# **Signetics**

#### **Linear Products**

#### DESCRIPTION

The NE/SE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter-follower inputs provide a true differential high input impedance device. Proper external compensation will allow design operation over a wide range of closed-loop gains, both inverting and non-inverting, to meet specific design requirements.

# NE/SE5539 High Frequency Operational Amplifier

**Product Specification** 

#### FEATURES

Bandwidth

- Unity gain 350MHz
- Full power 48MHz
- GBW 1.2 GHz at 17dB
- Slew rate: 600/Vµs
- A<sub>VOL</sub>: 52dB typical
- Low noise 4nV/VHz typical
- MIL-STD processing available

#### APPLICATIONS

- High speed datacomm
- Video monitors & TV
- Satellite communications
- Image processing
- RF instrumentation & oscillators
- Magnetic storage
- Military communications

#### ORDERING INFORMATION

| DESCRIPTION        | TEMPERATURE RANGE | ORDER CODE |
|--------------------|-------------------|------------|
| 14-Pin Plastic DIP | 0 to +70°C        | NE5539N    |
| 14-Pin Plastic SO  | 0 to +70°C        | NE5539D    |
| 14-Pin Cerdip      | 0 to +70°C        | NE5539F    |
| 14-Pin Plastic DIP | -55°C to +125°C   | SE5539N    |
| 14-Pin Cerdip      | ~55°C to +125°C   | SE5539F    |

#### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| SYMBOL            | PARAMETER                                                                                              | RATING                 | UNIT        |
|-------------------|--------------------------------------------------------------------------------------------------------|------------------------|-------------|
| V <sub>CC</sub>   | Supply voltage                                                                                         | ± 12                   | V           |
| PDMAX             | Maximum power dissipation,<br>$T_A = 25^{\circ}C (still-air)^2$<br>F package<br>N package<br>D package | 1.17<br>1.45<br>0.99   | ×<br>×<br>× |
| T <sub>STG</sub>  | Storage temperature range                                                                              | -65 to +150            | °C          |
| TJ                | Max junction temperature                                                                               | 150                    | °C          |
| T <sub>A</sub>    | Operating temperature range<br>NE<br>SE                                                                | 0 to 70<br>-55 to +125 | °C<br>°C    |
| T <sub>SOLD</sub> | Lead temperature (10sec max)                                                                           | 300                    | °C          |

NOTES:

 Differential input voltage should not exceed 0.25V to prevent excessive input bias current and common-mode voltage 2.5V. These voltage limits may be exceeded if current is limited to less than 10mA.

2. Derate above 25°C, at the following rates:

F package at 9.3 mW/°C

N package at 11.6 mW/°C

D package at 7.9 mW/°C

#### PIN CONFIGURATION



NE/SE5539

#### EQUIVALENT CIRCUIT



### DC ELECTRICAL CHARACTERISTICS $V_{CC} = \pm 8V$ , $T_A = 25^{\circ}C$ , unless otherwise specified.

|                 |                             |                                            |                        | SE553 | 9   |     |     |     |     |       |
|-----------------|-----------------------------|--------------------------------------------|------------------------|-------|-----|-----|-----|-----|-----|-------|
| SYMBOL          | PARAMETER                   | TEST CONDITIONS                            |                        |       | Тур | Max | Min | Тур | Max | UNIT  |
| Mar             |                             | V 0V D 4000                                | Over temp              |       | 2   | 5   |     |     |     |       |
| vos ∣           | OS Input onset voltage      | $v_0 = 0v, H_s = 100sz$                    | T <sub>A</sub> = 25°C  |       | 2   | 3   |     | 2.5 | 5   |       |
|                 | $\Delta V_{OS} / \Delta T$  |                                            |                        |       | 5   | {   |     | 5   |     | μV/°C |
| los             | Input offset current        |                                            | Over temp              |       | 0.1 | 3   |     |     |     |       |
|                 |                             |                                            | T <sub>A</sub> = 25°C  |       | 0.1 | 1   |     |     | 2   | ?     |
|                 | $\Delta I_{OS} / \Delta T$  |                                            |                        |       | 0.5 |     |     | 0.5 |     | nA/°C |
|                 | Input bias current          |                                            | Over temp              | 5     | 6   | 25  |     |     |     |       |
| 18              |                             |                                            | T <sub>A</sub> = 25°C  |       | 5   | 13  |     | 5   | 20  |       |
|                 | $\Delta I_{B} / \Delta T$   |                                            |                        |       | 10  |     |     | 10  |     | nA/°C |
| CMRR            | Common-mode rejection ratio | $F = 1 \text{ kHz}, R_{S} = 100 \Omega, T$ | V <sub>CM</sub> ± 1.7V | 70    | 80  |     | 70  | 80  | ,   | dB    |
|                 |                             |                                            | Over temp              | 70    | 80  |     |     |     |     | dB    |
| R <sub>IN</sub> | Input impedance             |                                            |                        |       | 100 |     |     | 100 |     | kΩ    |
| ROUT            | Output impedance            |                                            |                        |       | 10  |     |     | 10  |     | Ω     |

### NE/SE5539

|                  |                                           |                            | SE5539                                                                                           |                       |       | 9     |      |       |       |      |      |
|------------------|-------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|-----------------------|-------|-------|------|-------|-------|------|------|
| SYMBOL           | PARAMETER                                 | TES                        | TEST CONDITIONS                                                                                  |                       |       | Тур   | Max  | Min   | Тур   | Max  | UNIT |
|                  |                                           | $R_L = 150\Omega$ to       | GND and                                                                                          | + Swing               |       |       |      | + 2.3 | + 2.7 |      | ~~~  |
| VOUT             | Output voltage swing                      | 470Ω to                    | -V <sub>CC</sub>                                                                                 | -Swing                |       |       |      | -1.7  | -2.2  |      | v    |
|                  |                                           |                            | 0.000                                                                                            | + Swing               | + 2.3 | + 3.0 |      |       |       |      |      |
| N.               | Output voltage ewing                      | $R_L = 2k\Omega$ to        | Over temp                                                                                        | -Swing                | -1.5  | -2.1  |      |       |       |      | •    |
|                  | OUT Output voltage swing GND GND          | T - 05%0                   | + Swing                                                                                          | + 2.5                 | +3.1  |       |      |       |       |      |      |
|                  |                                           | 1                          | $I_{A} = 25^{\circ}C$                                                                            | -Swing                | -2.0  | -2.7  |      | 1     |       |      | v    |
|                  | Desitive supply supprt                    | $V_0 = 0, R_1 = \infty$    |                                                                                                  | Over temp             |       | 14    | 18   |       |       |      | — mA |
| 'cc+             | I <sub>CC</sub> + Positive supply current |                            |                                                                                                  | T <sub>A</sub> = 25°C |       | 14    | 17   |       | 14    | 18   |      |
|                  |                                           | V - 0.5                    |                                                                                                  |                       |       | 11    | 15   |       |       |      |      |
| ICC-             | Negative supply current                   | $v_0 = 0, F$               | -1 <sub>1</sub> = ∞                                                                              | T <sub>A</sub> = 25°C |       | 11    | 14   |       | 11    | 15   |      |
|                  | Davies averte scienting estin             | A)/                        | + 1)/                                                                                            | Over temp             |       | 300   | 1000 |       |       |      |      |
| PSRR             | Power supply rejection ratio              |                            | $\Delta V_{CC} = \pm 1V$ $T_A =$                                                                 |                       | l     |       |      |       | 200   | 1000 | μν/ν |
| A <sub>VOL</sub> | Large signal voltage gain                 | $V_0$<br>$R_L = 150\Omega$ | $V_{O}$ = +2.3V, -1.7V<br>R <sub>L</sub> = 150 $\Omega$ to GND, 470 $\Omega$ to -V <sub>CC</sub> |                       |       |       |      | 47    | 52    | 57   | dB   |
|                  |                                           | $V_{0} = +2.3V_{0}$        | √, −1.7V                                                                                         |                       |       |       |      |       |       |      | dD   |
| AVOL             | Large signal voltage gain                 | $R_L = 2\Omega$ to GND     |                                                                                                  | T <sub>A</sub> = 25°C | {     |       |      | 47    | 52    | 57   | 08   |
|                  |                                           | $V_{\rm O} = +2.5^{\rm V}$ | $V_{\rm O} = +2.5V_{\rm V} - 2.0V$                                                               |                       | 46    |       | 60   |       |       |      | ٩D   |
| AVOL             | Large signal voltage gain                 | $R_L = 2k\Omega$ to GND    |                                                                                                  | T <sub>A</sub> = 25°C | 48    | 53    | 58   | ]     |       |      | uB   |

#### DC ELECTRICAL CHARACTERISTICS (Continued) $V_{CC} = \pm 8V$ , $T_A = 25^{\circ}C$ , unless otherwise specified.

### DC ELECTRICAL CHARACTERISTICS $V_{CC} \approx \pm 6V$ , $T_A = 25^{\circ}C$ , unless otherwise specified.

|        |                              |                                         |                       |                       |       | SE5539 |      |       |  |
|--------|------------------------------|-----------------------------------------|-----------------------|-----------------------|-------|--------|------|-------|--|
| SYMBOL | PARAMETER                    | TEST C                                  | Min                   | Тур                   | Max   | UNIT   |      |       |  |
|        |                              |                                         | (                     |                       |       | 2      | 5    |       |  |
| VOS    | input onset voltage          |                                         | T <sub>A</sub> = 25°C |                       | 2     | 3      | mv   |       |  |
| 1.00   |                              |                                         |                       | Over temp             |       | 0.1    | 3    |       |  |
| 'OS    |                              |                                         |                       | T <sub>A</sub> = 25°C |       | 0.1    | 1    | μΑ    |  |
| le.    | La laput biog ourroot        |                                         |                       | Over temp             |       | 5      | 20   | Δ     |  |
| 'B     |                              |                                         |                       | T <sub>A</sub> = 25°C |       | 4      | 10   | μη    |  |
| CMRR   | Common-mode rejection ratio  | $V_{CM} = \pm 1.3V$ , $R_S = 100\Omega$ |                       |                       | 70    | 85     |      | dB    |  |
|        | Positivo supply ourropt      |                                         |                       | Over temp             |       | 11     | 14   | m۵    |  |
|        |                              |                                         |                       | $T_A = 25^{\circ}C$   |       | 11     | 13   |       |  |
| lee-   | Negative supply current      | Over tem                                |                       | Over temp             |       | 8      | _11  | mA    |  |
| -00-   |                              |                                         |                       | T <sub>A</sub> = 25°C |       | 8      | 10   |       |  |
| DCDD   | Power supply rejection ratio | ()/ = + 1                               | V                     | Over temp             |       | 300    | 1000 |       |  |
| Fonn   |                              |                                         | •                     | T <sub>A</sub> = 25°C |       |        |      | μ•/ • |  |
|        |                              |                                         | Over temp             | + Swing               | +1.4  | + 2.0  |      |       |  |
|        |                              | $R_L \approx 150\Omega$ to GND          | Over temp             | -Swing                | -1.1  | -1.7   |      |       |  |
| VOUT   | Culput voltage swing         | and 390 $\Omega$ to -V_{CC}             | T - 25%               | + Swing               | + 1.5 | + 2.0  |      |       |  |
|        |                              |                                         | 14 - 25 C             | -Swing                | -1.4  | -1.8   |      |       |  |

# NE/SE5539

#### AC ELECTRICAL CHARACTERISTICS $V_{CC} = \pm 8V$ , $R_L = 150\Omega$ to $GND \& 470\Omega$ to $-V_{CC}$ , unless otherwise specified.

|        | PARAMETER TEST         |                                          | SE5539 |      |     |     |      |     |        |
|--------|------------------------|------------------------------------------|--------|------|-----|-----|------|-----|--------|
| STMBUL |                        | TEST CONDITIONS                          | Min    | Тур  | Max | Min | Тур  | Max | UNIT   |
| BW     | Gain bandwidth product | $A_{CL} = 7, V_0 = 0.1 V_{P-P}$          |        | 1200 |     |     | 1200 |     | MHz    |
|        | Small-signal bandwidth | $A_{CL} = 2, R_{L} = 150\Omega^{1}$      |        | 110  |     |     | 110  |     | MHz    |
| ts     | Settling time          | $A_{CL} = 2, R_{L} = 150\Omega^{1}$      |        | 15   |     |     | 15   |     | ns     |
| SR     | Slew rate              | $A_{CL} \approx 2$ , $R_L = 150\Omega^1$ |        | 600  |     |     | 600  |     | V∕µs   |
| teD    | Propagation delay      | $A_{CL} = 2, R_{L} = 150\Omega^{1}$      |        | 7    |     |     | 7    |     | ns     |
|        | Full power response    | $A_{CL} = 2, R_{L} = 150\Omega^{1}$      |        | 48   |     |     | 48   | {   | MHz    |
|        | Full power response    | $A_V = 7, R_L = 150\Omega^1$             |        | 20   |     |     | 20   |     | MHz    |
|        | Input noise voltage    | R <sub>S</sub> = 50Ω, 1MHz               |        | 4    |     |     | 4    |     | nV/√Hz |
|        | Input noise current    | 1MHz                                     |        | 6    |     |     | 6    |     | pA/√Hz |

NOTE:

1. External compensation.

#### AC ELECTRICAL CHARACTERISTICS $V_{CC} = \pm 6V$ , $R_L = 150\Omega$ to GND and $390\Omega$ to $-V_{CC}$ , unless otherwise specified.

| SYMBOL | PARAMETER              |                 |     |     |     |      |
|--------|------------------------|-----------------|-----|-----|-----|------|
|        |                        | TEST CONDITIONS | Min | Тур | Max | UNIT |
| BW     | Gain bandwidth product | $A_{CL} = 7$    |     | 700 |     | MHz  |
|        | Small-signal bandwidth | $A_{CL} = 2^1$  |     | 120 |     | MHz  |
| ts     | Settling time          | $A_{CL} = 2^1$  |     | 23  |     | ns   |
| SR     | Slew rate              | $A_{CL} = 2^1$  |     | 330 |     | V/µs |
| tpD    | Propagation delay      | $A_{CL} = 2^1$  |     | 4.5 |     | ns   |
|        | Full power response    | $A_{CL} = 2^1$  |     | 20  |     | MHz  |

NOTE:

1. External compensation.

#### TYPICAL PERFORMANCE CURVES



4-227

#### TYPICAL PERFORMANCE CURVES (Continued)



NE/SE5539

OPTIONAL OFFSET

0-1

#### CIRCUIT LAYOUT CONSIDERATIONS

As may be expected for an ultra-high frequency, wide-gain bandwidth amplifier, the physi-



#### cal circuit layout is extremely critical. Breadboarding is not recommended. A doublesided copper-clad printed cirucit board will result in more favorable system operation. An

1nF

example utilizing a 28dB non-inverting amp is shown in Figure 1.

NE/SE5539

Figure 1. 28dB Non-Inverting Amp Sample PC Layout

#### November 3, 1987

# High Frequency Operational Amplifier

#### NE5539 COLOR VIDEO AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 2 along with vector-scope<sup>1</sup> photographs showing the amplifier differential gain and phase response to a standard five-step modulated staircase linearity signal (Figures 3, 4 and 5). As can be seen in Figure 4, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 5 is approximately +0.1°.

The amplifier circuit was optimized for a  $75\Omega$  input and output termination impedance with a gain of approximately 10 (20dB).

#### NOTE:

1. The input signal was 200mV and the output 2V.  $V_{CC}$  was  $\pm\,8V.$ 



750

22nF

Figure 2. NE5539 Video Amplifier

470

NOTE:

Instruments used for these measurements were Tektronix 146 NTSC test signal generator, 520A NTSC vectorseope, and 1480 waveform monitor.



dB LOSS-

E) ZO = 75

TC08750S

NE/SE5539

### NE/SE5539



#### APPLICATIONS



