DESCRIPTION

The SE/NE538 is a new generation operational amplifier featuring high slew rates combined with improved input characteristics. Internally compensated for gains of 5 or larger, the SE538 offers guaranteed minimum slew rates of 40V/µs or larger. Featuring 2mV max input offset voltage, the 538 is a single amplifier. Industry standard pin out and internal compensation allow the user to upgrade system performance by directly replacing general purpose amplifiers, such as 748, 101A and 741.

FEATURES

- 2mV input offset voltage
- 80nA max input offset current
- · Short circuit protected
- · Offset null capability
- Large common mode and differential voltage ranges
- 60V/µs slew rate (gain of +5, -4 min)
- 6MHz gain bandwidth product (gain +5, -4 minimum)
- Internal frequency compensation (gain of +5, -4 minimum)
- Pin out: 538 same as 741 (single)

ABSOLUTE MAXIMUM RATINGS1,2,3

	PARAMETER	RATING	UNIT
Vcc	Supply voltage		
	SE military grade	±22	v
	NE commercial grade	±18	v
PD	Internal power dissipation	1000	m₩
	FE package		
PD	Internal power dissipation ¹	500	mW
	N package		
Po	Internal power dissipation ¹	800	mW
	H package		
	Differential input voltage	±30	v
	Input voltage ²	±15	l v
	Operating temperature range		
	SE military grade	-55 to +125	°C
	NE commercial grade	0 to 70	l °C
	Output short circuit ³	indefinite	
	Storage temperature range	-65 to +150	l°C
	Lead temperature (solder, 60sec.)	300	°C
		1	1

FE.N PACKAGE OFFSET NULL 1 8 NC 7 V+ NONINVERT-ING INPUT 6 OUTPUT 5 OFFSET v -4 TOP VIEW ORDER NUMBERS NE538N, FE SE538N, FE H PACKAGE* NC (8) \overline{O} OFFSET ADJUST 1 INVERTING പ OUTPUT INPUT NON-INVERTING ഭ OFFSET ADJUST INPUT (4)

> **ORDER NUMBERS** SE538H

NE538H

SE/NE538

NOTES

6-38

1. Rating applies for thermal resistances of 240°C/W and 150°C/W junction to

ambient for N and H packages. Maximum chip temperature is 150°C.

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage Short circuit may be to ground or either supply. Rating applies to 125°C case 3.

temperature or 75°C ambient temperature.

SE/NE538

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

DC ELECTRICAL CHARACTERISTICS $T_A = 25 \degree C$, $V_S = \pm 15V$ unless otherwise specified.

PARAMETER		TEST CONDITIONS	SE538			NE538			
			Min	Тур	Max	Min	Тур	Max	UNIT
V _{os}	Input offset voltage	$R_{S} \le 10k\Omega$ $R_{S} \le 10k\Omega$, over temp.		0.7	4.0 5.0		2.0	6.0 7.0	mV mV
ΔV _{os}	Input offset voltage drift	$R_{S} = 0\Omega$, over temp.		4.0			6.0		μV/°C
los	Input offset current	0		5	20		15	40	nA
Δl _{os}	Input offset current	Over temp. Over temp		25	40		40	80	nA pA/°C
Г _в	Input current	_		45	80		65	150	nA
ΔIB	Input current	Over temp. Over temp.		50	200		80	200	nA pA/℃
V _{CM}	Input common mode voltage range		± 12	± 13		± 12	± 13		v
CMRR	Common mode rejection ratio	$R_{S} \leq 10k\Omega$, over temp.	70	90		70	90		dB
PSRR	Power supply rejection	$R_{S} \leq 10k\Omega$, over temp.		30	150		30	150	μ V/V
R _{IN}	Input resistance		3	10		1	6		MΩ
A _{VOL}	Large signal voltage gain	$ \begin{aligned} R_{L} &\geq 2 k \Omega, \ V_{OUT} = \pm 10 V \\ & Over temp., \\ R_{L} &\geq 2 k \Omega, \ V_{OUT} = \pm 10 V \end{aligned} $	50 25	200		50 25	200		V/mV V/mV
V _{OUT}	Output voltage	Over temp., $R_L \ge 2k\Omega$ Over temp., $R_L \ge 10k\Omega$	± 10 ± 12	± 13 ± 14		± 10 ± 12	± 13 ± 14		v v
Icc	Supply current	Per amplifier Over temp., per amplifier		2 2.2	3 3.6		2 2.2	3 3.6	mA mA
PD	Power dissipation	Per amplifier Over temp., per amplifier		60 66	90 108		60 66	90 108	mW mW
I _{sc}	Output short circuit current		10	25	50	10	25	50	mA
R _{OUT}	Output resistance			100			100		Ω

NOTE

Temperature Range SE Types - 55°C \leq T_A \leq 125°C NE Types 0°C \leq T_A \leq 70°C

	TEST CONDITIONS	SE538/SE5538			SE538/NE5538			
PARAMETER		Min	Тур	Max	Min	Тур	Max	UNIT
Gain bandwidth product (Gain +5, -4 minimum)			6			6		MHz
Transient response Small signal rise time Small signal overshoot			0.25			0.25		μs %
Settling time	To 0.1%		1.2			1.2	1	μs
Slew rate	$\begin{array}{l} \mbox{Minimum gain} = 5 \\ \mbox{Noninverting } R_L \geq 2k\Omega \end{array}$	40	60			60		V/µs
Input noise voltage	$f = 1 kHz, T_A = 25 °C$		30			30		nV/√H

AC ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise specified.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

TEST LOAD CIRCUITS (Cont'd)

SE/NE538

INTRODUCTION

The Signetics NE538 is an undercompensated op amp. The NE538 has a typical slew rate of $50V/\mu s$ and a gain bandwidth product of 6MHz.

The internal frequency compensation is designed for a minimum inverting gain of 4 and a minimum non-inverting gain of 5. Below these gains the NE538 will be unstable and will need external compensation (see Figure 1 and 2).

The higher slew rate of the NE538 has made this device quite appealing for high speed designs and the fact that it has a standard pinout will allow it to be used to upgrade existing systems that now use the μ A741 or μ 748.

Equations:

$$f_{LAG} = \frac{1 (6MHz)}{10} = \frac{1}{2\pi R_L C_L}$$
$$f_{LEAD} = 6MHz = \frac{1}{2\pi R_F C_F}$$

Power Supply

Figure 1. Non-Inverting Configuration

