
TENTATIVE TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8795BF

VIDEO SIGNAL PROCESSOR IC FOR LCD TVs

Offered in a flat 60-pin plastic package, the TA8795BF is a multi-system IC integrating video, chroma, and sync signal processor circuits for PAL, NTSC, and SECAM systems with B, G, M, and N variations. Such automatic signal detection functions as PAL / NTSC / SECAM chroma system detection, 4.43 / 3.58MHz subcarrier detection, and 50 / 60Hz vertical sync frequency detection make this IC ideal for processing the signals of portable LCD televisions designed to be used anywhere in the world. (Uses M / N PAL external detection.)

FEATURES

Video circuit

- Brightness control, unicolor control
- Second-order differential sharpness control
- Black stretch circuit
- DC restoration adjustable circuit
- Demodulation output circuit
- YNR (coring)
- y correction (two-point approximation)

Chroma circuit

- Color control, tint control
- Automatic detection of PAL / NTSC / SECAM systems, system forced mode
- Automatic detection of 3.58 / 4.43MHz subcarrier frequency (M / N PAL detected externally)
- Direct PAL demodulation (without 1H delay line)

Sync circuit

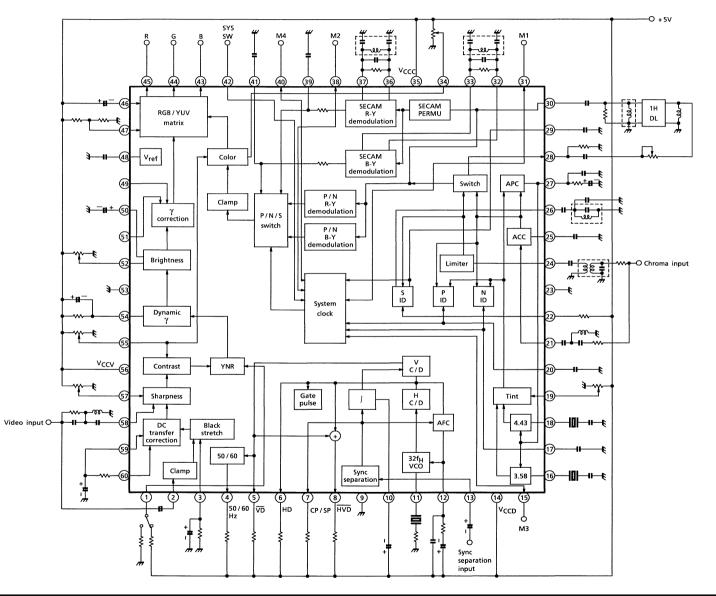
- Auto slice sync separator circuit
- Countdown horizontal oscillator circuit
- Automatic detection of 50 / 60Hz vertical sync frequency
- Sync separation output

Demodulation output circuit

• Selectable output between RGB and YUV

000707EBA1

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or


damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal

- equipment, office equipment, measuring equipment, industrial robotics, domestic applications domestics applications (computer, personal neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise under any intellectual property or other rights of the property or otherwise under any intellectual property or other rights of the property or otherwise under any intellectual property or otherwise under any intellectual property or otherwise under any intellectual others

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

PIN FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE	
1	YNR switch	YNR circuit switching pin. This pin also features a SECAM inhibit mode. For switching between the modes, see the Technical Data on P.13.		
2	Yin	Video signal input pin. The typical input level is 0.5V _{p-p} .		
3	Maximum black detection	Maximum black level detection filter pin.		
4	50 / 60Hz output	Detects 50 / 60Hz vertical sync frequency. 50Hz triggers low-level output; 60Hz triggers high-level output.	4 4	
5	VD	VD output pin.		
6	HD output	HD output pin.		
8	HD +VD output	HD +VD output pin.		
7	CP / SP output	CP / SP output pin.		
9	Def. GND	Def. ground pin.	_	

PIN No.	PIN NAME	FUNCTION	INTERFACE
10	Vertical sync separation filter	Vertical sync signal separation filter pin.	300.01 55 4A
11	32f _H VCO	32f _H VCO connecting pin.	
12	AFC filter	AFC filter pin.	
13	Sync separation input	Sync signal separation input pin. The typical input level is 1V _{p-p} .	A A A A A A A A A A A A A A
14	Def. V _{CC}	Def. V _{CC} pin.	_

PIN No.	PIN NAME	FUNCTION	INTERFACE
15	M3 (Mode switch 3)	Receive mode switching pin. For switching between the modes, see the Technical Data on P.12 and 13.	30kD
16	3.58 / M / N VCXO	Connects 3.58MHz / M / N subcarrier VCXO.	Phase shift circuit 16 18 R
18	4.43MHz VCXO	Connects 4.43MHz subcarrier VCXO.	Pin 16 : R=2.5kΩ Pin 18 : R=1.5kΩ
17	NTSC ID	NTSC signal identification pin.	$(1) \begin{array}{c} G.P. \\ Burst \\ CW \\ DET \\ U \\ M \\ CW \\ DET \\ CW \\ CW \\ DET \\ CW \\ CW \\ DET \\ CW \\ C$
19	Tint	Tint adjustment pin.	
20	PAL ID	PAL signal identification pin.	G.P. Burst D CW DET G U DET G U DET G G U DET G CW CW CW CW CW CW CW CW CW CW CW CW CW

PIN No.	PIN NAME	FUNCTION INTERFACE	
21	Chroma input	PAL / NTSC chroma signal input pin.	
22	SECAM ID. Switch	SECAM H-ID / V-ID switching pin. High level : H ID Low level : H+V ID	
23	Chroma GND	Chroma ground pin.	—
24	SECAM input	SECAM chroma signal input pin.	
25	ACC filter	ACC filter pin.	
26	S-ID detector	SECAM ID detector pin.	

PIN No.	PIN NAME	FUNCTION	INTERFACE
27	APC filter	Chroma APC filter pin.	G.P. G.P. Burst APC CW DET 000 300Ω VCC 4 VCC 4 V V V V V V
28	1H delay line output	Outputs to the 1H delay line.	+ + + + + + + + + + + + + + + + + + +
29	SECAM ID	SECAM ID filter pin.	CW DET CW DET
30	1H delay line input	Inputs to the 1H delay line.	
31	M1 (Mode switch 1)	Receive mode switching pin. For switching between the modes, see the Technical Data on P.12 and 13.	

PIN No.	PIN NAME	FUNCTION	INTERFACE
32 33	SECAM B-Y detection 1, 2	SECAM B-Y demodulation pins.	
36 37	SECAM R-Y detection 1, 2	SECAM R-Y demodulation pins.	
34	Color	Color adjustment pin.	
35	Chroma V _{CC}	Chroma V _{CC} pin.	—
38	M2 (Mode switch 2)	Receive mode switching pin. For switching between the modes, see the Technical Data on P.12 and 13.	2k ⁰ 30k
39 40	SECAM de-emphasis	SECAM de-emphasis pins.	39 41 P/N/S switch

PIN No.	PIN NAME	FUNCTION	INTERFACE
40	M4 (Mode switch 4)	Receive mode switching pin. For witching between the modes, see the Technical Data on P.12 and 13.	
42	SYS SW (system switch)	Receiver system switch. For system switching, see the Technical Data on P.12.	10kΩ
43 44 45	R, G, B output	R (R-Y), G (Y), and B (B-Y) output pins.	
46	Clamp filter	G output clamp filter.	€ 50,4A 2kΩ 2kΩ
47	PIP switch	R G B, and R-Y, B-Y, and Y output switch. Also switches between clamp pulse output and sync pulse separation output of pin 7. For switching between the modes, see the Technical Data on P.13.	CP CP CP

PIN No.	PIN NAME	FUNCTION	INTERFACE
48	V _{ref.} filter	V _{ref.} filter pin.	
50	Brightness filter	Brightness clamp filter.	
52	Brightness	Brightness control pin.	
49	γ correction 2	Sets the $\boldsymbol{\gamma}$ correction point.	γ correction γ correction γ correction
51	γ correction 1	Sets the $\boldsymbol{\gamma}$ correction point.	
53	Video GND	Video signal ground pin.	Switch
54	Dynamic γ filter	Dynamic γ filter pin.	2kQ V V Amp 5000000
55	Contrast	Contrast control pin.	
57	Sharpness	Sharpness control pin.	
56	Video V _{CC}	Video V _{CC} pin.	-

PIN No.	PIN NAME	FUNCTION	INTERFACE
58	YH input	Second-order differential signal input pin for sharpness.	150 µA
59	Black stretch point	Determines the black stretch point.	
60	DC transfer correction filter	DC transfer correction filter pin.	Black stretch circuit

O System switch specifications (Unless otherwise specified, V_{CC} = 4.5V, Ta = 25°C±3°C)

Pin 42 system switch

SYS SW (PIN 42)	MODE	RECEIVER SYSTEM	
V _{CC}	Normal mode		PAL (B / G, etc), NTSC (3.58 / 4.43), SECAM
1 / 2 V _{CC}	South American mode	M, N,	PAL (M / N / B / G, etc), NTSC (3.58 / 4.43), SECAM
GND (*)	Pseudo-PAL mode	M, N,	PAL (M / N / B / G, etc), NTSC (3.58 / 4.43)

*: In Pseudo-PAL mode, PAL demodulation uses the NTSC demodulation circuit, CW tint adjustment is supported, and a 1H delay line is not required (direct PAL demodulation).

(1) Normal mode (pin 42-V_{CC})

Color system automatic detection output

RECEIVED	M1	M2	M3	M4
SIGNAL	PIN 31	PIN 38	PIN 15	PIN 40
PAL	Н	Н	М	L
SECAM	Н	М	М	L
4.43NTSC	L	Н	М	L
3.58NTSC	L	L	М	L
Black & white	L	M/L	L	L

Color system forced mode

	OVOTEM			
M1	M2	M3	M4	SYSTEM
Н	Н	н	Open	PAL
Н	(**)	н	Open	SECAM
(**)	Н	н	Open	4.43NTSC
(**)	(**)	Н	Open	3.58NTSC

H: 3V

M: 1.5V

L: 0V

-

V_{th} = 2.3V **: Hio

High-impedance drive

Special system switches

SW2: Input current switch (I_{th} = 0.6mA) \cdots PAL / SECAM receive mode

 $\text{SW}_{3:}~$ Input current switch (I_{th} = 0.6mA) $\cdots \cdots$ Forced black & white mode

(in PAL / SECAM mode)

YNR: Voltage switch (V_{th} = 1.5V) ······ PAL / NTSC receive mode

Vertical sync detection output

Pin 4 ······ High level = 60Hz Low level = 50Hz

<u>TOSHIBA</u>

(2) South American mode / Pseudo-PAL mode (pin 42-1 / 2 VCC / GND)

Automatic color system detection output

	-		-	
RECEIVED	M1	M2	M3	M4
SIGNAL	PIN 31	PIN 38	PIN 15	PIN 40
PAL (M / N)	Н	L	М	М
PAL (B / G, etc)	Н	Н	М	L
SECAM	Н	М	М	L
4.43NTSC	L	Н	М	L
3.58NTSC	L	L	М	L
Black & white	L	M/L	L	L

Forced color system mode

	INPUT	OVOTEN		
M1	M2	M3	M4	SYSTEM
(**)	(**)	(**)	H#	PAL (M / N)
Н	Н	Н	(**)	PAL (B / G, etc)
Н	(**)	Н	(**)	SECAM
(**)	Н	Н	(**)	4.43NTSC
(**)	(**)	Н	(**)	3.58NTSC

H: 3V

- M: 1.5V
- L: 0V

V_{th} = 2.3V

**: High-impedance drive#: In this mode, the pin is

In this mode, the pin is internally clamped to 3.75V. Does not support switching driven by current to the pin.

Note: Because a 1H delay line is not used, SECAM cannot be demodulated in Pseudo-PAL mode. (Same as SECAM non-supported mode.)

O Switches

YNR switch

PIN 1 VOLTAGE	YNR	RECEIVER SYSTEM				
V _{CC}	OFF	P/N/S				
2 / 3 V _{CC}	011	P/N				
1 / 3 V _{CC}	ON	1 / 1				
GND	ON	P/N/S				

SECAM ID switch

Pin 22 Voltage: High level = H ID

Low level = H+ V ID (V_{th} = 1 / 2 V_{CC})

Output signal mode switches

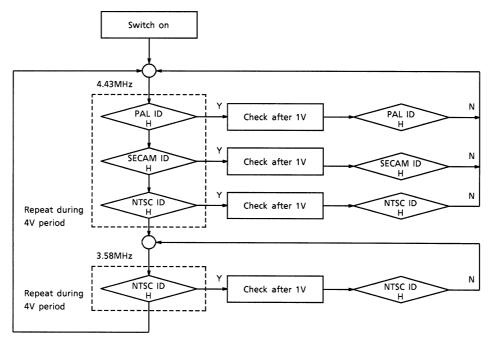
PIN 47 VOLTAGE	OUTPUT SIGNAL	CP / SP
V _{CC}	RGB	СР
1 / 2 V _{CC}	KGB	SP
GND	YUV	JF JF

 $\boldsymbol{\gamma}$ correction switch

Pin 51 voltage: 2V_F or higher : Off

 $2V_F$ or lower : On ($V_{th} = 2V_F$)

- CP: Clamp pulse
- SP: Sync separation output
- RGB: Primary color output
- (pins 45 / 44 / 43 : R / G / B output) YUV: Color difference output
 - (pins 45 / 44 / 43 : R-Y / Y / B-Y output)


O Flow Chart for Color System Detection

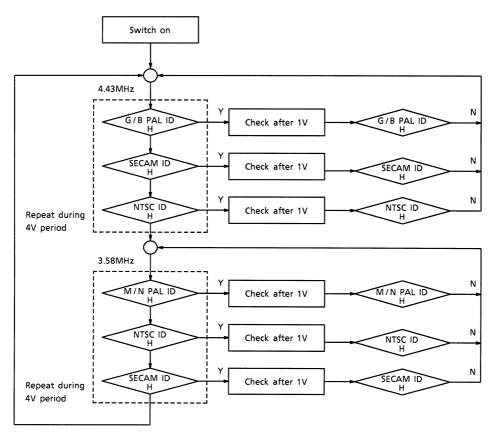
(1) Normal mode (pin 42-V_{CC})

Receiver system priority

AT PIN 18 X'tal	AT PIN 16 X'tal
OSCILLATION	OSCILLATION
4.43PAL	—
-	3.38NTSC
SECAM	SECAM
4.43NTSC	—

Detection flow chart

O Flow Chart for Color System Identification


(2) South American mode / Pseudo-PAL mode (pin 42-1 / 2 V_{CC} / GND)

Receiver system priority

AT PIN 18 X'tal	AT PIN 16 X'tal
OSCILLATION	OSCILLATION
4.43PAL	—
—	N / M PAL
	3.58NTSC
(SECAM)	(SECAM)
4.43NTSC	—

SECAM signals are not received in Pseudo-PAL mode.

Detection flow chart

MAXIMUM RATINGS (Unless otherwise specified, V_{CC} = 5V, Ta = 25°C)

ITEM	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	7	V
Power Dissipation	P _{D max} (Note 1)	800	mV
Input Signal Voltage	e _{in}	2	V _{p-p}
Pin Voltage	V _{in}	GND - 0.2~V _{CC} + 0.2	V
Operating Temperature	T _{opr}	-10~65	°C
Storage Temperature	T _{stg}	-55~150	°C

Note 1: When the IC is mounted on the PCB. If the IC is operated at 25°C or higher, reduce power dissipation by 6.4mW per degree.

Note 2: In some areas, depending on the input signal state, automatic identification function or killer function may malfunction.

RECOMMENDED OPERATING CONDITIONS

ITEM	SYMBOL	MIN	TYP.	MAX	UNIT	REMARKS
Video Block Supply Voltage	V _{CC56}	4.0	5.0	5.5	V	
Chroma Block Supply Voltage	V _{CC53}	4.0	5.0	5.5	V	In Multi mode
Sync Supply Voltage	V _{CC14}	4.0	5.0	5.5	V	
Video Input Signal	Y _{in}	_	0.5	_	V _{p-p}	—
Second-order Differential Input	YH _{in}	_	75	_	mV _{p-p}	—
Chroma Input Signal	C _{in P / N}	_	100	_	m\/	—
	C _{inS}	_	300	_	mV _{p-p}	—
Sync Separation Input Signal	S _{in}	_	1.0	_	V _{p-p}	—
Control Pin Voltage	V _{19, 34, 55, 57}	0	2.5	5.0	V	Pins 19, 34, 55, 57
SECAM ID Switch	V ₂₂	4.7	5.0	5.0	V	When H-ID selected
PIP Switch	V ₄₇	2.2	2.5	5.0	V	In RGB output mode

ELECTRICAL CHARACTERISTICS Power consumption (Unless otherwise specified, $V_{CC} = 5V$, Ta = 25°C±3°C)

BLOCK NAME	TYPICAL IC INTERNAL CURRENT (mA)	V _{CC} (V)	P _C (mW)
Video	8.1	5	40.5
Chroma	33.83	5	169.15
Sync	14.33	5	71.65
Total	56.26	5	281.3

DC CharacteristicsPin DC voltage (Unless otherwise specified, V_{CC} = 5V, Ta = 25°C±3°C)

CIRCUIT TYPE	PIN No.	PIN NAME	SYMBOL	MIN	TYP.	MAX	UNIT	REMARKS
	1	YNR switch	V ₁	_	_	_		NR off (multi on)
Video	2	Y _{in}	V ₂	1.10	1.30	1.50		_
	3	Maximum black detection	V ₃	—	—			_
	4	50 / 60Hz output	V ₄	0	0.02	0.10		Low level
	5	VD output	V5	0.45	4.95	5.00		High level
	6	HD output	V ₆	0	0.15	0.30		Low level
	7	CP / SP output	V ₇	0	0.17	0.30		Low level
	8	HVD output	V ₈	4.00	4.24	4.50		High level
Sync	9	Def. GND	V ₉	_	—	_		—
	10	Vertical sync separation filter	V ₁₀	_	_	_		—
	11	32f _H VCO	V ₁₁	2.80	3.10	3.40		—
	12	AFC filter	V ₁₂	_	—	_		—
	13	Sync separation input	V ₁₃	1.50	1.77	2.10		—
	14	Def V _{CC}	V ₁₄	_	5.00	_		—
	15	M3 (mode switch 3)	V ₁₅	_	—	_	V	—
	16	3.58 / M / N VCXO	V ₁₆	3.70	4.04	4.30		Forced 3.58 mode
	17	NTSC ID	V ₁₇	_	—	_	l	Forced NTSC mode
	18	4.43MHz VCXO	V ₁₈	3.70	4.03	4.30		Forced 4.43 mode
	19	Tint	V ₁₉	_	2.50	_		—
	20	PAL ID	V ₂₀	_	_	-		Forced PAL mode
	21	Chroma input	V ₂₁	4.10	4.30	4.50		—
Chroma	22	SECAM ID switch	V ₂₂	_	5.00	١		—
	23	Chroma GND	V ₂₃	—	—	-		
	24	SECAM input	V ₂₄	4.10	4.32	4.50		—
	25	ACC filter	V ₂₅	_	_	_		—
	26	SECAM ID detector	V ₂₆	_	—	-		—
	27	APC filter	V ₂₇	_	—	_		—
	28	1H delay line output	V ₂₈	3.20	3.50	3.80		
	29	SECAM ID	V ₂₉	_	_	_		Forced SECAM mode

CIRCUIT TYPE	PIN No.	PIN NAME	SYMBOL	MIN	TYP.	MAX	UNIT	REMARKS
	30	1H delay line input	V ₃₀	1.80	2.09	2.40		—
	31	M1 (mode switch 1)	V ₃₁		_			_
	32	B-Y detection 1	V ₃₂	0.90	1.22	1.50		_
	33	B-Y detection 2	V ₃₃	0.90	1.22	1.50		—
	34	Color	V ₃₄	_	2.50	_		—
	35	Chroma V _{CC}	V ₃₅	-	5.00	_		—
	36	R-Y detection 1	V ₃₆	0.90	1.22	1.50		—
	37	R-Y detection 2	V ₃₇	0.90	1.22	1.50		—
Chroma	38	M2 (mode switch 2)	V ₃₈	_	_	_		—
	39	B-Y de-emphasis	V ₃₉	1.70	1.95	2.20		S-ID high level
	40	M4 (mode switch 4)	V ₄₀	_	_	_		—
	41	R-Y de-emphasis	V ₄₁	1.70	1.95	2.20		S-ID high level
	42	SYS SW (system switch)	V ₄₂	_	_	_		—
	43	B output	V ₄₃	0.80	0.95	1.20		—
	44	G output	V ₄₄	0.80	0.99	1.20		—
	45	R output	V ₄₅	0.80	0.96	1.20	V	—
	46	Clamp filter	V ₄₆	_	_	_		—
	47	PIP switch	V47	_	5.00	_		—
	48	V _{ref} filter	V ₄₈	1.70	1.88	2.10		—
	49	γ correction 1	V ₄₉	0.80	0.95	1.10		—
	50	Brightness filter	V ₅₀	3.60	3.79	4.00		—
	51	γ correction 2	V ₅₁	1.20	1.38	1.60		—
	52	Brightness	V ₅₂	0.80	0.95	1.10		_
Video	53	Video GND	V ₅₃	_	_	_		_
VILLEU	54	Dynamic γ filter	V ₅₄	4.50	4.97	5.00		_
	55	Contrast	V ₅₅		2.50	_		_
	56	Video V _{CC}	V ₅₆	_	5.00	_		
	57	Sharpness	V ₅₇		2.50			_
	58	YH input	V ₅₈	1.10	1.28	1.50		_
	59	Black stretch point	V ₅₉	_	_	_		_
	60	DC transfer correction	V ₆₀	_	—	_		_

Note: Unless otherwise specified, Y and C are not input during DC measurement.

AC Characteristics (Unless otherwise specified, $V_{CC} = 5V$, Ta = 25°C) Video Block

													a = 25±3°0 STOR) MOI		
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	SW_1	1	SW ₅₁	, in the second s	1	0011	BRIGHT- NESS		TEST METHOD
V ₁	Second-order differential input dynamic range	V _{dip}	V	0.13	0.18	0.35	OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 Adjust the bright VR so that the pin 44 DC voltage is 0.95V. Measure the DC voltage V50 of pin 50. Apply the DC voltage V50 to pin 50. Change the DC voltage V58 of pin 58. Measure V58 at 10% and 90% of the voltage variation range of pin 44 and calculate the balance (Vdip). Pin 44 voltage
V ₂	Minimum output	V _{do1}	V	0.55	0.75	0.95	OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a three-level chroma signal with a sync amplitude of 143mVp-p. Set the chroma amplitude of the three-level chroma signal to the minimum and adjust the bright VR so that the pin 44 pedestal is 0.95V. Gradually amplify the chroma amplitude of the three-level chroma signal. Measure the saturation voltage when the lower side of the chroma amplitude in the pin 44 output waveform is saturated.
V ₃	Maximum output	V _{do2}	V	1.60	1.75	2.25	OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Gradually increase the video component amplitude. Measure the saturation voltage when the upper side of the video component amplitude in the pin 44 output waveform is saturated.

													Ta = 25±3° STOR) MC		
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	SW_1		SW ₅₁	,			BRIGHT- NESS		TEST METHOD
V4	AC gain	G _{v1}	% IRE	1.8	2.5	3.3	OFF	OFF	ON	OFF	OFF	Center	Center	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Measure the output amplitude reflected at pin 44 and calculate the ratio of the amplitude to the input. Gv1 = output amplitude / input amplitude (←50mVp-p)
V ₅	Frequency characteristics	fs	MHz	2	3	_	OFF	OFF	OFF	OFF	OFF	Center	Center	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Connect a 1.6V power supply to pin 51. Measure the pin 44 output amplitude V44 (f = 100kHz). Gradually increase the input frequency and measure the frequency when the pin 44 output frequency reaches 70% of V44 (f = 100kHz).
V ₆	Sharpness Adjustment range	Gf _{ps1}	dB	10.0	14.0	_	OFF	OFF	ON	OFF	OFF	Center	Adjust	Adjust	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Measure the pin 44 amplitude when the sharpness VR is at minimum (V44min) and measure the pin 44 amplitude when the sharpness VR is at maximum (V44max).Calculate the following equation using the result of V44min and V44max. Gfps1 = 20log (V44max / V44min) [dB]
V ₇	Sharpness Adjustment gain	Gf _{ps2}	dB	6.0	10.0		OFF	OFF	ON	OFF	OFF	Center	Adjust	Maximum	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 2.4MHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Measure the pin 44 amplitude V44 (2.4MHz) and V44 (100kΩ) when a frequency of f = 2.4MHz and 100kHz are input respectively. Calculate the following equation using the result of V44 (2.4MHz) and V44 (100kHz). Gfps2 = 20log (V44 (2.4MHz) / V44 (100kΩ)) [dB]

													Ta = 25±3°(STOR) MO		
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	SW ₁			SW ₅₄		CON- TRAST	BRIGHT- NESS		TEST METHOD
V ₈	Contrast adjustment voltage adjustment	ΔV _{ct}	V	2.1	3.0	_	OFF	OFF	ON	OFF	OFF	Adjust	Adjust	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Measure the pin 44 amplitude and determine 100% and 0% of the pin 44 amplitude when the contrast VR is at maximum and minimum respectively. Adjust the contrast VR and measure the pin 55 voltage (V90%, V10%) when the pin 44 amplitude is at 90% and 10%. Calculate the following equation using the result of V90% and V10%. ΔVct = V90%-V10%
V9	Contrast adjustment gain variation range	ΔG _{ct}	dB	12.0	15.0	_	OFF	OFF	ON	OFF	OFF	Adjust	Adjust	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Measure the pin 44 amplitude when the contrast VR is at maximum and minimum respectively (V44max and V44min). Calculate the following equation using the result of V44max and V44min. ΔGct = 20log (V44max / V44min)
V ₁₀	Brightness voltage	V _{BR}	V	0.75	0.95	1.15	OFF	OFF	OFF	OFF	OFF	Center	Adjust r	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Measure the pin 52 DC voltage.
V ₁₁	Brightness control sensitivity	G _{BR}		0.4	0.5	0.6	OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Adjust the bright VR so that the pin 52 DC voltage increases by just 0.1V, then measure the pin 44 pedestal level V44H. Calculate the following equation using the result. GBR = (V44H-0.95) / 0.1

													a = 25±3°0		
No.	PARAMETER	SYMBOL	UNIT	MIN.	TYP.	MAX.	SW1			È		CON-	TOR) MOI BRIGHT-		TEST METHOD
							5W1	5003	50051	SW ₅₄	Svv ₆₀	TRAST	NESS	NESS	
	Brightness	V _{pdH}	V	1.2	1.5	1.7									 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p.
V ₁₂	Adjustment voltage range						OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 Measure the pin 44 pedestal when the bright VR is at maximum (VpdH).
		V _{pdL}	V	0.3	0.5	0.7									 Measure the pin 44 pedestal when the bright VR is at minimum (VpdL).
	Three-axis output	Δ V _{of} (B / G)	mV	- 200	0.0	200									 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p.
V ₁₃	DC offset (B / G)						OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 Adjust the bright VR so that the pin 44 pedestal is 0.95V (= V44).
	Three-axis output DC offset (R / G)	∆ V _{of} (R / G)	mV	- 200	0.0	200									 Measure the pin 43 pedestal V43 and the pin 45 pedestal V45, then calculate the following equations using the values of V43 and V45. ∆ Vof (B / G) = V43 - V44 ∆ Vof (R / G) = V45 - V44
	Three-axis output AC gain deflection	Δ V _{dif} (B / G)	dB	- 1.0	0.0	1.0									 To pin 2, input a signal with a video component amplitude of 50mVp-p and a sine wave (f = 100kHz) with a sync amplitude of 143mVp-p.
V ₁₄	(B / G)						OFF	OFF	OFF	OFF	OFF	Center	Adjust	Center	 Adjust the bright VR so that the pin 44 pedestal is 0.95V.
• 14	Three-axis output AC gain deflection (R / G)	∆ V _{dif} (R / G)	dB	- 1.0	0.0	1.0									 Measure the pin 43 amplitude V₄₃, the pin 44 amplitude V₄₄, and the pin 45 amplitude V₄₅, then calculate the following equations using the values of V₄₃, V₄₄, and V₄₅. ∆ V_{dif} (B / G) = 20log (V₄₃ / V₄₄) ∆ V_{dif} (R / G) = 20log (V₄₅ / V₄₄)

								TE	ST CO		NS : V _C	_C = 5V, T	a = 25±3°	C	
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	SW1		NO. ANI SW ₅₁			CON-	STOR) MO BRIGHT-	SHARP-	TEST METHOD
V ₁₅	Black stretch start Voltage	V _{st}	% IRE	30	60	70	OFF	ON	ON	OFF	ON	Center	Adjust	Center	 To pin 2, input a signal with a ramp wave amplitude of 500mV_{p-p}. The sync amplitude must be 143mVp-p and the setup amplitude, 100mVp-p. Monitor pins 2 and 60 with an oscilloscope. Set the pin 60 monitor channel to uncarrier and adjust pins 20 and 60 so that the pedestals and white peaks of both pins overlap. Compare the signals and read the voltage where the signal starts to move to the black side (= Vx) [mV]) using the pedestal voltage as reference. Calculate following equation to seek the start voltage Vst.Vst = Vx / (500 - 143) ×100 [% IRE]
V ₁₆	Black stretch gain	G _{blk}		1.1	1.3	1.5	OFF	ON	ON	OFF	ON	Center	Adjust	Center	 To pin 2, input a sine wave (f = 100kHz) with an amplitude of 50mVp-p and a signal with a sync amplitude of 143mVp-p. Adjust the bright VR so that the pin 44 pedestal is 0.95V. Apply a voltage of 0.65V to pin 3. Apply a voltage of 1.6V to pin 59. Monitoring pin 44, adjust only the signal generator sine wave amplitude so that the sine wave amplitude is 25mVp-p. Turn SW3 off. Now read the pin 44 amplitude (= Voff [mVp-p]) Calculate the following equation to seek the black stretch gain. Gblk = Voff / 25 [times]

No. PARAMETER SYMBOL UNIT MIN TYP. MAX SW No. AND VR (VARIABLE RESISTOR) MODE TEST METHOD W1 SW1 SW1 SW2 SW2 <th>D</th>	D
SW1 SW1 SW3 SW51 SW54 SW60 CON- TRAST BRIGH1- NESS SHARP- NESS Image: SW1 SW1 SW2 SW2 </td <td></td>	
500mVp-p. The sync amplitude in the 143mVp-p. 2. Read the pin 44 output amplitude (= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
$V_{17} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	the ramp wave must be (= Vdct off). ge fluctuation (= Δ Vdct) iod of the output on using the following

Chroma Block

								-	TEST						25±3°C			
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	15	16	18	S\ 19	// No. 21	AND 24	VR MO 31	DE 34	38	47	55	TEST METHOD
	ACC																	 Define as eB-Y the B-Y output amplitude of pin 43 when the burst and chroma signals, which have the same amplitude of 10mVp-p, are input to pin 21. Also define the B-Y output amplitude of pin 43 when the burst and chroma signals have the same amplitude of 100 and 300mVp-p (the 3N rainbow color-bar signal) and are input to pin 21 as B-Y OUT1 and B-Y OUT2 respectively. Also, define the ratio between B-Y OUT1 and B-Y OUT2 as A.
C ₁	characteristics (3N)	B-Y _{OUT1} A3N	V _{p-p}	0.60	0.80	1.00	Open	A	A	ON Vary	A	В	Open	Open	Open	ON	_	2. Using tint control, set the B-Y output amplitude to the maximum. A = B-Y OUT1 / B-Y OUT2 B-Y output B-Y B-Y OUT1 OUT2 e_{B-Y} 10 100 300 v_{21} burst, chroma (mV)
C ₂	Delay line output	e _{P28}	V _{p-p}	0.90	1.20	1.50	Open	А	A	ON Vary	A	В	Open	Open	Open	ON	_	 Measure the pin 28 1H output amplitude when burst and chroma signals with the same amplitude of 100mVp-p (PAL rainbow color bar signal) are input to pin 21. 1H output pin 28
-2	(PAL)	V _{P28} V _{N28}	> >	2.30 3.30	2.60 3.60	2.90 3.90	А	А	A	_	С	В	A / B	_	Open	ON	_	 Measure the pin 28 DC voltage when there is no input to pin 21 and Forced PAL or NTSC mode is set. Define these voltages as VP28 and VN28 respectively (PAL / NTSC switching operation check).

				MAINI					rest						25±3°C			TEOT METHOD
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	15	16	18	19	21	24 24	/R MOI 31	34	38	47	55	TEST METHOD
C ₃	Tint control range (3N / 4N)	∆V19 _{N3} ∆V19 _{N4}	V	_	4.00 4.00	_	Open	А	A	ON Vary	А	В	Open	ON Arbi- trary	Open	ON	_	 To pin 21, input burst and chroma signals with the same amplitude of (100mVp-p). (3NTSC / 4NTSC)
C ₄	Tint control voltage (3N / 4N)	V19 _{N3} V19 _{N4}	V	_	2.50 2.50	_	Open	A	A	ON Vary	А	В	Open	ON Arbi- trary	Open	ON		Blue Burst
C ₅	Tint control variable range (3N / 4N)	θ _{3N} θ _{4N}	o	_	90.0 90.0	_	Open	A	A	ON Vary	A	В	Open	ON Arbi- trary	Open	ON		 Vary the pin 19 tint control, defining the point where the pin 43 B-Y output amplitude is at maximum as the tint center state. Vary the tint VR between maximum and minimum and plot the tint VR phase characteristics.
С ₆	Tint control discrimination	θ _{+3N} θ- _{3N} θ _{+4N} θ- _{4N}	o		+45.0 -45.0 +45.0 -45.0	_	Open	A	A	ON Vary	A	В	Open	ON Arbi- trary	Open	ON		θ_{B-Y} θ_{B-Y}

No	. PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX		Т	EST (_C = 5V, /R MOI		25±3°C	;		TEST METHOD
INU.		STMBOL	UNIT	IVIIIN	115.		15	16	18	19	21	24	31	34	38	47	55	
C7	Killer operating input level (P / 3N)	epk epc eNK eNC	mV _{p-p}	0.60 0.60 0.40 0.40	1.00 2.50 0.70 1.80	1.70 4.30 1.30 3.10	Open	A	A		A	в	Open	_	Open	ON		 Measure the pin 28 1H output amplitude when burst and chroma signals with the same amplitude of 100mV_{p-p} (PAL rainbow color bar signal) are input to pin 21. Attenuate the signal to pin 21 with an attenuator and read the pin 21 burst level where the killer function turns on and off. Pin 21 0 100mV_{p-p} set V₁₇ to V₂₀

Nia				N 41 N I	T)/D			•	TEST				_C = 5V,		25±3°C)		
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	15	16	18	19	21 21	24	/R MOI 31	DE 34	38	47	55	TEST METHOD
																		1. No signal is input to pin 21.
																		 Check the DC voltage of pin 20 (PAL ID) and pin 17 (NTSC ID). Define these as PI and NI respectively.
		PC	V	_	2.60	_												 Externally vary the voltage applied to pins 20 and 17. Define the ID voltages for PAL color and NTSC color as PC and NC respectively.
	Killer operating	PI	V	-	2.08	—												4. Define the difference between the ID voltages in the
C ₈	voltage	ΔΡΙ	mV	-	520	_	Ope n	А	А	—	А	в	Open	_	Open	ON	-	above no-signal state and the ID voltages in the forced color state as ΔPI and ΔNI respectively.
	(P / 3N / black &	NC NI	V V	_	2.60 2.08	_												
	white mode)	ΔΝΙ	mV	_	520	_												PC, NC PK, NK PK, NK Color threshold Black & white received 09, N0
																		PAL flip-flop invert threshold epc/epac U21 burst, chroma
		f _{3HH}		+400	+600	+1000												1. To pin 21, input a 3.58MHz / 4.4MHz continuous
		f _{3PH}		+400	+600	+1000												wave with an amplitude of 100mVp-p.
		f _{3HL}		-400	-600	-1000												3.58MHz / 4.4MHz continuous wave
C9	APC pull-in hold	f _{3PL}	Hz	-400	-600	-1000	Sele	А	А	_	А	в	Sele	_	Sele	_	_	2. Vary the above input frequency. Using the held
- 3	range (3N / 4N)	f _{4HH}		+400	+600	+1000	ct						ct		ct			pull-in frequency, compare to 3N and 4N and measure
		f _{4PH}		+400	+600	+1000												3N Ref 3579545Hz 4N Ref 4433618Hz
		f _{4HL}		-400	-600	-1000												3. Measure in 3N and 4N Forced modes.
		f _{4PL}		-400	-600	-1000												

									TEST	CON		NS : V	_{CC} = 5\	V, Ta =	25±3°C)		
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	15	16	18	S 19	W No 21	. AND 24	VR M0 31	DDE 34	38	47	55	TEST METHOD
C ₁₀	VCXO adjustment sensitivity (3N / 4N)	β _{3N} β4N	Hz / mV		1.00 1.00		Open	В	A / B		C	B	Open		B / A	<u> </u>		1. No signal is input to pin 21. 2. Fix the 3N / 4N X'tal oscillation externally. 3. Apply external DC voltage to pin 27 (APC filter) and check the free-running frequency. $f_{16} \text{ or } f_{18}$ $f_{16} \text{ or } f_{18}$ $f_{3C} 3.579545 \text{MHz} \\ f_{4C} 4.433618 \text{MHz} \\ V_{27} $ V_{27} β $\Delta V27 = \text{fc}\pm 25\text{mV} \text{ fo sensitivity}$
C ₁₁	Bolotivo amplitudo	ep43 ep44 ep45 e3N43 e3N44 e3N45 PR / PB PG / PB NR / NB	V _{p-p}	0.60 0.21 0.35 0.66 0.22 0.39 0.46 0.24 0.46	0.91 0.31 0.51 1.00 0.33 0.57 0.56 0.34 0.56	1.30 0.43 0.70 1.43 0.46 0.78 0.66 0.44 0.66	Open	A	A	ON Vary	A	в	Open	Open	Open	OFF	Open	 Input burst and chroma signals with the same amplitude of 100mVp-p (rainbow color bar signal) to pin 21 (PAL / 3NTSC). Measure the B / G / R-Y color difference amplitudes for pins 43, 44, and 45. Check the color difference amplitudes of each pin. Calculate the R-Y / B-Y and G-Y / B-Y amplitude ratios. Note: In PAL mode, adjust the delay line using a Philips pattern signal. Measure the PAL color difference output using the PAL rainbow signal in the video input.
C ₁₂	Relative amplitude (PAL / 3N)	NR / NB NG / NB	_		0.34 0.56 0.34													

No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX		T	EST				: 5V, Ta MODE	ı = 25±	3°C		TEST METHOD
		••••••					15	16	18		24	31	34	38	47	55	
C13	Relative phase (PAL / 3N)	pr / pb pg / pb nr / nb ng / nb	0	83.0 232.0 87.0 225.0	90.0 237.0 94.0 240.0	97.0 247.0 101.1 255.0	Open	A	A	A	В	Open	Open	Open	OFF	Open	 To pin 21, input burst and chroma signals with the same amplitude of 100mVp-p (monochromatic, blue). Burst Burst Blue Blue Blue Blue (NTSC) Vary the phase of the above monochromatic color and seek the monochromatic input phase where the B-Y output amplitude of pin 43 reaches 0 (θB-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the G-Y output amplitude of pin 44 reaches 0 (θG-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y). Vary the phase of the above monochromatic color and seek the monochromatic input phase where the R-Y output amplitude of pin 45 reaches 0 (θR-Y).

No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX		T	EST (_{CC} = 5\ VR MC		25±3°C	2		TEST METHOD
							15	16	18	19	21	24	31	34	38	47	55	
C ₁₄	SECAM limiter Characteristics	e ₂₄ A _s	mV _{p-p}	20.0 0.70	30.0 1.00	44.0 1.30	Open	А	А		С	A 24A A Sig ON	Open	Open	Open	_	_	 To pin 24, input a 4.44MHz continuous wave with an amplitude of 10 to 500mVp-p. 44-MHz continuous wave Measure the input / output characteristics between the pin 28 1H output and the pin 24 input. Define as e24 the input amplitude where -3dB is subtracted from the pin 28 1H output amplitude and pin 24 inputs a continuous wave amplitude of 100mVp-p.Also, define the 100 / 300mVp-p output amplitude ratio. Measure the pin 28 output amplitude when pin 24 inputs a continuous wave amplitude of 100mVp-p. Define the amplitude as e28.
C ₁₅	Delay line output (SECAM)	e ₂₈	V _{p-p}	_	1.80	_						ON						(Pin 28) - 3dB e ₂₈ e ₂₄ v _{4.43MHz} continuous wave

No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX		Т	EST (CONE		NS : V	_{CC} = 5\ VR MC	/, Ta =	25±3°(С		TEST METHOD
NO.		OTMOOL		WIIIN		IVI/-VX	15	16	18	19		24	31	34	38	47	55	
C ₁₆	Killer operation input level	e _{SK} e _{SC}	mV _{p-p}		2.80 2.80		Open	A	A		С	A 24A A Sig ON	Open	Open	Open			 To pin 24, input a f_{OB} / f_{OR} signal with an amplitude of 100mVp-p. Attenuate the input signal with an attenuator and detect the achromatic level. Define the pin 24 input levels where the killer operation turns on and off. Pin 24 0 100mVp-p set
C ₁₇	Killer operation voltage	SC SI ∆ SI	V V mV		2.60 2.08 520		Open	A	A	_	С	в	Open	Open	Open	_	_	 No signal is input to pin 24. Measure the DC voltage of pin 29 (SECAM ID) and define as SI. Vary the external voltage applied to pin 29. Define the ID voltage for SECAM color as SC. Define the difference between the ID voltages in the above modes as ∆ SI (SC-SI).
C ₁₈	SECAM ID switch (V-ID on)	V ₂₉	V	_	23.0	_	Open	A	A	_	С	A 24A A Sig ON	Open	OFF	Open			 To pin 24, input a fOB / fOR signal with an amplitude of 100mVp-p. Attenuate the input signal with an attenuator and detect the achromatic level. Define the pin 24 input levels where the killer operation turns on and off. (Check the killer operation by turning the SECAM ID switch on and off.) Define the switching SECAM ID voltage as V29.

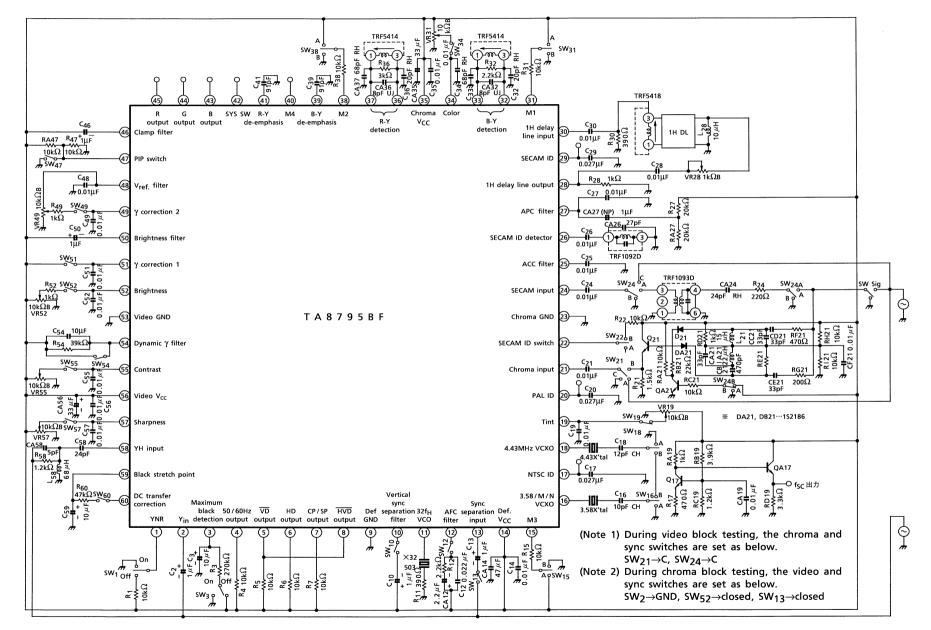
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX		T	EST				/ _{CC} = 5) VR M	V, Ta =	25±3°	С		TEST METHOD
NO.		STMDOL	UNIT	IVIIIN			15	16	18	19		24	31	34	38	47	55	
C ₁₉	SECAM color difference output	e _{S43} e _{S44} e _{S45}	mV _{p-p}		2.80 2.80		Open	A	A		С	A	Open	Open	Open	_	_	 To pin 24, input a 75% standard color bar signal with an amplitude of 300mVp-p. Measure the color difference levels of pins 43, 44, and 45.
C ₂₀	SECAM demodulation bandwidth	#43R BAND #45B BAND	MHz	0.80 0.80	1.15 1.15	_	A	A	A	_	С	С	A	OFF	Open	ON	OFF	 To pin 24, input FM 100kHz, 100dBµV, fm 1kHz / div signal. When measuring the R-Y and B-Y signals, vary the fOR = 4.406MHz and fOB = 4.25MHz signals respectively and measure the −3dB bandwidth in the color difference output.
C ₂₁	SECAM relative amplitude	SR / SB SG / SB										C / A 24A A Sig ON	A / Open	OFF	ON	OFF	_	Also measure the relative amplitudes of V45 and V43 when fOR is 4.406MHz and fOB is 4.25MHz. 3. No horizontal pulse. V45 4.406MHz f deviation A.406MHz f deviation
C ₂₂	SECAM crosstalk	e _{SR} e _R RC e _{SB} e _B BC	V _{p-p} mV _{p-p} dB V _{p-p} dB		1.00 20 34 1.40 30 33		Open	A	A		С	A	Open	Open	Open	ON	OFF	 To pin 24, input a 75% standard color bar signal with an amplitude of 300mVp-p. Measure the pin 43 B-Y and the pin 45 R-Y output color difference amplitudes. Also measure the f_{OR} and f_{OB} 160kHz beat frequency amplitudes. Show the SECAM crosstalk as follows. Attenuation = 20log (e_R / e_{SR}) = RC

No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX			TES				_{CC} = 5V VR MO		25±3°C			TEST METHOD
140.		OTWIDOL	UNIT	IVIIIN		WI-37	15	16	18	19	21	24	31	34	38	47	55	TEOT WE THOD
				_	3.00	_												Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state.
	M1 output voltage	N/	V				0	•		0.000	•		0.000	0	0	055	0.000	PAL & SECAM modes
C ₂₃	of interface pin 31	V _{S1}	V	_	0	_	Open	A	A	Open	A	A	Open	Open	Open	OFF	Open	Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state.
																		4.43MHz NTSC, 3.58MHz NTSC, black & white 1, black & white 2 modes
					3.00	I												Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state.
																		PAL & 4.43MHz NTSC modes
C ₂₄	M2 output voltage of interface pin 38	V _{S2}	V	_	1.50	_	Open	A	А	Open	А	А	Open	Open	Open	OFF	Open	Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state.
																		SECAM, black & white 1 modes
				_	0	_												Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state.
																		3.58MHz NTSC, black & white 2 modes

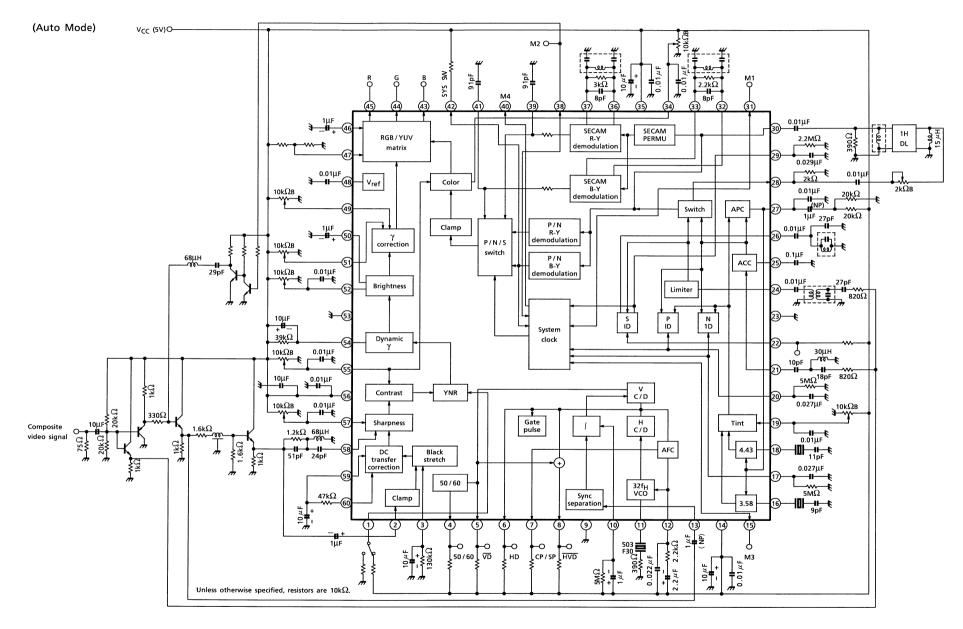
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	МАХ			TEST				_C = 5V VR MO		25±3°C			TEST METHOD
110.		OTHEOL	or the			110 0 0	15	16	18	19	21	24	31	34	38	47	55	
					1.50	_												Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state. PAL / SECAM, 4.43MHz NTSC, and 3.58MHz NTSC modes
C ₂₅	M3 output voltage of interface pin 15	V _{S3}	V	_	0	_	Open	A	A	Open	A	A	Open	Open	Open	OFF	Open	Input to pin 21 (PAL / NTSC) the PAL, 3N, 4N signals and to pin 24 (SECAM) SECAM and black & white signals and measure the M1, M2, and M3 voltages at each signal input state. Black & white 1, black & white 2 modes * Note that black & white 1 mode is 4.43MHz chroma VCO oscillation and black & white 2 mode is 3.58MHz chroma VCO oscillation.
C ₂₆	Switch threshold current	I _{S1}	mA	_	0.55	_	Open	A	A	Open	С	В	Open	Open	Open	OFF	Open	 Input either PAL or SECAM signal. Input external current to pin 15 and measure the current when mode changes to black & white.
C ₂₇	Switch threshold current	I _{S2}	mA	_	0.58	_	Open	A	A	Open	С	В	Open	Open	Open	OFF	Open	 Input SECAM signal. Input external current to pin 38 and measure the current when mode changes to black & white.
C ₂₈	PIP switch check	UV SP	V		1.50 3.00	_	Open	A	A	Open	A	A	Open	Open	Open		Open	 To pin 24, input a 75% standard color bar signal with an amplitude of 100mV_{p-p} (PAL / NTSC). Apply external voltage to pin 47 (PIP switch) and measure the pin 47 voltage when pin 43 switches between primary color and color difference states.

No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX			TES				CC = 5\ VR MC	/, Ta = 2	25±3°C			TEST METHOD
110.	i , a o ane i erc	OTIMEOL	U.I.I			110.00	15	16	18	19	21	24	31	34	38	47	55	
C ₂₉	PAL ID malfunction check	V20 _P V20 _{N3} V20 _{N4} V20 _S V20 _{BW}	v	_	4.20 2.00 2.00 2.00 2.00	Ι	Open	A	A	Open	А	A	Open	Open	Open	OFF	Open	 Input the signals corresponding to each mode to pins 21 (PAL / NTSC) and 24 (SECAM) (75% standard color bar signal). Measure the N / P / S ID DC voltage on pins 17, 20, and 29. P : Philips pattern signal N3 : 3.58N 75% standard color bar signal
C ₃₀	NTSC ID malfunction check	V17 _P V17 _{N3} V17 _{N4} V17 _S V17 _{BW}	v	_	4.20 2.00 2.00 2.00 2.00	-	Open	A	A	Open	А	A	Open	Open	Open	OFF	Open	 N4 : 4.43N 75% standard color bar ignal S : SECAM 75% standard color bar signal Black & white: RETMA signal Note: When measuring the filtered voltage, measure at high impedance (at least 10MΩ or higher).
C ₃₁	SECAM ID malfunction check	V29 _P V29 _{N3} V29 _{N4} V29 _S V29 _{BW}	v	_	2.25 2.10 2.10 3.90 2.15	Ι	Open	A	A	Open	А	А	Open	Open	Open	OFF	Open	
C ₃₂	Color control adjustment range	ΔV ₃₄	v	_	3.50	_	Open	A	A	Open	A	В	Open	Adjust	Open	OFF	Open	 To pin 21, input burst and chroma signals with the same amplitude (100mVp-p) (rainbow color bar signal). While measuring the pin 43 B-Y, adjust so that the 6 bar reaches the peak using the tint control VR. Vary the color control VR under the above conditions and define the color control pin voltage as V34 where the B-Y output amplitude halves. Also, where the B-Y output amplitudes are 90% and 10%, define the color control pin voltage as V34A and V34B respectively. And define the voltage difference between V34A and V34B as
C ₃₃	Color control adjustment voltage	V ₃₄	V	_	2.50	_	Open	A	A	Open	A	В	Open	Adjust	Open	OFF	Open	$\Delta V_{34}, \text{ the color control range.}$ $\Delta V_{34} = V_{34A} - V_{34B}$ B-Y output $90 \frac{1}{V_{34B}} \frac{1}{V_{34}} \frac{1}{V_{34A}} \frac{1}{V_{34A}}$

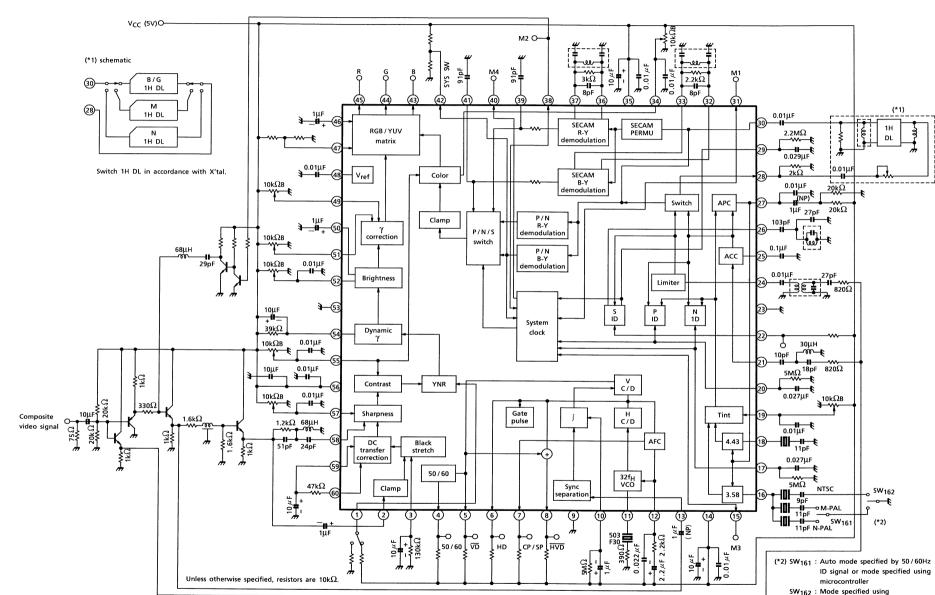
Sync Block


							TE	ST CO	NDITION	NS : V _C	_C = 5V, Ta = 25±3°C	
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	SW10	SW ₁₂			MODE	TEST METHOD
D ₁	Horizontal oscillation frequency	fH	v	15.584	15.734	15.884	-	-	OFF	_	_	Measure the frequency of pin 6.
D	Horizontal frequency variable	f _{Hmax}	kHz	16.384	16.484	_		ON	OFF			1. Connect a variable voltage supply VAFC to pin 12.
D ₂	range	f _{Hmin}	KLIZ	_	14.984	15.084		ON	OFF	_	_	 Vary the VAFC between 2 and 5V and measure the maximum and minimum frequency of pin 6 during the variation.
D ₃	Horizontal oscillation control sensitivity	β _H	Hz / mV	7.0	10.0	13.0	_	ON	OFF	_	_	 Connect a variable voltage supply VAFC to pin 12. Measure the pin 6 frequency f (3V) when VAFC is 3V and measure the pin 6 frequency f (4V) when VAFC is 4V. βH = (f (4V) - f (3V) / 1000) [Hz / mV]
D ₄	Horizontal oscillation start voltage	V _{ON1}	V	_	2.8	3.3	_	_	_	_	Do not connect a 5V power supply (V _{CC}).	 To pin 14, connect a variable voltage supply VCC'. Increase the VCC' voltage and measure the pin 14 voltage when pin 11 generates an oscillation waveform.
D ₅	Horizontal output start voltage	V _{ON2}	V	_	2.8	3.3	_	_		_	Do not connect a 5V power supply (V _{CC}).	 To pin 14, connect a variable voltage supply VCC'. Increase the VCC' voltage and measure the pin 14 voltage when pin 6 has horizontal output.
D ₆	Horizontal output pulse width	W _H	μs	4.7	5.0	5.3						 To pin 13, input a 300mVp-p horizontal sync signal via a 1µF capacitor.
D ₇	Horizontal output pulse delay	тн	μs	0.30	0.45	0.65	ON	ON	ON	_	_	 2. Observe the waveform on pin 6.
D ₈	Horizontal output saturation level	V _{HS}	V	_	0.2	0.4	_	_	_	_	_	1. Observe the pin 6 waveform and read the lowest voltage.

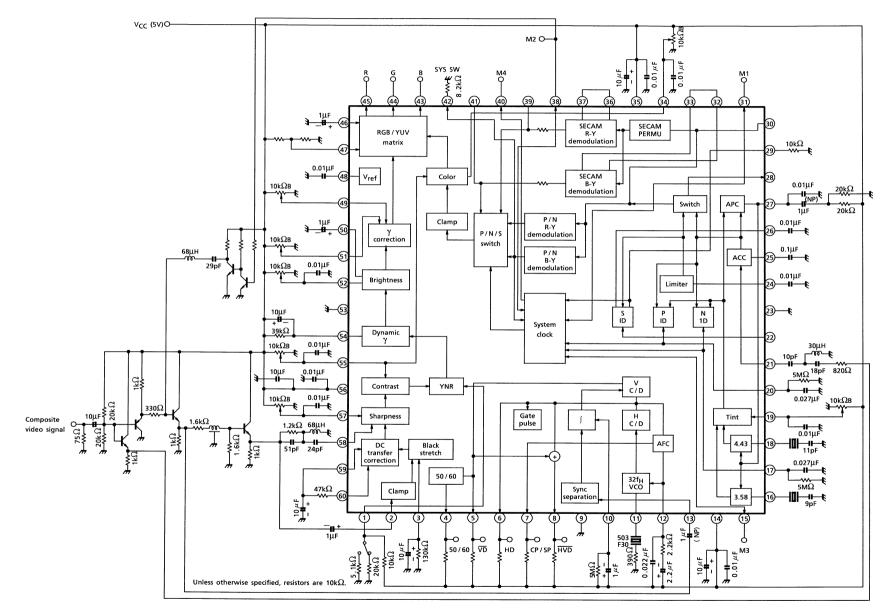
No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX	TES	T COND	ITIONS	: V _{CC} = :) VR MC	5V, Ta = 25±3°C	TEST METHOD
NO.	FARAMETER	STIVIDOL	UNIT	IVIIIN	115.		SW ₁₀	SW ₁₂				TEST METHOD
Dg	PAL / NTSC gate	T _{PN1}	μs	_	0.6	_	ON	ON	ON			 Connect an additional 20kΩ resistor between pin 17 and V_{CC}. To pin 13, input a 300mV_{p-p} composite sync signal via a 1µF capacitor. Observe the waveform on pin 17.
bg	pulse phase	T _{PN2}	μs	_	3.1	_			CIV.			TPN2 TPN1
	SECAM gate pulse	T _{S1}	μs		3.1	_						 Connect an additional 20kΩ resistor between pin 29 and VCC. To pin 13, input a 300mVp-p composite sync signal via a 1µF capacitor. Observe the waveform on pin 29.
D ₁₀	phase	T _{S2}	μs		4.8	_	ON	ON	ON	_	_	
	Vertical output	wv	н	_	2.75	_	01	01	01			 To pin 13, input a 300mVp-p composite sync signal via a 1μF capacitor. Observe the waveform on pin 5.
D ₁₁	pulse phase	τ _V	н	0	_	1.5	ON	ON	ON	_	_	


No.	PARAMETER	SYMBOL	UNIT	MIN	TYP.	MAX			SW A		_C = 5V, Ta = 25±3°C MODE	TEST METHOD
	Vertical sync lock-in	V _{PH}		_	345	_						 To pin 13, input a 300mVp-p composite sync signal via a 1µF capacitor.
D ₁₂	range		Н				ON	ON	ON	—	—	2. Vary the vertical sync of the composite sync signal.
		V _{PL}		—	228	—						 Measure the vertical sync where the vertical sync input and the pin 5 output synchronize.
		V _{6H}			287	_						 To pin 13, input a 300mVp-p composite sync signal via a 1µF capacitor.
D ₁₃	60Hz vertical sync range		Н				ON	ON	ON	—	—	2. Vary the vertical sync of the composite sync signal.
	Ŭ	V _{6L}		—	228	_						 Measure the vertical sync where the vertical sync input and the pin 5 output synchronize and pin 4 output is high.

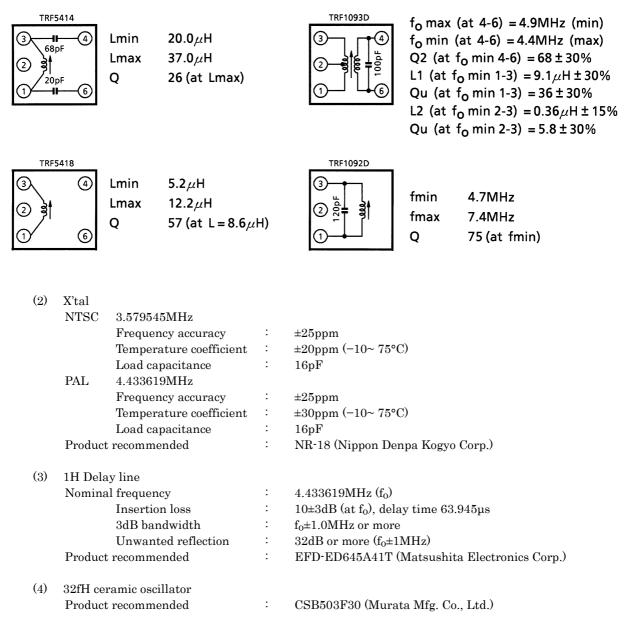
<u>TOSHIBA</u>


TEST CIRCUIT

APPLICATION CIRCUIT EXAMPLE 1 Normal Mode



microcontroller



APPLICATION CIRCUIT EXAMPLE 1 Pseudo-PAL Mode

Peripheral Component Specifications

(1) Tank coil (bottom view)

PACKAGE DIMENSIONS

QFP60-P-1414-0.80F

Unit: mm

Weight: 0.8g (Typ.)