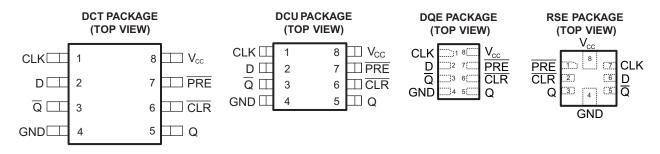


SCES794D - SEPTEMBER 2009 - REVISED JANUARY 2013


SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

Check for Samples: SN74LVC1G74

FEATURES

- Available in the Texas Instruments NanoFree[™] Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5.9 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C

- Ioff Supports Live Insertion, Partial Power **Down Mode, and Back Drive Protection**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree is a trademark of Texas Instruments.

SCES794D-SEPTEMBER 2009-REVISED JANUARY 2013

www.ti.com

NSTRUMENTS

ÈXAS

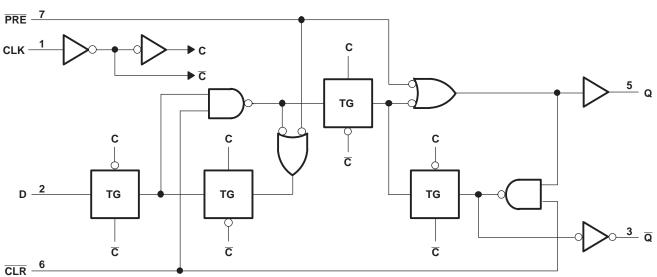
ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾ ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾	
	OFN DOF		SN74LVC1G74RSER		
–40°C to 85°C	QFN - RSE	Reel of 3000	SN74LVC1G74RSE2 ⁽⁴⁾	DP	
	μQFN - DQE		SN74LVC1G74DQER		
	SSOP – DCT	Reel of 3000	SN74LVC1G74DCTR	N74	
10°C to 125°C		Deal of 2000	SN74LVC1G74DCUR		
–40°C to 125°C	VSSOP – DCU	Reel of 3000	SN74LVC1G74DCURG4	N74_	
		Reel of 250	SN74LVC1G74DCUT		

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site.


DCU: The actual top-side marking has one additional character that designates the wafer fab/assembly site.

(4) Pin 1 orientation at quadrant 3 in Tape.

		10110110			
	INP	UTS		OUTI	PUTS
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	Х	х	L	н
L	L	Х	х	H ⁽¹⁾	H ⁽¹⁾
н	н	↑	н	н	L
Н	Н	↑	L	L	н
Н	Н	L	Х	Q ₀	<u>Q</u> 0

FUNCTION TABLE

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

LOGIC DIAGRAM (POSITIVE LOGIC)

SCES794D-SEPTEMBER 2009-REVISED JANUARY 2013

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in th	e high-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in th	e high or low state ^{(2) (3)}	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
	Continuous output current			±50	mA
I _O	Continuous current through V_{CC} or GND			±100	mA
		DCT Package		220	
0	Declares the resulting edge e_{a} (4)	DCU Package		227	°C/W
θ_{JA}	Package thermal impedance ⁽⁴⁾	RSE Package		243	-C/W
		DQE Package		261	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. The value of V_{CC} is provided in the recommended operating conditions table. (2)

(3)

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		
v	Lligh layed input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
VIH	High-level input voltage	$V_{CC} = 3 V$ to 3.6 V	2		v
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	$0.7 \times V_{CC}$		
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
	Level level from the set	V _{CC} = 2.3 V to 2.7 V		0.7	
V _{IL}	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		$0.3 \times V_{CC}$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I _{OH}	High-level output current			-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I _{OL}	Low-level output current			16	mA
		$V_{CC} = 3 V$		24	
		V _{CC} = 4.5 V		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		5	
		RSE Package	10		
-		DQE Package	-40	85	
T _A	Operating free-air temperature	DCT Package		107	°C
		DCU Package	-40	125	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES794D - SEPTEMBER 2009 - REVISED JANUARY 2013

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾	MAX	UNIT
		$I_{OH} = -100 \ \mu A$	1.65 V to 5.5 V	V _{CC} – 0.1		
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
.,		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		
V _{ОН}		$I_{OH} = -16 \text{ mA}$	0.14	2.4		V
		$I_{OH} = -24 \text{ mA}$	3 V	2.3		
		$I_{OH} = -32 \text{ mA}$	4.5 V	3.8		
		I _{OL} = 100 μA	1.65 V to 5.5 V		0.1	
		I _{OL} = 4 mA	1.65 V		0.45	
.,		I _{OL} = 8 mA	2.3 V		0.3	V
V _{OL}		I _{OL} = 16 mA	2.14		0.4	V
		I _{OL} = 24 mA	3 V		0.55	
		I _{OL} = 32 mA	4.5 V		0.55	
	Data or control inputs	V _I = 5.5 V or GND	0 to 5.5 V		±5	μA
off		$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		±10	μA
сс		$V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$	1.65 V to 5.5 V		10	μA
∆I _{CC}		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V		500	μA
Ci		$V_{I} = V_{CC}$ or GND	3.3 V	5		pF

(1) All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

Parame	From Io		85°C						125°C						
ter	From	10	V _{CC} =	1.8 V	V _{CC} =	2.5 V	V _{CC} =	3.3 V	V _{CC} =	= 5 V	V _{CC} =	3.3 V	V _{CC} =	= 5 V	UNIT
			MIN	MAX											
f _{clock}				80		175		175		200		175		200	MHz
	CLł	<	6.2		2.7		2.7		2		2.7		2		
t _w	PRE or C	LR low	6.2		2.7		2.7		2		2.7		2		ns
	Dat	а	2.9		1.7		1.3		1.1		1.3		1.1		
t _{su}	PRE or CLF	R inactive	1.9		1.4		1.2		1		1.2		1.2		ns
t _h			0		0.3		1.2		0.5		1.2		0.5		ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

Parame From		Те	85°C						125°C						
ter	ter From To		V _{CC} =	1.8 V	V _{CC} =	2.5 V	V _{CC} =	3.3 V	V _{cc} =	= 5 V	V _{CC} =	3.3 V	V _{CC} =	= 5 V	UNIT
			MIN	MAX											
f _{max}			80		175		175		200		175		200		MHz
		Q	4.8	13.4	2.2	7.1	2.2	5.9	1.4	4.1	2.2	7.9	1.4	6.1	
t _{pd}	CLK	Q	6	14.4	3	7.7	2.6	6.2	1.6	4.4	2.6	8.2	1.6	6.4	ns
	$\overline{\text{PRE}} \text{ or } \overline{\text{CLR}} \text{ low}$	Q or Q	4.4	12.9	2.3	7	1.7	5.9	1.6	4.1	1.7	7.9	1.6	6.1	

TEXAS INSTRUMENTS

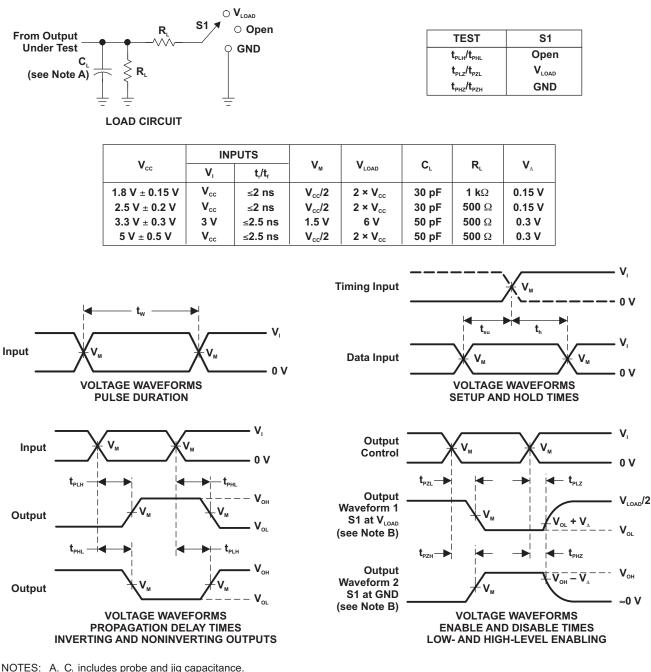
SCES794D-SEPTEMBER 2009-REVISED JANUARY 2013

www.ti.com

OPERATING CHARACTERISTICS

T _A =	25°C
------------------	------

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	$V_{CC} = 5 V$	UNIT
		TEST CONDITIONS	ТҮР	TYP	ТҮР	ТҮР	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	35	35	37	40	pF

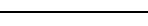

SN74LVC1G74

XAS **ISTRUMENTS**

www.ti.com

SCES794D - SEPTEMBER 2009 - REVISED JANUARY 2013

PARAMETER MEASUREMENT INFORMATION



NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. $t_{\mbox{\tiny PLH}}$ and $t_{\mbox{\tiny PHL}}$ are the same as $t_{\mbox{\tiny pd}}$
- H. All parameters and waveforms are not applicable to all devices.

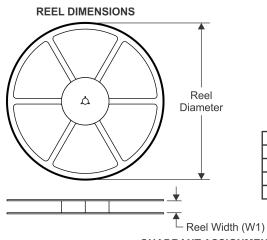
Figure 1. Load Circuit and Voltage Waveforms

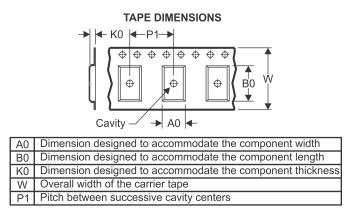
REVISION HISTORY

Changes from Original (October 2009) to Revision A	Page
Changed I _{off} description in FEATURES.	1
• Changed temperature range for DCT and DCU package from (-40°C to 85°C) to (-40°	C to 125°) 2
Changed TIMING REQUIREMENTS table.	
Changed SWITCHING CHARACTERISTICS table.	
Changes from Revision A (November 2011) to Revision B	Page
Added SN74LVC1G74DCURG4 part number to ORDERING INFORMATION table	
	Page
Added SN74LVC1G74DCURG4 part number to ORDERING INFORMATION table Changes from Revision B (MARCH 2012) to Revision C Added preview for RSE part	Page
Added SN74LVC1G74DCURG4 part number to ORDERING INFORMATION table	Page
Added SN74LVC1G74DCURG4 part number to ORDERING INFORMATION table Changes from Revision B (MARCH 2012) to Revision C Added preview for RSE part	Page
 Added SN74LVC1G74DCURG4 part number to ORDERING INFORMATION table Changes from Revision B (MARCH 2012) to Revision C Added preview for RSE part	Page 2 2 Page 2

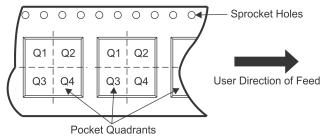
8

TEXAS INSTRUMENTS


www.ti.com

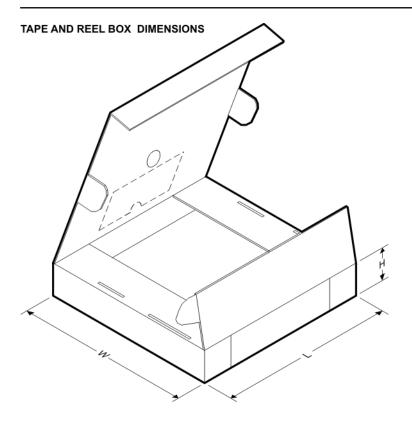

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G74DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC1G74DCUR	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCURG4	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCUT	US8	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DQER	X2SON	DQE	8	5000	180.0	9.5	1.15	1.6	0.5	4.0	8.0	Q1
SN74LVC1G74RSE2	UQFN	RSE	8	5000	180.0	9.5	1.7	2.3	0.75	4.0	8.0	Q3
SN74LVC1G74RSER	UQFN	RSE	8	5000	180.0	9.5	1.7	2.3	0.75	4.0	8.0	Q2

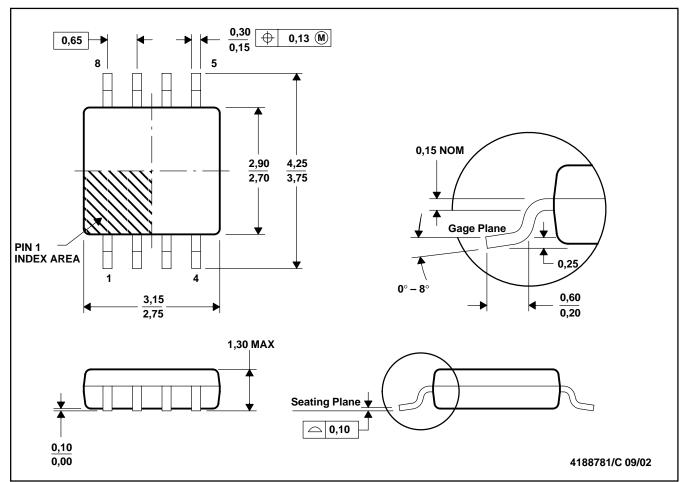
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Feb-2013

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G74DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC1G74DCUR	US8	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G74DCURG4	US8	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G74DCUT	US8	DCU	8	250	202.0	201.0	28.0
SN74LVC1G74DQER	X2SON	DQE	8	5000	180.0	180.0	30.0
SN74LVC1G74RSE2	UQFN	RSE	8	5000	180.0	180.0	30.0
SN74LVC1G74RSER	UQFN	RSE	8	5000	180.0	180.0	30.0

MECHANICAL DATA

MPDS049B - MAY 1999 - REVISED OCTOBER 2002

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

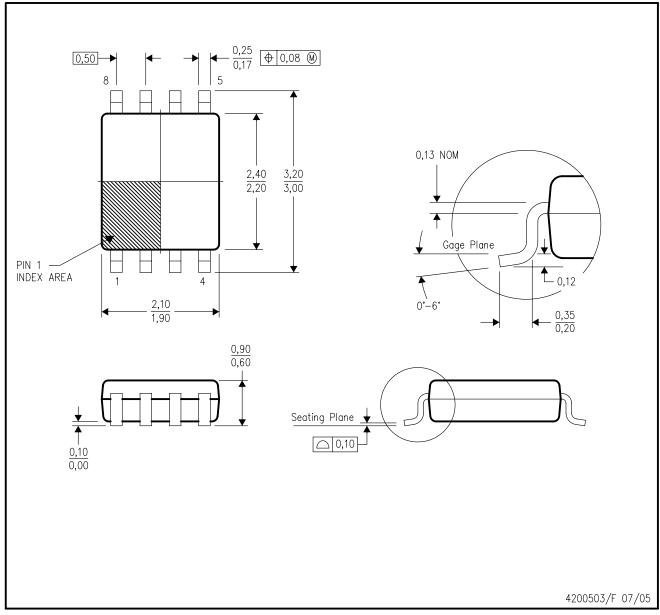
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion

D. Falls within JEDEC MO-187 variation DA.

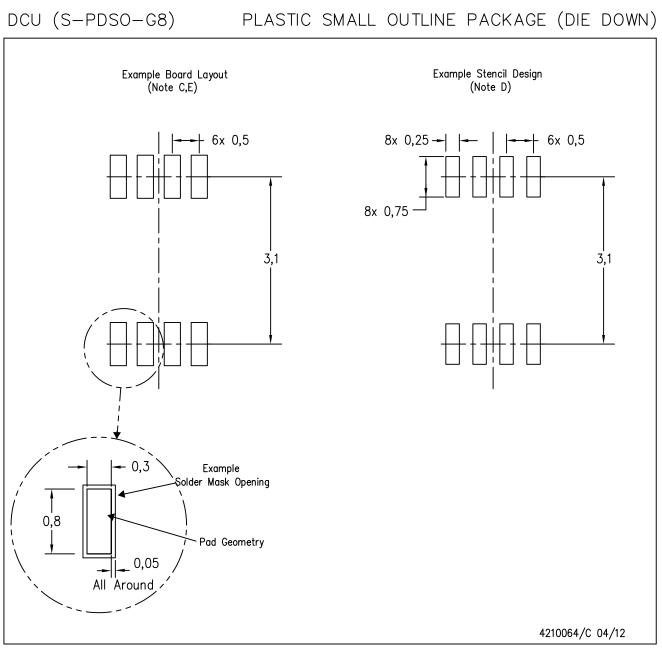
DCT (R-PDSO-G8) PLASTIC SMALL OUTLINE Example Board Layout Example Stencil Design (Note C,E) (Note D) - 6x0,65 - 6x0,65 8x0,25-8x1,55 3,40 3,40 Non Solder Mask Defined Pad Example Pad Geometry -0,30 (Note C) 1,60 Example -0,07 Non-solder Mask Opening All Around (Note E) 4212201/A 10/11


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

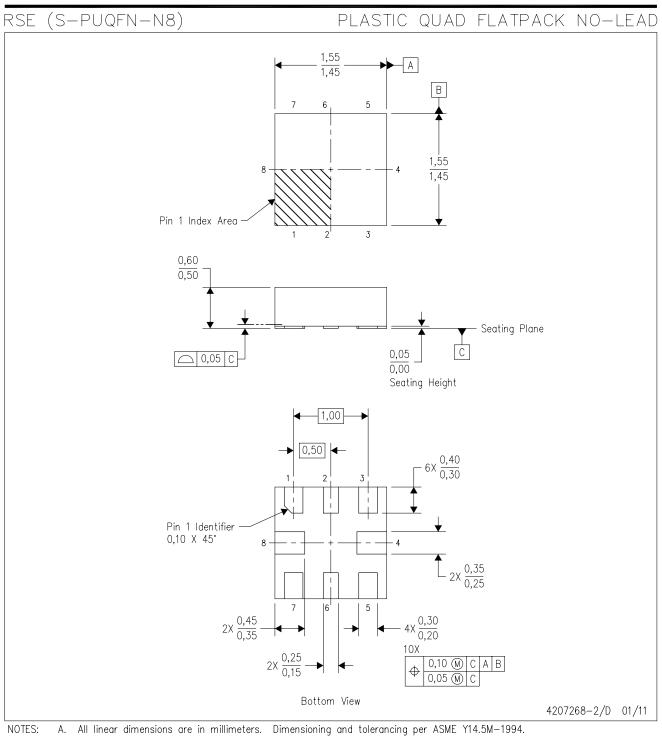
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

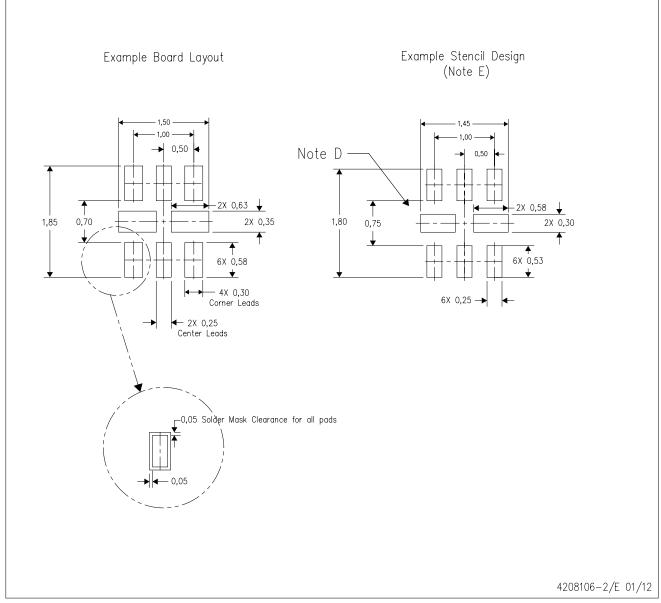
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.



- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA



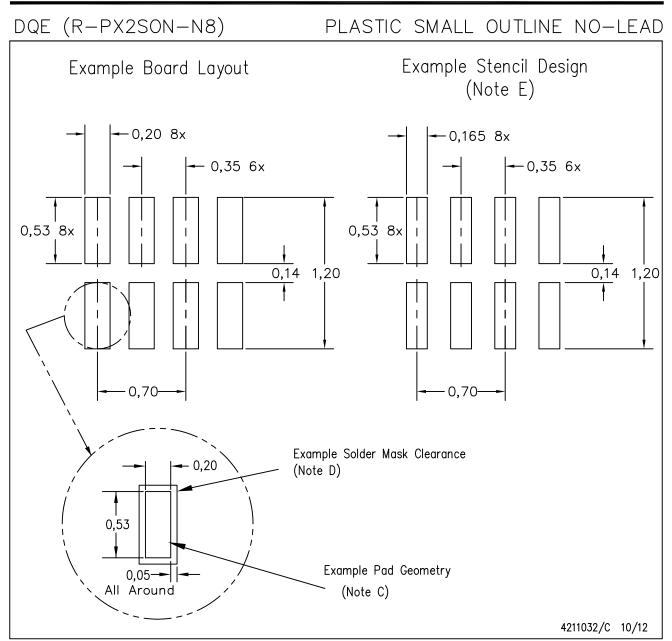
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. This package complies to JEDEC MO-288 variation UECD.

RSE (S-PUQFN-N8)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication $\mathsf{IPC-7351}$ is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.



MECHANICAL DATA

- B. This drawing is subject to change without notice.
 C. SON (Small Outline No-Lead) package configuration.
 D. This package complies to JEDEC M0-287 variation X2EAF.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Over-printing land for acceptable area ratio is not viable due to land width and bridging potential. Customer may further reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
- H. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- I. Component placement force should be minimized to prevent excessive paste block deformation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated