H	(2)	Input TG7 sine wave signal whose frequency is 100kHz to pin 45 (Y $_{\!1}$ IN) and pin 51 (Sync. IN).
													(3)	While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y_1 output (pin 37) is distorted.

CHROMA SECTION

NOTE	ITEM				TI	EST CO	NDITIO	N (Unles	s otherv	wise spe	cified : F	I, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	HEM	S ₂₆	S ₁	S ₃₁	S ₃₃			S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
NOTE	ACC Characteristic	S ₂₆	S ₁	S ₃₁		SW N	NDITION MODE S ₃₉		S ₄₄	S ₄₅		
												10 100 300 Pin 42 Chroma burst (7) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the above-mentioned steps with 3N rainbow color bar signal input.

					TE	ST CON	NDITION	(Unless	s otherw	ise spec	ified : H	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃		NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
		026	01	031	033	034	039	042	044	045	051	(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36 and measure the peak frequency, too.
												(5) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure peak frequencies respectively with different f_0 .
												(6) For measuring frequency characteristic as f _o is 4.43, use 4.43MHz crystal clock.
C_2	Band Pass Filter Characteristic	ON	Α	В	В	В	Α	В	Α	Α	В	Measure the following items in the same manner.
												$f_0 = 3.58$ $f_0 = 4.43$
												Peak of frequency Bottom of frequency Pin 42 sine wave signal Peak of frequency Pin 36 Bottom of frequency Pin 42 sine wave signal

NOTE	ITEM				TE			(Unless	otherw	ise spec	ified : H	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz.
												(3) Set the gate to the normal status.
												(4) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
	Band Pass Filter,											(5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
C ₃	-3dB Band Characteristic	ON	Α	В	В	В	Α	В	Α	Α	В	(6) Changing f ₀ to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3dB band respectively with different f ₀ .
												$f_{O} = 3.58$ $f_{O} = 4.43$ Pin 36 Pin 36 Pin 42 sine wave signal Pin 42 sine wave signal
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: TV mode (f ₀ = 600), Crystal mode = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
	Band Pass Filter,											(4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
C ₄	Q Characteristic Check	1	1	1	1	1	1	↑	1	1	1	(5) Changing f ₀ of the band pass filter to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3dB band respectively with different f ₀ .
												Pin 36 Pin 36 Pin 36 Pin 42 sine wave signal Pin 42 sine wave signal

					TE	ST CON	NDITION	l (Unless	s otherw	ise spe	cified : H	RGB V_{CC} = 9V ; V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM						MODE					MEASURING METHOD
		S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	INEX COLUMN INC. I TO D
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows : band pass filter $Q = 2$, crystal clock = conforming to $3.579 / 4.43 MHz$, gate = normal status.
												(3) Input 3N composite sine wave signal $(1V_{p-p})$ to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36, and measure bottom frequency.
C ₅	1 / 2 f ₀ Trap Characteristic	ON	Α	В	В	В	Α	В	Α	Α	В	(5) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure bottom frequencies respectively with different f_0 .
												$f_0 = 3.58$ $f_0 = 4.43$
												Pin 36 Bottom Pin 42 sine freq. wave signal Pin 36 Bottom Pin 42 sine freq. wave signal

					TE			l (Unless	otherw	ise spec	cified : F	I, RG	B V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁		MEASURING METHOD
		026	01	031	033	034	039	042	044	045	051	(1)	Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2)	Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian system and set the gate to normal status.
	Tint Control	ON	^		_	D		٨	٨		В	(3)	Input 3N rainbow color bar signal (100mV _{p-p}) to pin 42 (Chroma IN).
C ₆	Sharing Range (f ₀ = 600kHz)	ON	Α	В	В	В	A	А	Α	A	В	(4)	Measure phase shift of B-Y color difference output of pin 36.
												(5)	While shifting color phase (tint) from minimum to maximum by the bus control, measure phase change of B-Y color difference output of pin 36. On the condition that 6 bars in the center have the peak level (regarded as center of color
													phase), the side of 5 bars is regarded as positive direction while the side of 7 bars is regarded as negative direction when the 5 bars or the 7 bars are in the peak level. Based on this assumption, open angle toward the positive direction is expressed as $\Delta\theta_1$ and that toward the negative direction is expressed as $\Delta\theta_2$ as viewed from the phase center. $\Delta\theta_1$ and $\Delta\theta_2$ show the tint control sharing range.
C ₇	Tint Control Variable Range (f _o = 600kHz)	↑	↑	1	1	1	1	1	1	1	1	(6)	Variable range is expressed by sum of $\Delta\theta_1$ sharing range and $\Delta\theta_2$ sharing range. θ_{36} $\Delta\theta_T = \Delta\theta_1 + \Delta\theta_2$
												(7)	While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as θ_{Tin} .
C ₈	Tint Control Characteristic	1	1	1	1	1	↑	1	1	1	1	(8)	While shifting color phase from minimum to maximum with the bus control, measure values of color phase bus step corresponding to 10% and 90% of absolutely variable phase shift of B-Y color difference output of pin 36. The range of color phase shifted by the bus control is expressed as While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Δ_{Tin} (conforming to TV mode, f_0 = 600kHz).
													measurement as the 3N signal.

NOTE	ITEN A				TE			l (Unless	otherw	ise spec	ified : F	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	MODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Connect band pass filter (Q = 2), set to TV mode (f ₀ = 600kHz) with X'tal clock conforming to European, Asian system.
												(2) Set the gate to normal status.
												(3) Input 3N CW signal of 100mV _{p-p} to pin 42 of the chroma input terminal.
												(4) While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored.
												(5) Input 4N CW (continuous waveform) 100mV _{p-p} signal to pin 42 (Chroma IN).
C ₉	APC Lead-In Range	OFF ↓ ON	А	В	В	В	А	A ↓ C	А	А	В	(6) While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and f _C (4.433619MHz) and express the differences as fPH and fPL, which show the APC lead-in range.
		ON						C				(7) Variable frequency of VCXO is used to cope with lead-in of 3.582MHz / 3.575MHz PAL system.
												(8) Activate the test mode (S26-ON, Sub Add 02; 02h).
												(9) Input nothing to pin 42 (Chroma IN).
												(10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal. Express difference between the high frequency (fH) and f ₀ center as 3.582HH, and difference between the low frequency (fL) and f ₀ center as 3.582HL. Perform the same measurement for the NP system (3.575MHz PAL).
												(1) Activate the test mode (S26-ON, Sub Add 02; 02h).
												(2) Connect band pass filter as same as the Note C ₉ .
	1000											(3) Change the X'tal mode properly to the system.
C ₁₀	APC Control Sensitivity	ON	1	1	1	1	1	С	1	1	↑	(4) Input nothing to pin 42 (Chroma IN).
	,											(5) When V _{30's} APC voltage ±50mV is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation. b = (frH - frL) / 100

TB1230AN

					TE			(Unless	otherw	ise spec	cified : F	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
		20		U,	00	<u> </u>	00	74		70	J.	(1) Connect band pass filter (Q = 2) and set to TV mode (f ₀ = 600kHz).
												(2) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N color signal having 200mV _{p-p} burst to pin 42 (Chroma IN).
												(4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and 3NVTC1 respectively (killer operation input level).
												(5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW wit the bus control is expressed as 3N-VTK2 or 3N-VTC2.
												(6) Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP, NP color signals having 200mV _{p-p} burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.)
C ₁₁	Killer Operation	OFF	Α	В	В	В	A	A	A	A	В	(7) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4N system is expressed as 4N-VTK1, 4N-VTC1.
O ₁₁	Input Level	OH	Α	В	ь	ь	^	^	A	A		Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1.
												Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2.
												Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2.
												Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1.
												Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2.
												[Reference] 3N system : 3.579545MHz NTSC
												4N system : 4.433619MHz False NTSC
												4P system : 4.433619MHz PAL
												MP system : 3.575611MHz M-PAL
												NP system : 3.582056MHz N-PAL

					TE			l (Unless	otherw	ise spec	ified : H	l, RGI	B V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	-	MEASURING METHOD
		026	01	031	033	034	039	042	044	045	051	(1)	Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2)	Connect band pass filter (Q = 2), set to TV mode (f_0 = 600kHz) with 0dB attenuation.
												(3)	Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₂	Color Difference Output	ON	А	В	В	В	А	Α	Α	А	В	(4)	Input 3N, 4N and 4P rainbow color bar signals having $100 \text{mV}_{\text{p-p}}$ burst to pin 42 of the chroma input terminal one after another.
	Output											(5)	Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively.
												(6)	While inputting 4P 75% color bar signal ($100mV_{p-p}$ burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively.
												(1)	Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2)	Connect band pass filter (Q = 2), set to TV mode (f_0 = 600kHz) with 0dB attenuation.
												(3)	Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₃	Demodulation Relative Amplitude	1	1	1	↑	↑	1	↑	↑	1	1	(4)	Input 3N, 4N and 4P rainbow color bar signals having $100 \text{mV}_{\text{p-p}}$ burst to pin 42 of the chroma input terminal one after another.
	Timpilitude											(5)	Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively.
													(Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section.

NOTE	ITEM				TE			l (Unless	s otherw	ise spec	cified : F	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)	
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	MODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD	
								12			U I	(1) Activate the test mode (S26-ON, Sub Add 02; 08h).	
												(2) Connect band pass filter (Q = 2), set to TV mode (f ₀ = 600kHz) with 0dB attenuat	tion.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to n status.	iormal
	Demodulation											(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 o chroma input terminal one after another.	of the
C ₁₄	Relative Phase	ON	A	В	В	В	A	A	A	A	В	(5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NθR-B, 4NθR-B and 4PθR-B respectively.	
												(6) For measuring with 3N and 4N color bar signals in NTSC system, set six bars of B-Y color difference waveform to the peak level with the Tint control and measure phase difference from phase of R-Y color difference signal of pin 35 (R-Y OUT).	
												(Note) Relative phase of G-Y color difference signal shall be checked later in t Text section.	the
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).	
												(2) Connect band pass filter (Q = 2), set to TV mode (f ₀ = 600kHz) with 0dB attenuate	tion.
												(3) Set the crystal mode to conform to European, Asian system.	
C ₁₅	Demodulation Output Residual	↑	^	↑	↑	↑	↑	↑	↑	↑	1	(4) Set the gate to normal status.	
015	Carrier		'	'	'	'	'			'		(5) Input 3N and 4N rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another.	е
												(6) Measure subcarrier leak of 3N and 4N color bar signals appearing in color differe signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express thos leaks as 3N-SCB / R and 4N-SCB / R.	

					TE			l (Unless	otherw	ise spec	ified : H	i, RGB	3 V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	Soo	SW N S ₃₄		S ₄₂	S ₄₄	S ₄₅	S ₅₁		MEASURING METHOD
		326	- 51	331	S ₃₃	334	339	542	544	545	551	(1)	Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2)	Connect band pass filter (Q = 2), set to TV mode (f_0 = 600kHz) with 0dB attenuation.
	Demodulation											` '	Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₆	Output Residual Higher Harmonic	ON	Α	В	В	В	Α	Α	Α	Α	В		Input 3N and 4N rainbow color bar signals having $100 \text{mV}_{\text{p-p}}$ burst to pin 42 of the chroma input terminal one after another.
													Measure higher harmonic ($2f_C$ = 7.16MHz or 8.87MHz) of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as 3N-HCB / R and 4N-HCB / R.
												(1)	Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2)	Connect band pass filter (Q = 2) and set bus data for the TV mode (f ₀ = 600kHz).
													Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status.
C ₁₇	Color Difference Output ATT Check	↑	1	1	1	1	1	1	1	1	1		Input 3N rainbow color bar signal whose burst is $100 \mathrm{mV}_{\mathrm{p-p}}$ to pin 42 of the chroma input terminal.
	CHECK												Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0dB attenuation set by the bus control.
													Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0dB, and measure amplitude of the same signal with different attenuation of -2dB, -1dB and +1dB set by the bus control.

									OITION	l (Unle	ess otl						V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	s				TEST	MOD							MAL (CONT	ROL MODE	
			_		2H		_	07H	_	_	_		H	_		OTHER CONDITION	MEASURING METHOD
		26	D ₅	D ₂	D ₁	D ₀	D ₇	D ₄	D ₃	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
	40.0041.																(1) Input nothing to pin 42.
C ₁₈	16.2MHz Oscillation Frequency	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	_	(2) Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation.
																	$\Delta foF = (fr - 0.05MHz) \times 4$
C ₁₉	16.2MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38, measure voltage when oscillation waveform appears at pin 40.
												•					(1) Input nothing to pin 42.
C ₂₀	C ₂₀ f _{sc} Free-Run ON 0 0	0	1	0	0	0	0		/ariabl	e	0	0	_	(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes, and measure frequency of CW signal of pin 35.			
020	Frequency	OI	O			'						ariabi	C	O	0	_	Detail of D ₄ , D ₃ and D ₂
																	3.58M = 1 : (001),4.43M = 2 : (010)
																	M-PAL = 6 : (110),N-PAL = 7 : (111)
																	(1) Input nothing to pin 42.
C ₂₁	f _{sc} Output Amplitude	OFF	0	0	0	0	0	0	0	0	0	0↓ 1	1↓ 0	0	0	_	(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes. Measure the amplitude of output signal of pin 27.

DEF SECTION

NOTE	ITEM		(Uı	nless o	otherwi	se spe			1	TEST CONDITION C = 9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value; bin 51 input video signal = 50 system data column represents preset value at power ON.
			SUB	B-ADDF	RESS	& BUS	DATA		,		MEASURING METHOD
DH1	H. Reference Frequency	Sub 02H	0	0	0	0	0	0	0	1	 (1) Supply 5V to pin 26. (2) Set bus data as indicated on the left. (3) Measure the frequency of sync. output of pin 49.
DH2	H. Reference Oscillation Start Voltage	Sub 02H	0	0	0	0	0	0	0	1	In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5V, measure the voltage when oscillation of pin 49 stops.
DH3	H. Output Frequency 1	Sub 10H	×	×	×	×	×	×	0	1	(1) Set bus data as indicated on the left.(2) In the condition of the above step 1, measure frequency (TH1) at pin 4.
DH4	H. Output Frequency 2	Sub 10H	×	×	×	×	×	×	1	0	 Set the input video signal of pin 51 to the 60 system. Set bus data as indicated on the left. In the above-mentioned condition, measure frequency (TH2) at pin 4.
DH5	H. Output Duty 1	_	_	_	_	_	_	_	_	_	(1) Supply 4.5V DC to pin 5 (or, make pin 5 open-circuited).(2) Measure duty of pin 4 output.
DH6	H. Output Duty 2	_	_	_	_	_	_	_	_	_	(1) Make a short circuit between pin 5 and ground.(2) Measure duty of pin 4 output.
DH7	H. Output Duty Switching Voltage	-	_	_	_	_	_	_	_	_	Supply 2V DC to pin 5. While turning down the voltage from 2V, measure voltage when the output duty ratio becomes 41 to 37%.
DH8	H. Output Voltage	_	_	_	_	_	_	_	_	_	Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH9	H. Output Oscillation Start Voltage	_	_	_	_	_	_	_	_	_	While raising H. V _{CC} (pin 3) from 0V, measure voltage when pin 4 starts oscillation.

NOTE	ITEM				U	nless	otherwi	ise spe				TEST CONDITION CC = 9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value; pin 51 input video signal = 50 system e data column represents preset value at power ON.
				SUE	3-ADD	RESS	& BUS	DATA	١			MEASURING METHOD
												(1) Supply 4.5V DC to pin 5.
												(2) Input video signal to pin 51.
												(3) Set the width of pin 6 input pulse to 8µs.
												(4) Measure φFBP shown in the figure below (φFBP).
												(5) Adjust the phase of pin 6 input pulse so that the center of pin 4's output pulse corresponds to the trailing edge of input sync. signal.
DH10	H. FBP Phase											(6) Set bus data as indicated on the left and measure the horizontal picture position with respective bus data settings (HSFTmax, HSFTmin).
												(7) Find HP difference between the coditions mentioned in the above step 6 (ΔHSFT).
DH11	H. Picture											(8) Reset bus data to the preset value.
	Position, Maximum											(9) While impressing 5V DC to pin 5, measure HP.
												(10) While impressing 4V DC to pin 5, measure HP.
DH12	H. Picture Position,	Sub	0BH	0	0	0	0	0	×	×	×	(11) Find difference between the two measurement results obtained in the preceding steps 9 and 10 (ΔHCC).
DH13	Minimum H. Picture position Control Range	Sub	OBIT	1	1	1	1	1	×	×	×	0.1 μF 51 + H - Video signal
DH14	H. Distortion Correction Control Range											6 10kΩ 9V
	Ü											(51) SYNC input
												⑥ Input
												4) Output

2001-09-04 54

NOTE	ITEM		((N			TEST CONDITION C = 9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value; pin 51 input video signal = 50 system e data column represents preset value at power ON.
			SUB	3-ADDI	RESS	& BUS	DATA	\			MEASURING METHOD
											(1) Input such a signal as shown by "a" of the following figure to pin 51.
											(2) Set bus data as indicated in the first line of the left table.
DH22	Noise Detection										(3) Measure NLX when amplitude of pin 41 changes. → NL1
DHZZ	Level 1										(4) Set bus data as indicated in the second line of the left table.
			0	0	×	×	×	×	×	×	(5) Measure NLX when amplitude of pin 41 changes. → NL2
DH23	Noise Detection										(6) Set bus data as indicated in the third line of the left table.
	Level 2		0	1	×	×	×	×	×	×	(7) Measure NLX when amplitude of pin 41 changes. → NL3
		Sub 1DH									(8) Set bus data as indicated in the fourth line of the left table.
DH24	Noise Detection Level 3		1	0	×	×	×	×	×	×	(9) Measure NLX when amplitude of pin 41 changes. → NL4
DH25	Noise Detection Level 4	Sub 1DH	1	1	×	×	×	×	×	×	Sync (48) 2MHz AFC1 filter
											(1) Measure amplitude of V. ramp waveform of pin 52.
DV1	V. Ramp Amplitude	_	_	_	_	_	_	_	_	_	Vramp
DV2	V. NF Maximum	Sub 17H	4	4	4	4	4	4	4	×	(1) Set data bus as indicated on the left.
DVZ	Amplitude	Sub 1/H	1	1	1	1	1	1	1	×	(2) Measure amplitude of pin 54's signal.
D) (0	V. NF Minimum	0 1 1=1:									(1) Set data bus as indicated on the left.
DV3	Amplitude	Sub 17H	0	0	0	0	0	0	0	×	(2) Measure amplitude of pin 54's signal.

NOTE	ITEM			(U	nless o	otherwi	se spe				TEST CONDITION C = 9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value; oin 51 input video signal = 50 system e data column represents preset value at power ON.
				SUB	3-ADDI	RESS	& BUS	DATA	١			MEASURING METHOD
												(1) Set bus data as indicated on the left.
												(2) Change 5.0V of pin 54 voltage by +0.1V and −0.1V, and measure V ₅₃ output voltage in both the condition.
DV4	V. Amplification											(3) Find GVA shown in the figure below.
	Degree											(4) Measure Vvmax and Vvmin shown in the figure below.
DV5	V. Amplifier Max. Output	Sub	1BH	1	1	×	×	×	×	×	×	V ₅₃
DV6	V. Amplifier Min. Output											VvmiN GVA
												(1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value.
												(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.
	V. S-Curve											(3) Find V_S according to the equation that $V_S = (X / Y) \times 100\%$.
DV7	Correction, Max. Correction Quantity	Sub	19H	1	1	1	1	1	1	1	×	Pin 52 ramp output Pin 54 V. HF output

NOTE	ITEM		(U	nless o	otherwi	ise spe			Ī	TEST CONDITION $_{C}$ = 9V ; V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system a data column represents preset value at power ON.
			SUB	3-ADDI	RESS	& BUS	DATA	١		1	MEASURING METHOD
											(1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value.
											(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.
	V. Reverse S-Curve										(3) Find V_S according to the equation that $V_S = (X/Y) \times 100\%$.
DV8		Sub 19H	0	0	0	0	0	0	0	×	Pin 54 V. HF output X Y Pin 52 ramp output
											(1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value.
											(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.
											(3) Find V_S according to the equation that $V_S = (X / 2Y) \times 100\%$.
DV9	V. Linearity Max. Correction Quantity	Sub 1AH	1	1	1	1	1	×	×	×	Pin 52 ramp output V. HF output X

NOTE	ITEM		(U	nless o	otherwi	se spe				TEST CONDITION $_{C}$ = 9V ; V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON.
			SUB	-ADDI	RESS	& BUS	DATA	\			MEASURING METHOD
											(1) Supply 5V DC to pin 26.
											(2) Set bus data as indicated on the left and activate the test mode.
D) // 0	.=0.44.00.00										(3) Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 49.
DV10	AFC-MASK Start Phase										(4) Set the Sub 16H as indicated on the left.
		Sub 02H	0	0	0	0	0	0	0	1	(5) Measure the VNFB start phase (Z) of pin 54.
DV11	AFC-MASK Stop Phase VNFB Phase	Sub 16H	×	×	×	×	×	0	0	0	5) T T T T T T T T T T T T T T T T T T T
5712	7111000										(54) ————————————————————————————————————
											(1) Input video signal to pin 51.
											(2) Measure both phases (Xmax, Xmin) of pin 52 and pin 54 with the respective bus data settings shown on the left.
DV13	V. Output										(3) Find difference between the two phases measured in the above step 2.
	Maximum Phase										Y = Xmax - Xmin
DV14	V. Output Minimum Phase	Sub 16H	×	×	×	×	×	0	0	0	63)
DV15	V. Output Phase Variable Range		^	^	^	^	^	ı	1		Xmax Xmin Y

NOTE	ITEM			_				(No			TEST CONDITION C = 9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value; pin 51 input video signal = 50 system data column represents preset value at power ON.
			SUE	3-ADDF	RESS	& BUS	DATA	١			MEASURING METHOD
											(1) Set bus data as indicated on the left.
											(2) Input 262.5 H video signal to pin 51.
											(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below.
											(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other.
DV21	V. Lead-In Range 2	Sub 16H	×	×	×	0	1	0	0	0	(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.
	Range 2										(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.
											© T T T T T T T T T T T T T T T T T T T
											54
DV22	W-VBLK Start Phase		×	×	0	0	0	0	0	0	(1) Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X shown in the figure below. W-VBLK start phase : MAX, MIN
DV23	W-PMUTE Start	Sub 1BH	×	×	1	1	1	1	1	1	(2) Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-PMUTE start phase : MAX, MIN
	Phase										
	(Note) Only the 60 system is	Sub 1DH	×	×	0	0	0	0	0	0	\$2
	system is subject to evaluation.		×	×	1	1	1	1	1	1	①x

NOTE	ITEM			(Ui	nless o	otherwi	se spe			1	TEST CONDITION C = 9V; V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V; Ta = 25±3°C; BUS = preset value; oin 51 input video signal = 50 system at a column represents preset value at power ON.
				SUB	B-ADDF	RESS	& BUS	DATA				MEASURING METHOD
DV24	W-VBLK Stop Phase			×	0	0	0	0	0	0	0	(1) Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase: MAX, MIN
DV25	W-PMUTE Stop Phase	Sub	1CH	×	1	1	1	1	1	1	1	(2) Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below. W-PMUTE stop phase: MAX, MIN
	(Note) Only the 60 system is subject to evaluation	Sub	1EH	×	0	0	0	0	0	0	0 1	©
DV26	V Centering Center Voltage			1	0	0	0	0	0	×	×	(1) Set bus data as indicated on the left.(2) Measure the voltage of pin 47 with respective bus data settings.
DV27	V Centering Max Voltage	Sub	18H	1	1	1	1	1	1	×	×	
DV28	V Centering Min Voltage			0	0	0	0	0	0	×	×	

1H DL SECTION

		TE	EST CON	NOITION	N (Unles	s otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin3 = 9V ; pin8 · 38 · 41 = 5V)
NOTE	ITEM	SW MODE	SUB	ADDRE DATA	SS &	MEASURING METHOD
		S26	07H	0FH	11H	
						 Input waveform 1 to pin 33 (B · Yin), and measure VNBD, that pin 36 (B · Yout) is saturated input level. Measure VNRD of R · Y input in the same way as VNBD.
H ₁	1HDL Dynamic Range Direct	ON	94H	_	_	Waveform1 0.7V (typ)
						H.BLK
	1HDL Dynamic		0011			(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level.
H ₂	Range Delay	↑	8CH	_	_	(2) Measure VPRD of R-Y input in the same way as VPBD.
	1HDL Dynamic					(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level.
Н3	Range, Direct+Delay	↑	A4H	_	_	(2) Measure VNRD of R-Y input in the same way as VSBD.
H ₄	Frequency Characteristic, Direct	1	94H	_	_	(1) In the same measuring as H_1 , set waveform 1 to $0.3V_{p-p}$ and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level. GHB1 = 20log (VB700 / VB100)
	Direct					(2) Measure GHR1 of R-Y out in the same way as GHB1.
	Frequency					(1) In the same measuring as H ₁ , set waveform 1 to 0.3V _{p-p} and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level.
H ₅	Characteristic, Delay	↑	8CH	_	_	GHB2 = 20log (VB700 / VB100)
	Delay					(2) Measure GHR2 of R-Y out in the same way as GHB2.
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7V _{p-p} . Measure VByt1, that is pin 36 (B-Yout) level.
H ₆	AC Gain Direct	↑	94H	_	_	GBY1 = 20log (VByt1 / 0.7)
						(2) Measure GRY1 of R-Y out in the same way as GBY1.
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7V _{p-p} . Measure VByt2, that is pin 36 (B-Yout) level.
H ₇	AC Gain Delay	↑	8CH	_	_	GBY2 = 20log (VByt2 / 0.7)
						(2) Measure GRY2 of R-Y out in the same way as GBY2.

		TE	ST CON	NDITION	(Unles	s oth	erwise specified : H, RGB V_{CC} = 9V ; V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin3 = 9V ; pin8 · 38 · 41 = 5V)
NOTE	ITEM	SW MODE	SUB	ADDRE DATA	SS &		MEASURING METHOD
		S26	07H	0FH	11H		
H ₈	Direct · Delay	↑	94H	_		(1)	GBYD = GBY1 - GBY2
1 18	AC Gain Difference	I	8CH			(2)	GRYD = GRY1 - GRY2
H ₉	Color Difference Output DC	^	8CH			(1)	Measure pin 36 (B-Yout) DC stepping of the picture period.
1 19	Stepping	↑	0011	_	_	(2)	Measure pin 35 (R-Yout) DC stepping of the picture period.
						(1)	Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout).
						(2)	Input waveform 2 to pin 34 (R-Yin). And measure the time difference Waveform2 RDt of pin 36 (B-Yout)
H ₁₀	1H Delay Quantity	ON	8CH	_	_		Output BDt waveform
							H.BLK
							n.acx
						(1)	Set Sub-Address 11h ; data 88h. Measure the pin 36 DC voltage, that is BDC1.
					00H	` '	Set Sub-Address 11h; data 88h. Measure the pin 35 DC voltage, that is BDC1.
					ООП	(2)	Set Sub-Address 11h; data ooh. Measure the pin 35 DC voltage, that is RDC1. Set Sub-Address 11h; data 00h. Measure the pin 36 DC voltage, that is BDC2.
H ₁₁	Color Difference Output DC-Offset	↑	8CH	20H	88H	(3)	Set Sub-Address 11h; data 00h. Measure the pin 35 DC voltage, that is BDC2.
1111	Control	I	0011	2011	0011	(5)	Set Sub-Address 11h; data 60h. Measure the pin 35 DC voltage, that is RDC2. Set Sub-Address 11h; data FFh. Measure the pin 36 DC voltage, that is BDC3.
					FFH	(6)	Set Sub-Address 11h; data FFh. Measure the pin 35 DC voltage, that is BDC3.
						(7)	Bomin = BDC2 - BDC1, Bomax = BDC3 - BDC1, Romin = RDC2 - RDC1, Romax = RDC3 - RDC1
	Color Difference					(1)	Measure the pin 36 DC voltage, that is BDC4.
H ₁₂	Output DC-Offset	↑	A4H	00H	89H	(2)	Measure the pin 35 DC voltage, that is RDC4.
12	Control / Min. Control Quantity	'				(3)	Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1
						(1)	Input waveform 1, that is set $0.3V_{p-p}$ and f = 100kHz, to pin 33. Measure pin 36 output level, that is VBNC.
	NTSC Mode Gain /					(2)	GNB = 20log (VBNC / VB100)
H ₁₃	NTSC-COM Gain	1	94H	80H	_	(3)	In the same way as (1) and (2), measure the pin 36 output level, that is VRNC.
							GNR = 20log (VRNC / VR100)

TEXT SECTION

				TE				nless of	herwis	e spec	ified : I	I, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V; Ta = 25±3°C; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE S ₃₄		Ι_		_	00H	UB-AD 02H		S & BU —	S DAT	A I	MEASURING METHOD
Т1	Y Color Difference Clamping Voltage	В	В	В	В	В	A	_	_	_	FFH	00H	_	_	_	_	 Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34, Vcp33).
T ₂	Contrast Control Characteristic	1	1	1	1	↑	1	_	_	_	FFH 80H 00H	00Н				_	 (1) Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). (2) Input 0.3V Synchronizing Signal to pin 51 (Sync IN). (3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. (5) Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80). (Vc12mx, Vc12mn, D12c80) (Vc13mx, Vc13mn, D13c80) (Vc14mx, Vc14mn, D14c80) (6) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel (ΔV13ct).
Т3	AC Gain	1	1	1	1	↑	↑	_	_	_	_	_	1	-	1	_	In the test condition of Note T_2 , find output / input gain (double) with maximum contrast. $G = Vc13mx / 0.7V$

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	I, RGB	V _{CC} =	9V ; V[DD, Fso	cV _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N MOE					_	UB-AD	DRES	S & BU	S DAT	Α	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S_{33}	S ₃₄	S ₅₁	_	_	_	00H	02H	_	_		_	MEXICOLARIO METITIOS
																	(1) Input TG7 sine wave signal whose frequency is 6MHz and video amplitude is 0.7V to pin 31 (Y IN).
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₄	Frequency Characteristic	В	В	В	В	В	Α	-	_	_	FFH	00H	_	_	-	_	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum.
																	(5) Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M).
																	(6) From the results of the above step 5 and the Note T ₃ , find the frequency characteristic.
																	Gf = 20log (G6M / G)

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	l, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM		•		S۱	N MOE	DE			1	S	UB-AD	DRES	S & BL	JS DAT		MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₂	_	_	00H	02H	05H	1BH	08H	_	INEX COLUMN INCLUMENTOS
																	(1) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(2) Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN).
													1FH				(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
T ₅	Y Sub-Contrast Control Characteristic	В	В	В	В	В	Α	_	_	_	FFH	00H		_	_	_	(4) Set bus data so that contrast is maximum, drive is set at center value and color is minimum.
	ondrastones.												00H				(5) Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn).
																	(6) From the results of the above step 5, find ratio between Vscmx and Vscmn in conversion into decibel (ΔVscnt).
																	(1) Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value.
Т ₆	Y ₂ Input Level	↑	1	1	1	↑	↑	_	_	_	1	_	_	BFH	44H	_	(2) Input 0.3V synchronizing signal to pin 51 while inputting TG7 sine wave signal whose frequency is 100kHz to pin 31 (TY IN).
																	(3) While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)

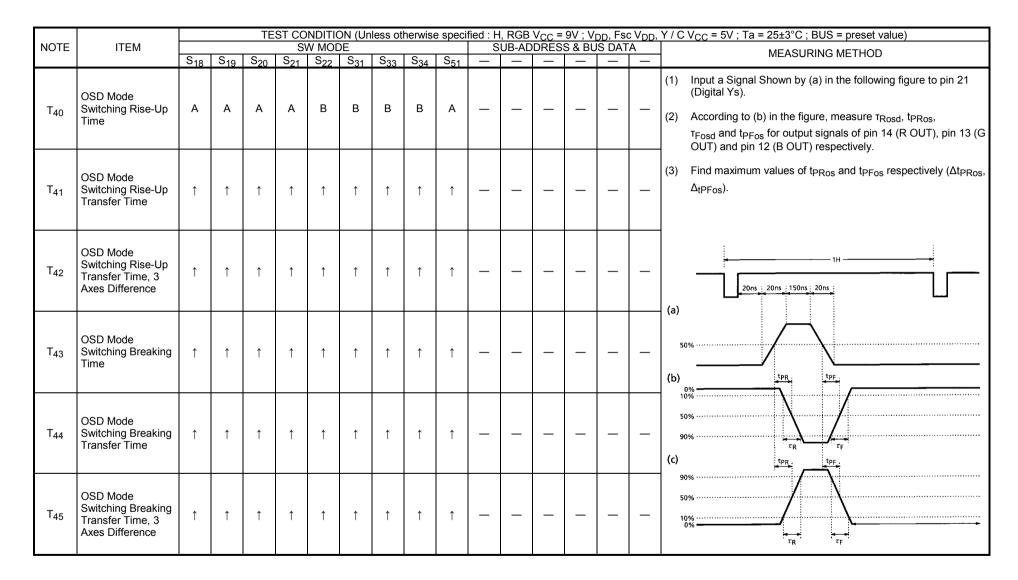
				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE	S ₅₁	San	_	_		UB-AD 02H	DRES 05H	S & BL 1BH	JS DAT	ΓΑ 	MEASURING METHOD
Т7	Unicolor Control Characteristic	В	В	В	В	В	A	_		_	FFH 80H 00H			BFH		_	 Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.3V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that drive is at center value and Y mute is on. While changing bus data on unicolor from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 13 (G OUT) and pin 12 (B OUT) in video period respectively, and read the bus data together with., Also, measure respective amplitudes as unicolor data is set at center value (80). (Vn12mx, Vn12mn, D12n80) (Vn13mx, Vn13mn, D13n80) (Vn14mx, Vn14mn, D14n80) Find ratio between amplitude with maximum unicolor data and that with minimum unicolor data in conversion into decibel (ΔV13un).
Т8	Relative Amplitude (NTSC)	↑	1	А	А	А	1	А	_	_	FFH	_	_	1	_	_	While inputting rainbow color bar signal (3.58MHz for NTSC) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is $0.38V_{p-p}$, find the relative amplitude. (Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx)
Tg	Relative Phase (NTSC)	1	1	1	1	1	1	1	_	_	1	_	_	1	_	_	 (1) In the test condition of the Note T₈, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. (2) Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θnr-b, θng-b).

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	ified : H	, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset vaive)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S ₃₃	N MOE	S ₅₁	S ₄₂	_	l	00H	UB-AD 02H	DRES 1BH	S & BU —	IS DAT	A	MEASURING METHOD
T ₁₀	Relative Amplitude (PAL)	В	В	A	A	A	A	A	_	_	FFH	_	BFH	_	_	_	While inputting rainbow color bar signal (4.43MHz for PAL) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is $0.38V_{p-p}$, find the relative amplitude. (Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx)
T ₁₁	Relative Phase (PAL)	1	1	1	1	1	1	1	_	_	1	_	_	_	_	_	 In the test condition of the Note T₁₀, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θpr-b, θpg-b).
T ₁₂	Color Control Characteristic	†	1	В	В	В	†	_	_	_	1	FFH	†	-	_	_	 Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.1V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (FF). (Vcmx)
T ₁₃	Color Control Characteristic, Residual Color	1	1	1	1	1	1	_	_	_	1	00Н	1	ı	_	_	 (6) Read bus data when output level of pin 12 is 10%, 50% and 90% of Vcmx respectively (Dc10, Dc50, Dc90). (7) From results of the above step 6, calculate number of steps from Dc10 to Dc90 (Δcol) and that from 00 to Dc50 (ecol). (8) Measure respective amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr).

				TE	ST CO	NDITIO	ON (Un	less otl	nerwise	speci	fied : H		V _{CC} = 5 = 9V ;				Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ;
NOTE	ITEM				SI	N MOI	DE				S		DRES				MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₂	_	_	00H	02H	1BH	-	-	_	WIEASURING WETHOD
T ₁₄	Chroma Input Range	В	В	A	A	А	A	A	_		FFH	88H	BFH	_	_	_	 Input rainbow color bar signal (3.58MHz for NTSC or 4.43MHz for PAL) to pin 42 (C IN) and 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin 34 (R-Y IN) in AC coupling respectively. Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive and color are set at each center value (80) and mute is on. While increasing amplitude of chroma signal input to pin 42, measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).

				TE				less ot	herwise	e spec	ified : H	, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S ₃₃	W MOI	S ₅₁	l —	Ι_	Ι —	01H	UB-AD 05H	DRES —	S & BL —	JS DAT	A I —	MEASURING METHOD
		521	322	-31	- 33	- 534	- 531				FFH						(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₁₅	Brightness Control Characteristic	В	В	В	В	В	Α	_	_	_		10H	_	_	_	_	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
											00H						(3) Set bus data so that R, G, B cut off data are set at center value.
																	(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₁₆	Brightness Center Voltage	1	1	1	1	↑	1	_	_	_	80H	1	_	_	_	_	(5) While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn).
																	(6) With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt).
T ₁₇	Brightness Data Sensitivity	1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(7) On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	ΔVbrt = (Vbrmxg - Vbrmng) / (Dbrmxg - Dbrmng)
T ₁₈	RGB Output Voltage Axes	1	1	1	↑	↑	1	_	_	_	_	_	_	_	_	_	(1) In the same manner as the Note T ₁₆ , measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value.
10	Difference	1	'	'	'	'	'										(2) Find maximum axes difference in the brightness center voltage.
																	(1) Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum.
T ₁₉	White Peak Limit Level	↑	1	1	1	1	1	_	_	_	00Н	1FH	_	_	_	_	(2) Input TG7 sine wave signal whose frequency is 100kHz and amplitude in video period is 0.9V to pin 31 (Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to
																	ground. (4) While turning on / off WPL with bus, measure video amplitude of pin 14 (R OUT) with WPL being activated (Vwpl).

				TE				less ot	herwise	e speci	fied : H	, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S22	S ₃₁	S ₃₃	N MOE S ₃₄		_	I —	Ι	99H	UB-AD 0AH	DRES 0CH		JS DAT 0EH	A 	MEASURING METHOD
		021	022	031	033	034	051				0311	OATT	FFH				(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN in AC coupling.
T ₂₀	Cutoff Control Characteristic	В	В	В	В	В	Α	_	_	_	80H	80H				_	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
	Characteristic												00H	00H	00H		(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground
																	(4) Set bus data on brightness at center value.
T ₂₁	Cutoff Center Level	↑	1	↑	↑	1	1	_	_	_	↑	↑	80H	80H	80H	_	(5) While changing data on cutoff from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum values (max : Vcomx, min : Vcomn).
																	(6) Set cutoff data at center value and measure video voltage of pin 13 (G OUT) (Vcoct).
T ₂₂	Cutoff Variable Range	1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(7) On the condition that bus data with which Vcomx is obtained in measurement of the above step 5 is Dcomx and bus data with which Vcomn is obtained in the same is Dcomn, calcular number of steps (ΔDcut).
																	ΔDcut = Dcomx - Dcomn
																	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input a stepping signal whose amplitude in video period is 0.3V to pin 31 (Y IN).
																	(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
											FFH	FFH					(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground
T ₂₃	Drive Variable Range	↑	1	1	1	1	1	_	_	_			80H	80H	80H	_	(5) Set bus data so that contrast is maximum and Y sub contrast is minimum.
											00H	00H					(6) While changing drive data from minimum to maximum, measure video amplitude of pin 13 (G OUT) to find maximum and minimum values (max : Vdrmx, min : Vdrmn).
																	(7) Set drive data at center value and measure video amplitude pin 13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured value to the maximum and minimum amplitudes measured in the above step 6 respectively (DR+, DR-).

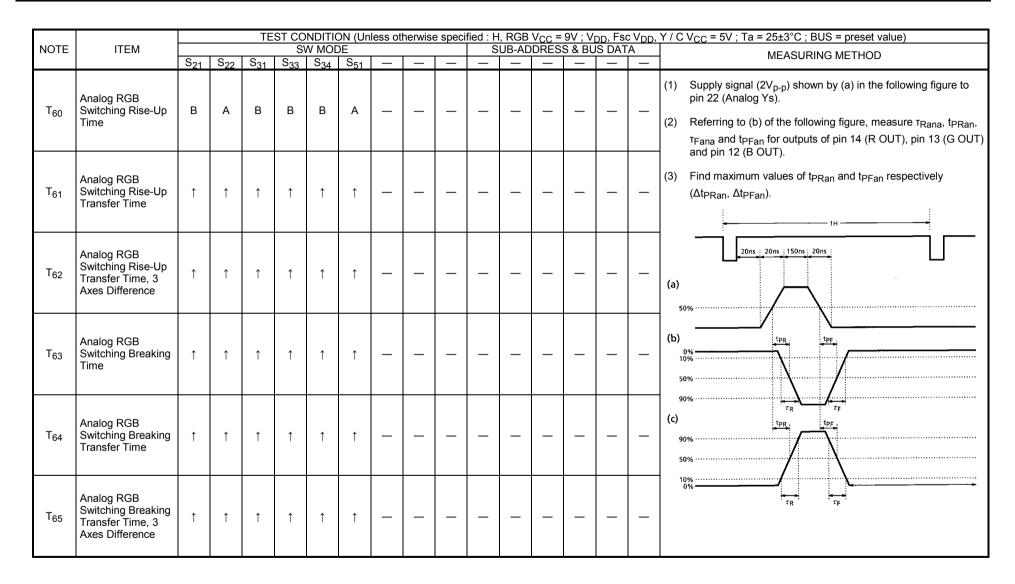

				TE				less ot	herwise	e speci	fied : H	I, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N WOE						1	DRES		JS DAT	Α	MEASURING METHOD
T ₂₄	DC Regeneration	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₅	S ₃₉	S ₄₄	_	_	_	_	_	_	 Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input such the step-up signal as shown below to pin 45 (Y IN) and pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum and DC transmission correction factor is minimum. Adjust data on Y sub contrast so that video amplitude of pin 13 (G OUT) is 2.5V. While varying APL of the step-up signal from 10% to 90%, measure change in voltage at the point A.
T ₂₅	RGB Output S / N Ratio	1	1	В	1	1	1	_	_	_	_	_	_	_	_	_	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data on contrast at maximum. Set bus data on Y sub contrast at center value. Measure video noise level of pin 13 (G OUT) with oscilloscope (no). SNo = -20log (2.5 / (1 / 5)×no)

				TE				less ot	herwise	e spec							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N MOE		1	1					S & BU			MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁			_	01H	05H	H80	0CH	ODH	0EH	(1) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
T ₂₆	Blanking Pulse	В	В	В	В	В	Α	_	_	_	80H	10H	04H	80H	80H	80H	(2) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
20	Output Level																(3) Set bus data so that blanking is on.
																	(4) Measure voltage of pin 13 (G OUT) in V. blanking period (Vy).
																	(5) Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
																	In the setting condition of the Note T_{26} , find " t_{don} " and " t_{doff} " (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT).
T ₂₇	Blanking Pulse Delay Time	1	1	1	1	1	1	_	_	_	1	1	1	1	1	1	t _{doff}
																	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₂₈	RGB Min. Output	<u></u>	1	 	↑	↑	↑	_	_	_	00H	1	<u></u>	00H	00H	00H	(2) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
. 20	Level	'	'	'	'	'						'	'				(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that brightness and RGB cutoff are minimum.
																	(5) Measure video voltage of pin 13 (G OUT) (Vmn).
																	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input stepping signal to pin 31 (Y IN) and synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
T ₂₉	RGB Max. Output Level	1	1	1	1	1	1	_	_	_	80H	1fH	44H	80H	80H	80H	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that contrast and Y sub contrast are maximum. Pin 13 output waveform
																	(5) While increasing amplitude of the stepping signal, measure maximum output level just before video signal of pin 13 (G OUT) is distorted (Vmn).

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	I, RGB	V _{CC} =	9V ; V	DD, Fso	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N MOE						UB-AD		S & BL	IS DAT	Α	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	15H	1CH	_	_	_	_	WEAGONING WETHOD
																	(1) Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN).
T ₃₀	Halftone Ys Level	В	В	В	Α	В	В	В	В	Α	00H	80H	_	_	_	_	(2) Set bus data so that blanking is off and halftone is −3dB in on status.
																	(3) Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13).
T ₃₁	Halftone Gain 1	1	1	1	1	1	1	1	1	1	1	1	_	_	_	_	(4) Raising supply voltage to pin 21 gradually from 0V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b)
T ₃₂	Halftone Gain 2	↑	1	1	1	↑	↑	↑	↑	↑	01H	↑	_	_	_	_	(5) According to results of the above steps 3 and 4, calculate gain of −3dB halftone and variation of pedestal level.G3ht13 = 20 log (Vm13b / Vm13)
																	(6) Set bus data so that halftone is -6dB in on status, and perform the same measurement as the above steps 4 and 5 to
	Total ONLY and and																find gain of −6dB halftone and variation of pedestal level (G6th13).
T ₃₃	Text ON Ys, Low Level	1	1	1	1	1	1	1	1	1	1	1	-	_	_	_	(7) Raising supply voltage to pin 21 further from Vtht1, measure level (Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx13).
																	(8) From results of the above steps 3 and 7, calculate low level of the output in the text mode.
T ₃₄	Text / OSD Output,	1	1	1	†	1	↑	1	↑	↑	↑	1	_	_	_	_	Vtxl13 = Vtx13 - Vp13
07	Low Level	'	,	'	,		'	'	'	'	'	'					(9) Raising supply voltage to pin 21 by 3V from that in the above step 7, confirm that there is no change in output level of pin 13.

				TE				less ot	herwise	e speci	fied : F	l, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	<u> </u>	C	.		N MOE		· ·	C			UB-AD		S & BU	IS DAT	A	MEASURING METHOD
T ₃₅	Text RGB Output, High Level	S ₁₈	S ₁₉	S ₂₀	A	S ₂₂	S ₃₁	S ₃₃	S ₅₁	_	02H	80H	_		_	_	 Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN). Set bus data so that blanking and halftone are off. Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure pedestal level of pin 13 output signal (G OUT) (VpI13).
																	(4) Connect power supply to pin 19 (Digital G IN) and impress it with 2V.
T ₃₆	OSD Ys ON, Low Level	†	1	1	†	1	1	†	1	-	1	↑	-	_	_	_	 (5) Raising supply voltage to pin 21 gradually from 0V, measure video level of pin 21 after output signal of pin 13 changed (Vlx13). (6) From measurement results of the above steps 3 and 5, calculate high level in the text mode. Vmt13 = Vtx13 - Vpt13
																	(7) Raising supply voltage to pin 21 further from that in the step 5, measure level (Vtost) of pin 21 when the level of pin 13 output signal changes from that in the step 5 to −6dB as halftone data is set to ON (the 6th step of Notes T ₃₀ to T ₃₄).
T ₃₇	OSD RGB Output, High Level	†	†	1	1	↑	†	†	↑	_	1	1	_	_	_	_	 (8) In the condition of the above step 7, raise voltage impressed to pin 19 to 3V and measure output voltage of pin 13 (Vos13). (9) From results of the above steps 3 and 7, calculate high level of the output in the OSD mode. Vmos13 = Vos13 - Vpt13

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	I, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				SI	N MOE	DE				S	UB-AD	DRES	S & BL	IS DAT	ΓΑ	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_	_	_	-	_	_	MEAGORING METHOD
T ₃₈	Text Input Threshold Level	A	Α	А	А	В	В	В	В	А		_	_	1		_	 Connect power supply to pin 21 (Digital Ys) and impress 1.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).
T ₃₉	OSD Input Threshold Level	1	1	1	1	1	1	1	1	1		_	_	1		_	 Connect power supply to pin 21 (Digital Ys) and impress 2.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).

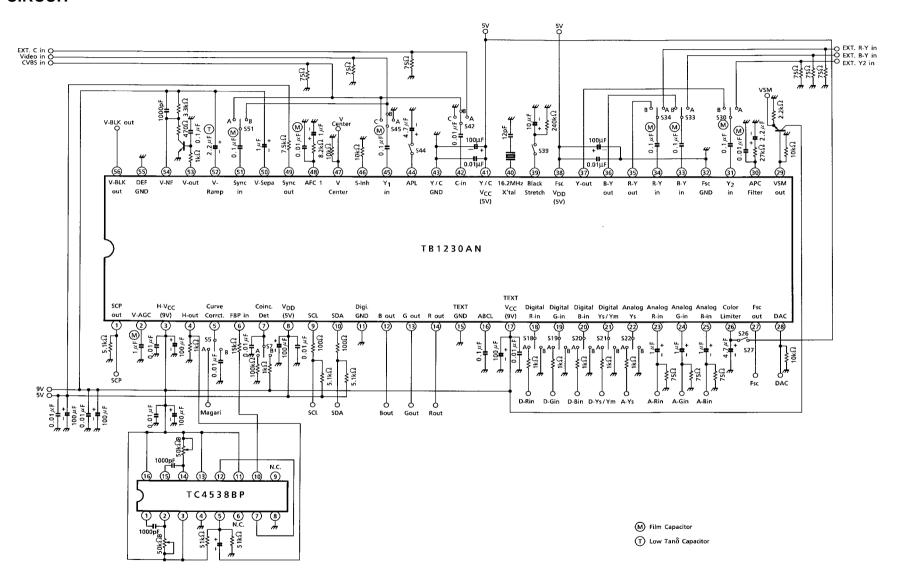

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₁₈	S ₁₉	S ₂₀		W MOE	DE S ₃₁	S ₃₃	S ₃₄	S ₅₁	S	UB-AD	DRES	S & BL	JS DAT	A	MEASURING METHOD
		<u>518</u>	319	320	321	322	331	033	034	<u> </u>							(1) Supply pin 21 (Digital Ys) with 2.5V.
T ₄₆	OSD Hi DC Switching Rise-Up	Α	Α	А	А	В	В	В	В	Α	_	_	_	_	_	_	(2) Input 5V _{p-p} signal shown by (a) in the figure to pin 18 (Digital R IN).
	Time																(3) Referring to (b) of the following figure, measure T _{Rosh} , t _{PRoh} , T _{Fosh} and t _{PFoh} for output signal of pin 14 (R OUT).
	OSD Hi DC																(4) Input 5Vp-p signal shown by (a) in the figure to pin 19 (Digital G IN).
T ₄₇	Switching Rise-Up Transfer Time	1	1	1	↑	1	1	1	1	1	_	_	_	_	_	-	(5) Perform the same measurement as the above step 3 for pin 13 output (G OUT) referring to (b) of the following figure.
																	(6) Input 5V _{p-p} signal shown by (a) in the figure to pin 20 (Digital B IN).
T ₄₈	OSD Hi DC Switching Rise-Up Transfer Time. 3	↑	1	1	↑	↑	↑	↑	↑	1	_	_	_	_	_	_	(7) Perform the same measurement as the above step 3 for pin 12 output (B OUT) referring to (b) of the following figure.
	Axes Difference	,				,		,	·	·							(8) Find maximum axes differences in t_{PRoh} and t_{PFoh} among the three outputs (Δt_{PRoh} , Δt_{PFoh}).
	OSD Hi DC																
T ₄₉	Switching Breaking Time	↑	1	1	1	1	1	1	1	1	_	_	_	_	_	-	20ns : 20ns : 150ns : 20ns
																	(a)
	OSD Hi DC	•															50%
T ₅₀	Switching Breaking Transfer Time	↑	'	1		↑	'	1					_	_			
																	(b) <u>tpr</u> <u>tpr</u>
T ₅₁	OSD Hi DC Switching Breaking Transfer Time, 3	↑	1	1	1	1	1	1	1	1	_	_	_	_	_	_	10% 0%
	Axes Difference																TR TF

	17514			TE					less ot	herwise	e speci						Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	HEM	S ₂₁	S ₂₂	S ₃₁					l —	Ι —	Ι —	06H	UB-AD	DRES	— —	—	MEASURING METHOD
T ₅₂	RGB Contrast Control Characteristic	S ₂₁	S ₂₂		SI	BNDITI	V MOD	ΣE		herwise —	e speci	S		DRES	9V; V _I S & BU		

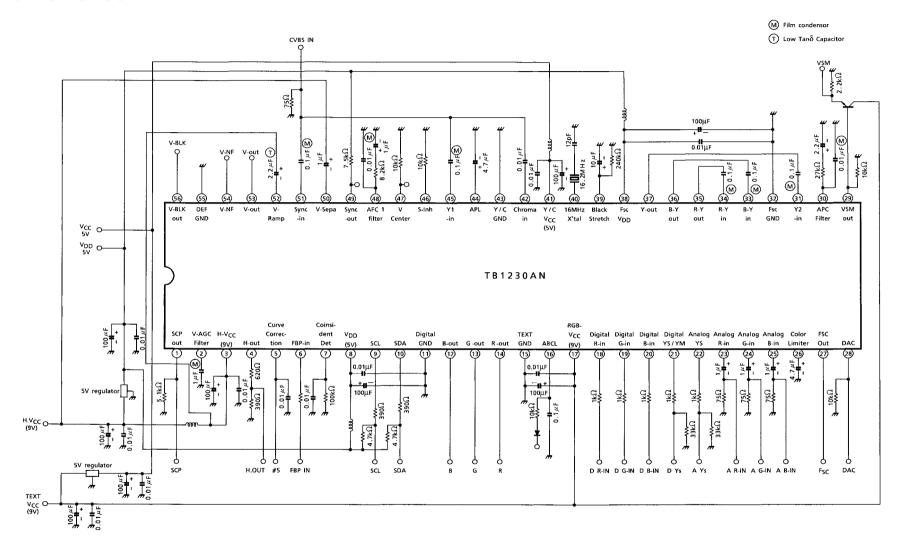
TB1230AN

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				SI	W MOI					S	UB-AD	DRES	S & BU	IS DAT	Ā	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_	_	_	06H	_	_	_	_	_	MEAGORING METHOD
T ₅₃	Analog RGB AC Gain	В	А	В	В	В	А	_	_	_	_	_	_	_	_	_	In the setting condition of the Note T_{52} , calculate output / input gain (double) with contrast data being set maximum. $G = Vc13mx / 0.5V$
T ₅₄	Analog RGB Frequency Characteristic	1	1	1	1	1	1	_		_	FFH	_	_		_	_	 Input 0.3V synchronizing signal to pin 51 (Sync IN). Supply 5V of external supply voltage to pin 22 (Analog Ys). Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 24 (Analog G IN). Set bus data so that contrast is maximum and drive is set at center value. Measure video amplitude of pin 13 (G OUT) and calculate cutout (input prin (double) (CCM).
																	output / input gain (double) (G6M). (6) From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic. Gf = 20 \(\lambda \text{og} \) (G6M / G)

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e speci	fied : H	, RGB	V _{CC} =	9V ; V	DD, Fso	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S ₃₃	N MOE S ₃₄		_	l —	I —	01H	UB-AD	DRES —	S & BL —	JS DAT	A 	MEASURING METHOD
																	(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).
T ₅₅	Analog RGB	В	A	В	В	В	A	_	_	_	_	00H	_	_	_	_	(3) Set bus data so that contrast is minimum and drive is set at center value.
33	Dynamic Range																(4) While inputting stepping signal to pin 24 (Analog G IN), increase video amplitude gradually from 0.
																	(5) Measure video amplitude of pin 24 when video voltage of pin 13 (G OUT) does not change.
	RGB Brightness										FFH						(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₅₆	Control	1	1	1	1	1	1	_	_	_		_	_	_	_	_	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
	Characteristic										00H						(3) Set bus data on RGB cutoff at center value.
																	(4) Supply 5V of external supply voltage to pin 22 (Analog Ys).
T ₅₇	RGB Brightness	1	1	1	 	↑	1	_	_	_	80H	_	_	_	_	_	(5) While changing data brightness from maximum to minimum, measure maximum and minimum voltages of pin 13 (G OUT) in video period. (max : Vbrmx, min : Vbrmn)
	Center Voltage	,	,	,	, '	'	,										(6) Set bus data on brightness at center value and measure video voltage of pin 13 (G OUT) (Vbcnt).
T ₅₈	RGB Brightness Data Sensitivity	1	1	1	1	↑	1	_	_	_	_	_	_	_	_	_	(7) On the condition that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	$\Delta Vbrt = (Vbrmx - Vbrmn) / (Dbrmx - Dbrmn)$
																	(1) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.3V) to pin 23 (Analog R IN).
T ₅₉	Analog RGB Mode ON Voltage	1	1	1	1	↑	1	_	_	_	80H	_	_	_	_	_	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys) and raise the voltage gradually from 0V.
																	(3) Measure voltage at pin 22 when signal 1 is output from pin 14 (R OUT) (Vanath).

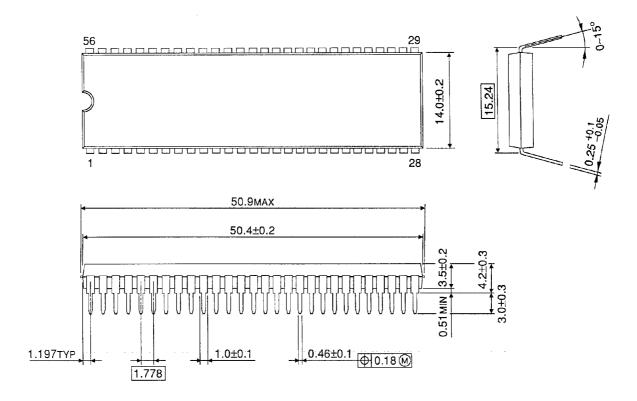


				TE	ST CO	NDITIO	ON (Un	less ot	herwis	e spec	ified : H	I, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				SI	N MOI	DE				S	UB-AD	DRES	S & Bl	JS DAT	Α	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_	_	_	_	_	_	_	_	_	(1) Supply 2V to pin 22 (Analog Ys).
T ₆₆	Analog RGB Hi Switching Rise-Up	В	А	В	В	В	А	_	_	_	_	_	_	_	_	_	 (2) Input 0.5V_{p-p} signal shown by (a) in the following figure to pin 23 (Analog R IN).
	Time																(3) Referring to (b) of the following figure, measure T _{Ranh} , t _{PRah} , T _{Fanh} and t _{PFah} for output of pin 14 (R OUT).
	Arrala v DOD III																(4) Input 0.5V _{p-p} signal shown by (a) in the following figure to pin 24 (Analog G IN).
T ₆₇	Analog RGB Hi Switching Rise-Up Transfer Time	↑	1	1	1	↑	1	_	_	_	_	_	_	_	_	_	(5) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13
																	(G OUT).
	Angles DCD Hi																(6) Input 0.5V _{p-p} signal shown by (a) in the following figure to pin 25 (Analog B IN).
T ₆₈	Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	↑	1	1	1	↑	↑	_	_	_	_	_	_	_	_	_	(7) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 12 (B OUT).
																	(8) Find maximum axes difference in t _{PRoh} and t _{PFoh} among the three outputs (Δt _{PRah} , Δt _{PFah}).
T ₆₉	Analog RGB Hi Switching Breaking Time	1	1	1	1	↑	↑	-	_	_	_	_	_	_	_	_	20ns : 20ns : 150ns : 20ns :
																	(a)
T ₇₀	Analog RGB Hi Switching Breaking Transfer Time	↑	1	1	1	1	1	_	_	_	_	_	_	_	_	_	50%
																	(b) tpR. tpF.
T ₇₁	Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	↑	↑	1	1	↑	1	-	_	_	_	_	_	_	_	_	10% 10% 0%


				TE				less ot	herwise	e spec							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S ₃₃	N MOE S ₃₄		Ι_	Ι_	I —	S	UB-AD	DRES —	S & BI —	JS DAT	<u>га</u> I —	MEASURING METHOD
		-21	- 22	-31	-33	-34	-51										(1) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y ₂ IN).
																	(2) Short circuit pin 25 (Analog G IN) in AC coupling.
																	(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value.
	TV-Analog RGB																(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
T ₇₂	Crosstalk	В	Α	В	В	В	Α	_	_	_	_	_	_	_	-	_	(6) Measure video voltage of output signal of pin 13 (G OUT) (Vtg).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	(8) Measure video voltage of output signal of pin 13 (G OUT) (Vana).
																	(9) From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB.
																	Crtva = 20log (Vana / Vtv)
																	(1) Short circuit pin 31 (Y ₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling.
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Set bus data so that contrast is maximum and drive is set at center value.
																	(4) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 24 (Analog G IN).
T ₇₃	Analog RGB-TV	↑	^	↑	↑	1	↑	_	_				_		l _	_	(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
1/3	Crosstalk						'					_					(6) Measure video voltage of output signal of pin 13 (G OUT) (Vant).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	(8) Measure video voltage of output signal of pin 13 (G OUT) (Vtan).
																	(9) From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV.
																	Crant = 20log (Vant / Vtan)

				TE				less ot	herwise	e spec							Y / C V(_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	C	C	S ₃₁		N MOE S ₃₄		_	I	1	01H	UB-AD 15H	DRES	S & BL	IS DAT	A	-	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	534	S ₅₁		_		UIH	ІЭП			_			nput TG7 sine wave signal (f = 4MHz, video amplitude = .5V) to pin 31 (Y ₂ IN).
												10H					(2) S	hort circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and in 26 (Analog B IN) in AC coupling.
T ₇₄	ABL Point Characteristic	В	В	В	В	В	A	ı	-	_	FFH	90H F0H	1	1	_	_	ar vo g vo	tet bus data so that brightness is maximum and ABL gain is to center value, and supply pin 16 with external supply oltage. While turning down voltage supplied to pin 16 radually from 7V, measure voltage at pin 16 when the oltage supplied to pin 12 decreases by 0.3V in three onditions that data on ABL point is set at minimum, center nd maximum values respectively. (Vablpl, Vablpc, Vablph)
																		nput TG7 sine wave signal (f = 4MHz, video amplitude = .5V) to pin 31 (Y ₂ IN).
																	(2) Ir	nput 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) N	leasure video amplitude at pin 12. (Vacl1)
T ₇₅	ACL Characteristic	↑	†	↑	↑	↑	1	_		_	_	_	_	_	_	_	(4) N	leasure DC voltage at pin 16 (ABCL).
.75	7102 Ondradionolo	'	'	'	'													supply pin 16 with a voltage that the voltage measured in the bove step 4 minus 2V.
																		Measure video amplitude at pin 12 (Vacl2) and its ratio to the mplitude measured in the above step 3.
																		Vacl = 20log (Vacl2 / Vacl1)
																		thort circuit pin 31 (Y ₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y N) in AC coupling.
																	(2) Ir	nput 0.3V synchronizing signal to pin 51 (Sync IN).
																		et bus data on brightness at maximum and measure video OC voltage at pin 12 (Vmax).
												00H						Measure voltage at pin 16 which is being supplied with the oltage measured in the step 5 of the preceding Note 75.
T ₇₆	ABL Gain Characteristic	1	1	1	1	1	1	_	_	_	FFH	10H	_	_	_	_	a	changing setting of bus data on ABL gain at minimum, center nd maximum values one after another, measure video DC oltage at pin 12. (Vabl1, Vabl2, Vabl3)
												1CH						ind respective differences of Vabl1, Vabl2 and Vabl3 from ne voltage measured in the above step 3.
																		Vabll = Vmax - Vabl1
																		Vablc = Vmax - Vabl2
																		Vablh = Vmax - Vabl3

TEST CIRCUIT



APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78 Unit: mm

Weight: 5.55g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.