
LOW-POWER SINGLE 2-INPUT POSITIVE-NAND GATE

Check for Samples: SN74AUP1G00

FEATURES

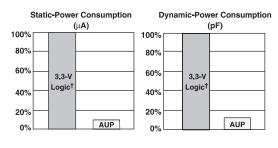
- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption (I_{CC} = 0.9 μA Max)
- Low Dynamic-Power Consumption (C_{pd} = 4 pF Typ at 3.3 V)
- Low Input Capacitance (C_i = 1.5 pF Typ)
- Low Noise Overshoot and Undershoot <10% of V_{CC}
- I_{off} Supports Partial-Power-Down Mode Operation
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at Input (V_{hvs} = 250 mV Typ at 3.3 V)

- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- $t_{pd} = 4.8 \text{ ns Max at } 3.3 \text{ V}$
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

DNU – Do not use

N.C. - No internal connection

See mechanical drawings for dimensions.


DESCRIPTION/ORDERING INFORMATION

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity (see Figure 1 and Figure 2).

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

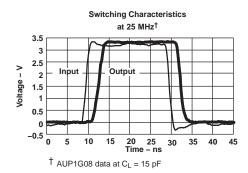


Figure 2. Excellent Signal Integrity

Figure 1. AUP – The Lowest-Power Family

This single 2-input positive-NAND gate performs the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

NanoStar™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION(1)

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE Marking ⁽³⁾
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YFP (Pb-free)		SN74AUP1G00YFPR	HA_
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Reel of 3000	SN74AUP1G00YZPR	HA_
-40°C to 85°C	QFN – DRY	Reel of 5000	SN74AUP1G00DRYR	НА
	uQFN – DSF	Reel of 5000	SN74AUP1G00DSFR	HA
	SOT (SOT-23) – DBV	Reel of 3000	SN74AUP1G00DBVR	H00_
	SOT (SC-70) - DCK	Reel of 3000	SN74AUP1G00DCKR	HA_
	SOT (SOT-553) – DRL	Reel of 4000	SN74AUP1G00DRLR	HA_

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

FUNCTION TABLE

INP	UTS	OUTPUT				
Α	В	Y				
L	L	Н				
L	Н	Н				
Н	L	Н				
Н	Н	L				

LOGIC DIAGRAM (POSITIVE LOGIC)

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

⁽³⁾ DBV/DCK/DRL: The actual top-side marking has one additional character that designates the wafer fab/assembly site. YFP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	Supply voltage range			V
VI	Input voltage range (2)		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-imped	lance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		50	mA
l _{OK}	Output clamp current	V _O < 0		50	mA
lo	Continuous output current		20	mA	
	Continuous current through V _{CC} or GND			50	mA
		DBV package		206	
		DCK package		252	
^	Deal and the small in the last (3)	DRL package		142	00044
θ_{JA}	Package thermal impedance (3)	DSF package		300	°C/W
		DRY package		234	
		YFP/YZP package		132	
T _{stg}	Storage temperature range	<u>, </u>	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		0.8	3.6	V
		$V_{CC} = 0.8 \text{ V}$	V _{CC}		
1/	High level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V
V _{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6		V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		
		$V_{CC} = 0.8 \text{ V}$		0	
.,	Law lavel in the state of	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.9	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		$V_{CC} = 0.8 \text{ V}$		-20	μΑ
		V _{CC} = 1.1 V		-1.1	
	I limb lavel autout avenue	V _{CC} = 1.4 V		-1.7	
I _{OH}	High-level output current	V _{CC} = 1.65		-1.9	mA
		$V_{CC} = 2.3 \text{ V}$		-3.1	
		$V_{CC} = 3 V$		-4	ļ
		V _{CC} = 0.8 V		20	Α
		V _{CC} = 1.1 V		1.1	
	Low level output outront	$V_{CC} = 1.4 \text{ V}$		1.7	
I _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	mA
		$V_{CC} = 2.3 \text{ V}$		3.1	
		V _{CC} = 3 V		4	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 0.8 V to 3.6 V		200	ns/V
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	.,	T,	_λ = 25°C		T _A = -40°C	to 85°C	LINUT		
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT		
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1			V _{CC} - 0.1				
	I _{OH} = -1.1 mA	1.1 V	0.75 × V _{CC}			0.7 × V _{CC}				
	I _{OH} = -1.7 mA	1.4 V	1.11			1.03				
\/	$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.32			1.3		V		
V_{OH}	$I_{OH} = -2.3 \text{ mA}$	2.3 V	2.05			1.97		V		
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9			1.85				
	$I_{OH} = -2.7 \text{ mA}$	3 V	2.72			2.67				
	$I_{OH} = -4 \text{ mA}$	3 V	2.6			2.55				
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		0.1			
V	I _{OL} = 1.1 mA	1.1 V			0.3 × V _{CC}		$0.3 \times V_{CC}$			
	I _{OL} = 1.7 mA	1.4 V			0.31		0.37			
	$I_{OL} = 1.9 \text{ mA}$	1.65 V			0.31		0.35	V		
V_{OL}	$I_{OL} = 2.3 \text{ mA}$	2.3 V			0.31		0.33	v		
	$I_{OL} = 3.1 \text{ mA}$	2.3 V			0.44		0.45			
	$I_{OL} = 2.7 \text{ mA}$	3 V			0.31		0.33			
	$I_{OL} = 4 \text{ mA}$	3 V			0.44		0.45			
I _I A or B input	$V_I = GND \text{ to } 3.6 \text{ V}$	0 V to 3.6 V			0.1		0.5	μΑ		
l _{off}	V_I or $V_O = 0$ V to 3.6 V	0 V			0.2		0.6	μΑ		
ΔI_{off}	V_I or $V_O = 0$ V to 3.6 V	0 V to 0.2 V			0.2		0.6	μΑ		
I _{CC}	$V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_O = 0$	0.8 V to 3.6 V			0.5		0.9	μΑ		
Δl _{CC}	$V_I = V_{CC} - 0.6 V^{(1)}, I_O = 0$	3.3 V			40		50	μΑ		
0	V V an CND	0 V		1.5						
C _i	$V_I = V_{CC}$ or GND	3.6 V		1.5				pF		
C _o	V _O = GND	0 V		3				pF		

⁽¹⁾ One input at V_{CC} – 0.6 V, other input at V_{CC} or GND

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 5 pF$ (unless otherwise noted) (see Figure 3 and Figure 4)

FROM	TO	V		T _A = 25°C			T _A = -40°C to 85°C		
(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX		
		0.8 V		16.6					
		1.2 V ± 0.1 V	2.6	7	13.8	2.1	17.1		
A D		1.5 V ± 0.1 V	2.9	5	9.2	2.9	11.1	ns	
A or B	Y	1.8 V ± 0.15 V	2	4	7.1	2	9		
		2.5 V ± 0.2 V	1.3	2.9	4.9	1.3	6.2		
		3.3 V ± 0.3 V	1	2.4	3.8	1	4.8		
	FROM (INPUT)	(INPUT) (OUTPUT)	(INPUT) (OUTPUT) Vcc 0.8 V 1.2 V ± 0.1 V 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V	(INPUT) (OUTPUT) V _{CC} MIN 0.8 V 1.2 V ± 0.1 V 2.6 1.5 V ± 0.1 V 2.9 1.8 V ± 0.15 V 2 2.5 V ± 0.2 V 1.3	(INPUT) (OUTPUT) V_{CC} MIN TYP $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(INPUT) (OUTPUT) V_{CC}	FROM (INPUT) V_{CC} N_{CC}	FROM (INPUT) V _{CC} $\frac{1.4 \pm 2.5 \text{C}}{\text{MIN}} = \frac{10 \text{K} \cdot \text{C}}{\text{MIN}} = \frac{10 \text{K} \cdot \text{C}}{\text{MIN}} = \frac{10 \text{K} \cdot \text{C}}{\text{MIN}} = \frac{10.8 \text{V}}{\text{MIN}} =$	

Copyright © 2004–2012, Texas Instruments Incorporated

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO V _{CC}	T _A = 25°C			T _A = -40°C to 85°C		UNIT								
	(INPUT)	(OUTPUT)	(001F01)	MIN	TYP	MAX	MIN	MAX								
		Y	0.8 V		18.9											
			Y	1.2 V ± 0.1 V	3.2	8	15.7	3.1	18.8							
	A or B			Y	V	V	V	V	V	1.5 V ± 0.1 V	2.9	5.8	10.5	2.9	12.1	20
t _{pd}	AUID				1.8 V ± 0.15 V	2	4.7	8.2	2	9.8	ns					
			2.5 V ± 0.2 V	1.3	3.4	5.7	1.3	6.8								
			3.3 V ± 0.3 V	1	2.9	4.5	1	5.2								

SWITCHING CHARACTERISTICS

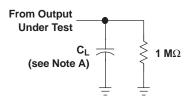
over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V		T _A = 25°C			T _A = -40°C to 85°C		
	(INFOT)	(001F01)		MIN	TYP	MAX	MIN	MAX		
			0.8 V		21.3					
			1.2 V ± 0.1 V	3.6	9	17.3	3.1	21.5		
	A or D	V	1.5 V ± 0.1 V	2.9	6.5	11.6	2.9	14		
t _{pd}	A or B	Y	1.8 V ± 0.15 V	2	5.3	9.2	2	11.4	ns	
			2.5 V ± 0.2 V	1.3	3.9	6.4	1.3	8		
		3.3 V ± 0.3 V	1	3.3	5.1	1	6.4			

SWITCHING CHARACTERISTICS

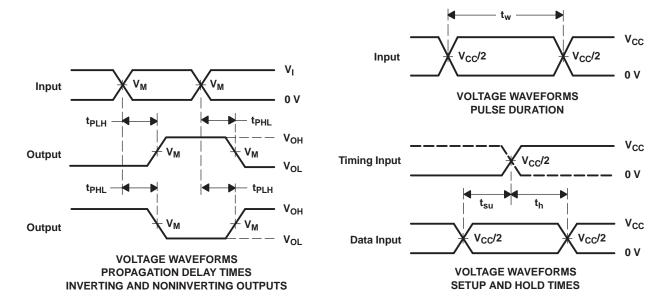
over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	T _A = 25°C			T _A = -40°C to 85°C		UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		28.4				
			1.2 V ± 0.1 V	4.9	11.9	21.9	4.4	27.1	
4	A or D	V	1.5 V ± 0.1 V	2.9	8.6	14.7	2.9	17.7	
^T pd	t _{pd} A or B	Y	1.8 V ± 0.15 V	2	7.1	11.5	2	14.2	ns
			2.5 V ± 0.2 V	1.3	5.3	8.1	1.3	10	
			3.3 V ± 0.3 V	1	4.5	6.5	1	8	


OPERATING CHARACTERISTICS

 $T_A = 25$ °C

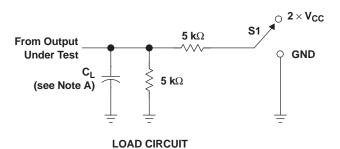
	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			0.8 V	4	
			1.2 V ± 0.1 V	4	pF
<u> </u>	Dower discinction conscitance	f = 10 MHz	1.5 V ± 0.1 V	4	
C _{pd}	Power dissipation capacitance	I = IO WITZ	1.8 V ± 0.15 V	4	
			2.5 V ± 0.2 V	4	
			3.3 V ± 0.3 V	4	



PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width)

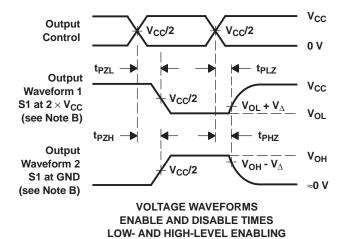
LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

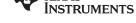

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd}.
- E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms



PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)


TEST	S1
t _{PLZ} /t _{PZL}	2×V _{CC}
t _{PHZ} /t _{PZH}	GND

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V_{CC} = 1.8 V \pm 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
\mathbf{v}_{M}	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
${f V}_{\Delta}$	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, slew rate \geq 1 V/ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

www.ti.com

REVISION HISTORY

CI	hanges from Revision G (March 2010) to Revision H	Pag	e
•	Corrected the MIN Value for 1.2V as per available characterization data.		6

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
SN74AUP1G00DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DBVRE4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DBVTE4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H00R	Samples
SN74AUP1G00DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HAF, HAK, HAR)	Samples
SN74AUP1G00DCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HAF, HAK, HAR)	Samples
SN74AUP1G00DCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HAF, HAK, HAR)	Samples
SN74AUP1G00DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HAR	Samples
SN74AUP1G00DCKTE4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HAR	Samples
SN74AUP1G00DCKTG4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HAR	Samples
SN74AUP1G00DRLR	ACTIVE	SOT	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HA7, HAR)	Samples
SN74AUP1G00DRLRG4	ACTIVE	SOT	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HA7, HAR)	Samples
SN74AUP1G00DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM		(HA2, HA7, HAN)	Samples

PACKAGE OPTION ADDENDUM

24-Jan-2013

Orderable Device	Status	Package Type	U		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
SN74AUP1G00YZPR	ACTIVE	DSBGA	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(HA7, HAN)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

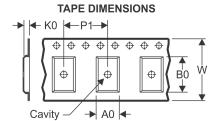
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

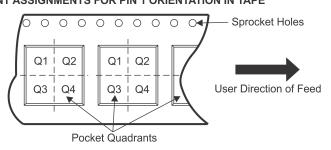
(4) Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

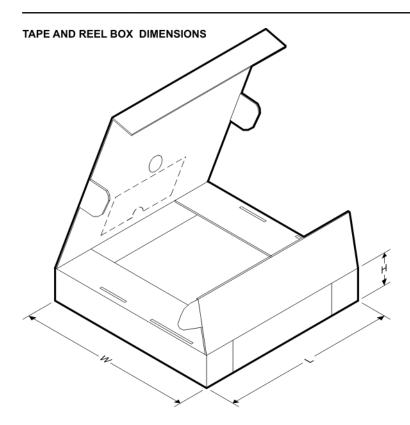

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 28-Sep-2012


TAPE AND REEL INFORMATION

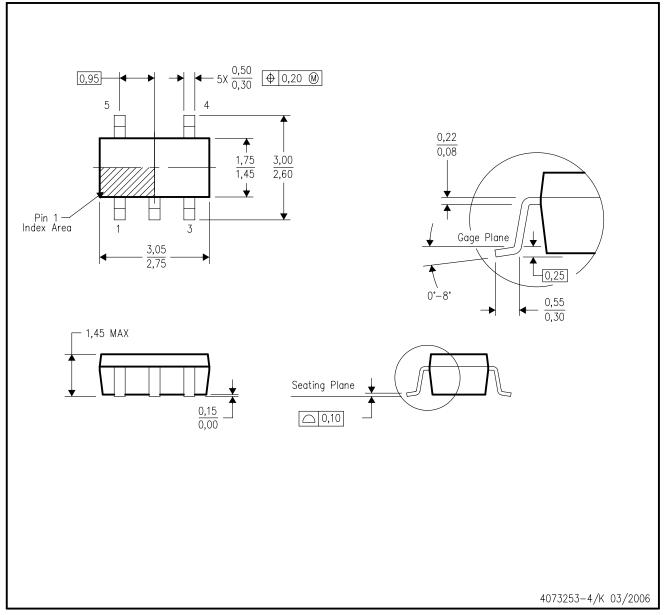
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G00DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G00DBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G00DCKR	SC70	DCK	5	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74AUP1G00DCKT	SC70	DCK	5	250	180.0	8.4	2.25	2.4	1.22	4.0	8.0	Q3
SN74AUP1G00DRLR	SOT	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AUP1G00DRLR	SOT	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74AUP1G00DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP1G00DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP1G00YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1
SN74AUP1G00YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 28-Sep-2012

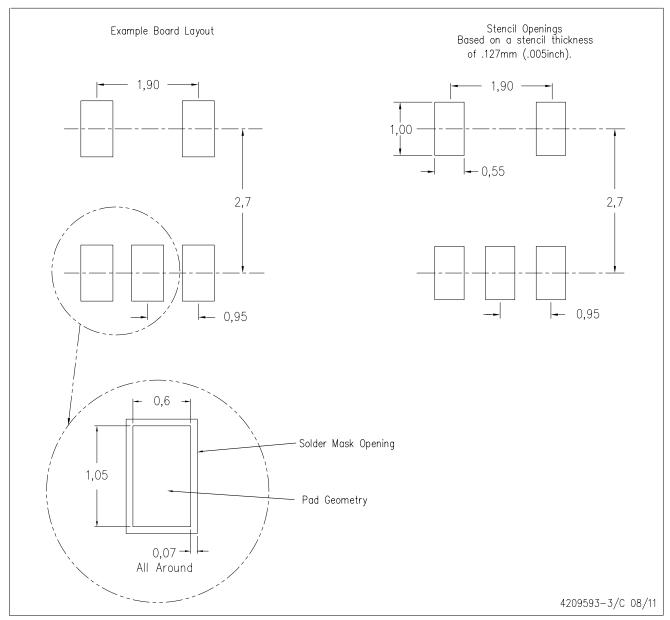


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G00DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74AUP1G00DBVT	SOT-23	DBV	5	250	202.0	201.0	28.0
SN74AUP1G00DCKR	SC70	DCK	5	3000	205.0	200.0	33.0
SN74AUP1G00DCKT	SC70	DCK	5	250	202.0	201.0	28.0
SN74AUP1G00DRLR	SOT	DRL	5	4000	202.0	201.0	28.0
SN74AUP1G00DRLR	SOT	DRL	5	4000	180.0	180.0	30.0
SN74AUP1G00DRYR	SON	DRY	6	5000	180.0	180.0	30.0
SN74AUP1G00DSFR	SON	DSF	6	5000	180.0	180.0	30.0
SN74AUP1G00YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0
SN74AUP1G00YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

DBV (R-PDSO-G5)

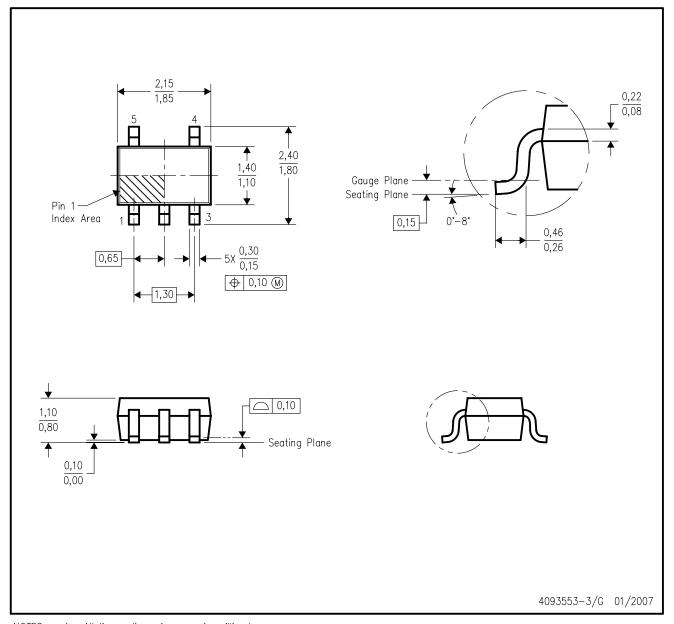
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

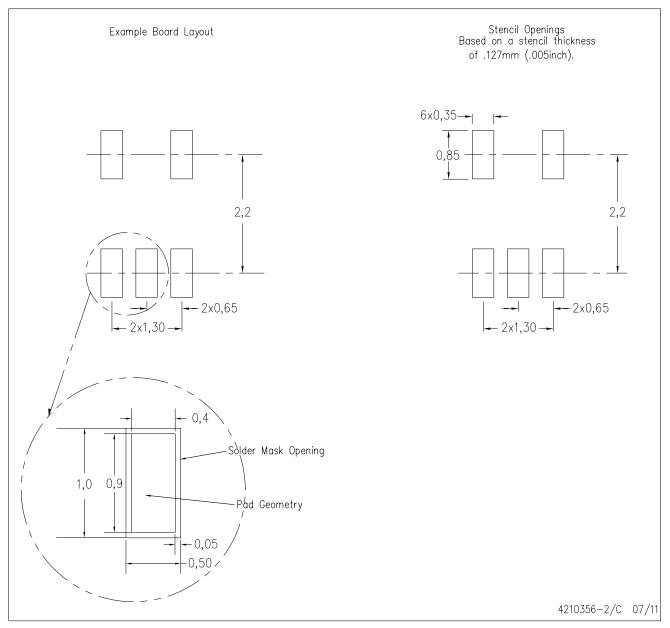
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G5)

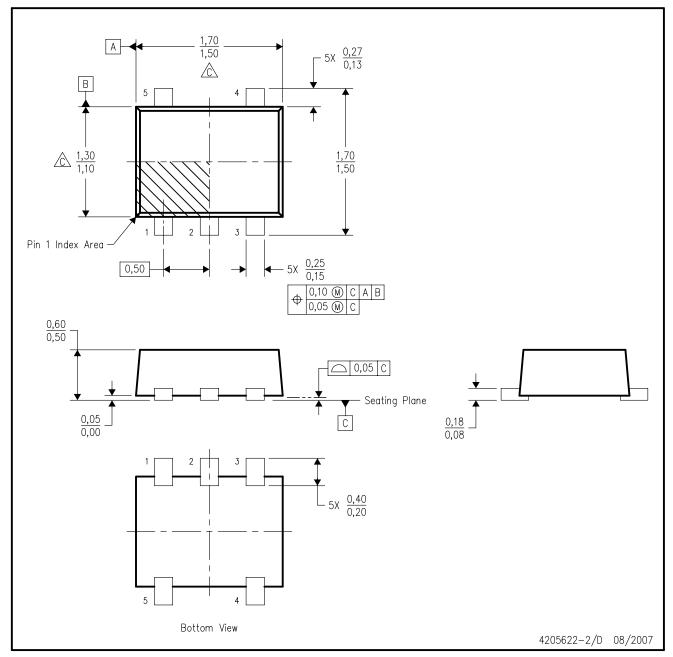
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

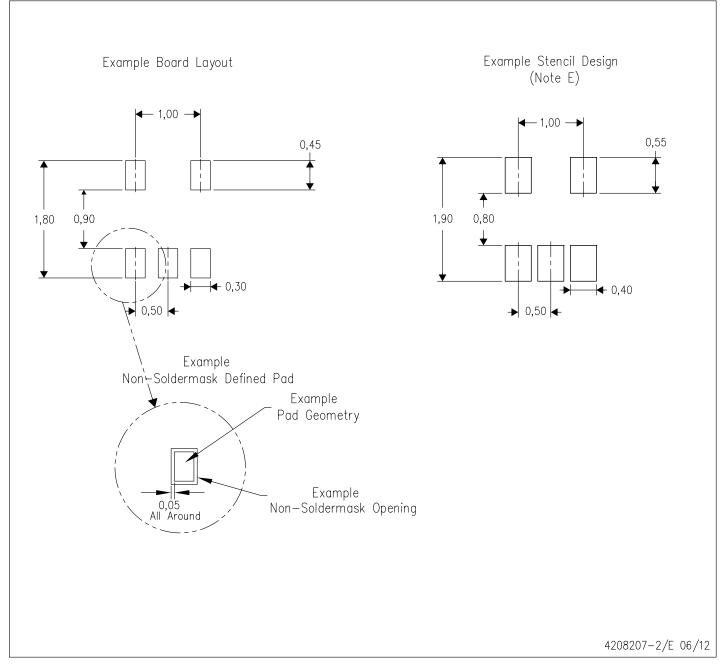
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

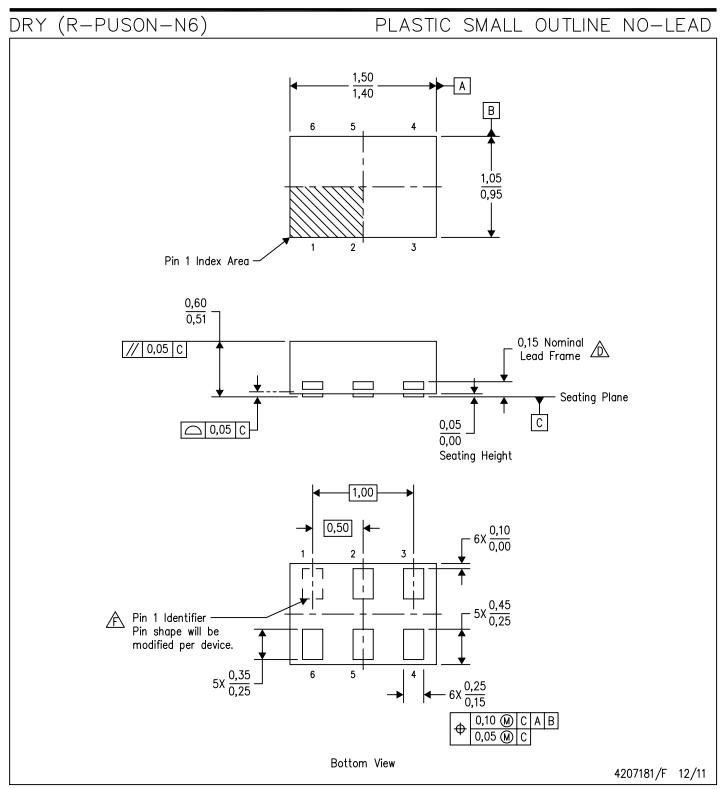
DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

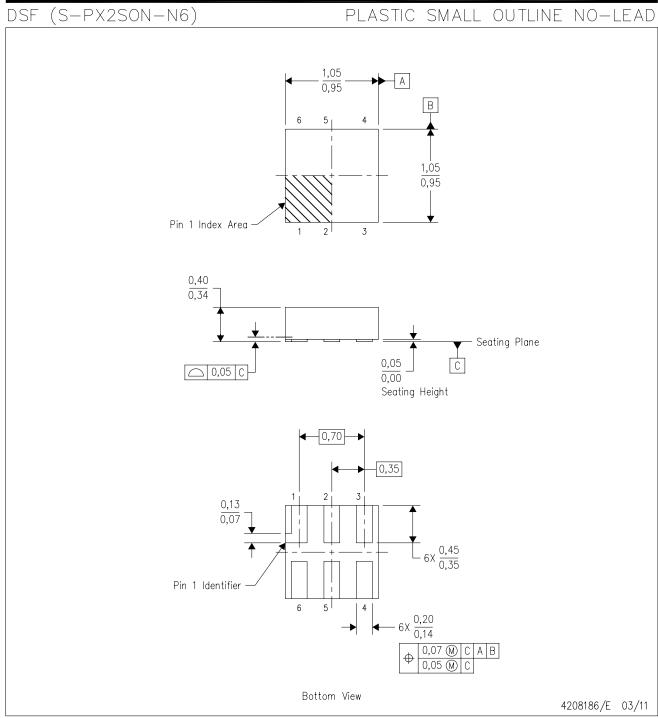
 Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.

DRL (R-PDSO-N5)


PLASTIC SMALL OUTLINE

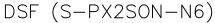
NOTES: A. All linear dimensions are in millimeters.

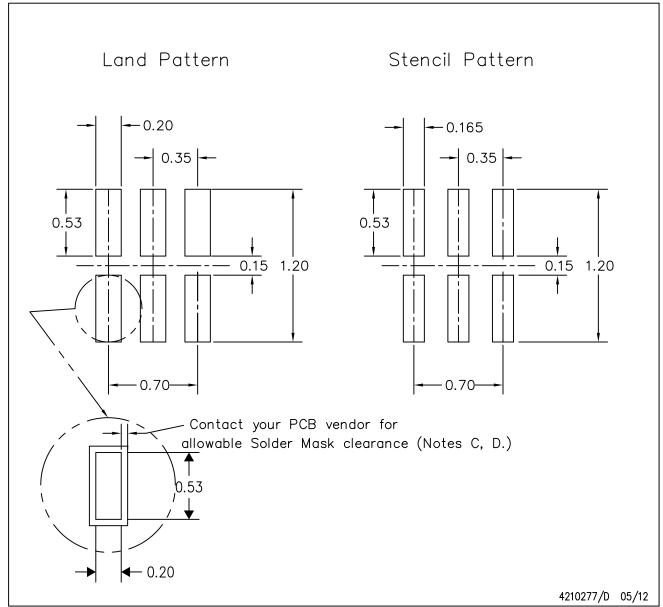
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

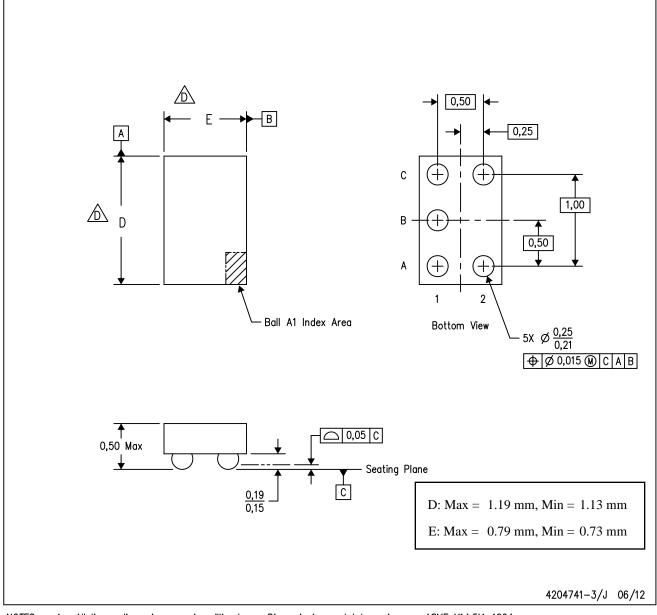
- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.
- The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- $frac{f}{K}$ See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.




NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
 C. SON (Small Outline No-Lead) package configuration.
 D. This package complies to JEDEC MO-287 variation X2AAF.

PLASTIC SMALL OUTLINE NO-LEAD

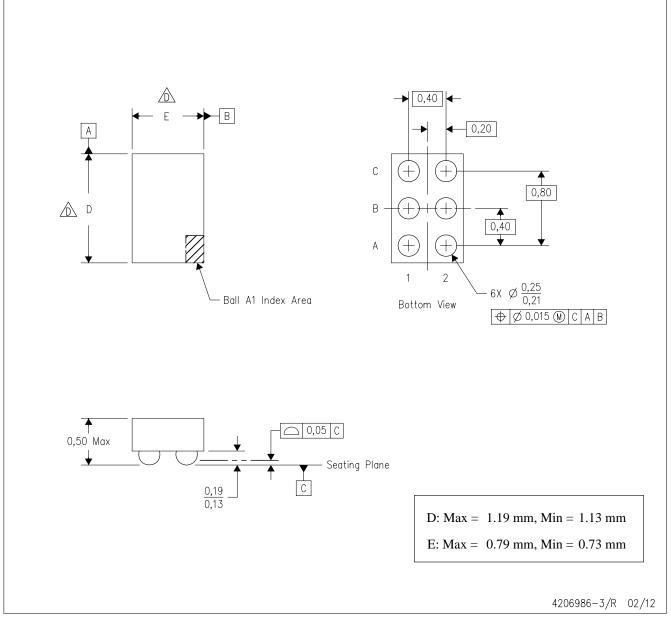


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

YZP (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.


- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
- E. This package is a Pb-free solder ball design. Refer to the 5 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YFP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.

- E. Reference Product Data Sheet for array population. 2 x 3 matrix pattern is shown for illustration only.
- F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>