

SP1600 SERIES

ECL III

SP1658

VOLTAGE-CONTROLLED MULTIVIBRATOR

The SP1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with PECL III and PECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The PECL1658 is useful in phase-locked loops, frequency synthesizer and clock signal generation applications for instrumentation, communication, and computer systems.

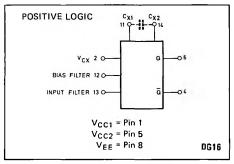


Fig. 1 Block diagram of SP1658

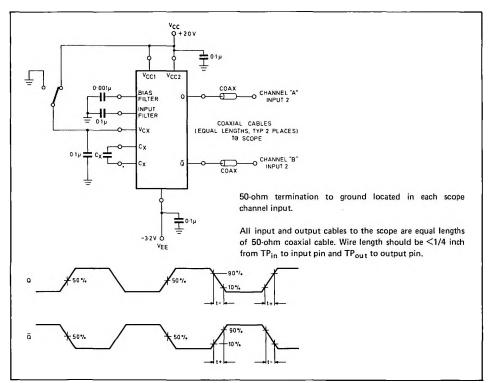


Fig. 2 AC test circuit and waveforms

VEE

VIHA

<u>۲</u>

Ϋ́Η

© Test Temperature

TEST VOLTAGE VALUES

Vdc ±1% 23

ELECTRICAL CHARACTERISTICS

a printed circuit board and transverse air flow greater than 500 linear fipm is maintained. Outputs are terminated through a 50-ohm resistor to ~2.0 volts. This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on

										ပ္	0.0	-2.0	-1.0	+2.0	-5.2	
										+25°C	0.0-	-2.0	-1.0	+2.0	-5.2	
										+75°C	-0.0	-2.0	-1.0	+2.0	-5.2	
						SP 1658 T	SP1658 Test Limits				VOLTA	GE APPLI	ED TO PI	VOLTAGE APPLIED TO PINS LISTED BELOW	SELOW	
		Pin	0	್ಯಂ		+25°C		+75°C	၁							
Characteristic	Symbol	Test	Min	Max	Min	Typ	Max	Min	Max	Chit	Α.	۷.	٧3	VIHA	VEE	Bnd
Power Supply Drain Current	3	 8 8	1-1	1	11	1.1	333	11	1.1	mAdc mAdc	77	11	1.1	1.1	88	7.1 10,10
Input Current	Hui!	2.	ı	1	1	ı	350	1	1	μAdc	2	ı	1	1	8	1,5
Input Leakage Current	linL	2.	1	ı	-0.5	1	1	1		μAdc	1	2	1	ı	8	1,5
"Q" High Output Voltage	V _{ОН}	6	-1.000	-0.840	-0.960	FI	-0.810	-0.900	-0.720 -0.720	Vdc	1.1	1 1	2	1-1	8	7, T
"Q" Low Output Voltage	VOL	69	-1.870 -1.870	-1.620 -1.620	-1.850 -1.850	11	-1.620 -1.620	-1.850 -1.850	-1.595 -1.595	Vdc Vdc	11	1.1	22	1 1	8	ر تروز
AC Characteristics (Figure 2) (Tests shown for one output, but											۲ ۷	c _{X2}	Gnd	VILA VIHA +1.0V +2.0V	VEE -3.2V	VCC +2.0V
checked on both)	ŧ.	ဖ	I	2.5	1	1.6	2.5	1	2.7	<u>د</u> .	1	11,14	1	1	ω.	ر .
	ļ t	9	1 1	6.5	1.1	3.7	4.6 6.5	1 1	4.8		1 1	_	1 1	1 7		
	1	9	ı	4.2	1	2.4	4.2	1	4.4		1		1	-		_
Rise Time (10% to 90%) Fall Time (10% to 90%)	‡‡	ဖဖ	1.1	80 80 15 151	1 1	5.9	80 80 70 70	1.1	8.7		1 1	-	77	11	-	_
Oscillator Frequency	fosc1	1	130	1	130	155	175	110	ı	MHz	ı	11,14	1	- 2	8	1,5
	fosc2	1	1	_	78	90	100	-		MHz	11,14	-	-	- 2	8	1,5
Tuning Ratio Test 1	TT	-	1	ı	3.1	4.5	1	1	1	1	11,14	1	-	1	8	1,5

C1 = 0.01 µF connected from pin 12 to Gnd.
C2 = 0.001 µF connected from pin 13 to Gnd.
CX1 = 10 pF connected from pin 11 to pin 14.
CX2 = 5 pF connected from pin 11 to pin 14.

|| 44

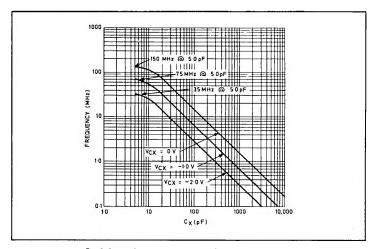


Fig. 3 Output frequency v capacitance for three values of input voltage

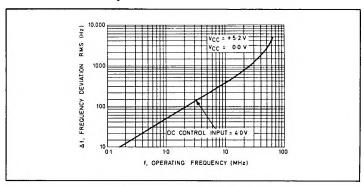


Fig. 4 RMS noise deviation v operating frequency

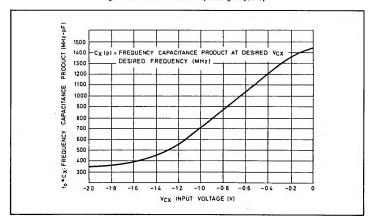


Fig. 5 Frequency-capacitance product v control voltage VCX