DESCRIPTION

The 531 is a fast slewing high performance operational amplifier which retains dc performance equal to the best general purpose types while providing far superior large signal ac performance. A unique input stage design allows the amplifier to have a large signal response nearly identical to its small signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large signal bandwidths are required, the amplifier out performs conventional designs which have much better small signal response. Also, because the small signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications.

EQUIVALENT SCHEMATIC

FEATURES

- 35V/µsec slew rate at unity gain
- Pin for pin replacement for μA709, μA748 or LM101
- Compensated with a single capacitor
- Same low drift offset null circuitry as μA741
- Small signal bandwidth 1MHz
- Large signal bandwidth 500KHz
- True op amp dc characteristics make the 531 the ideal answer to all slew rate limited operational amplifier applications.

Signetics

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT		
Supply voltage	±22	v		
Internal power dissipation ¹	300	mW		
Differential input voltage	±15	v		
Common mode input voltage ²	±15	v		
Voltage between offset null				
and V-	±0.5	v		
Operating temperature range				
NE531	0 to +70	°C		
SE531	-55 to +125	°C		
Storage temperature range	-65 to +150	°C		
Lead temperature				
(soldering, 60 sec)	300	°C		
Output short circuit duration ³	indefinite			

NOTES

1. Rating applies for case temperature to 125°C, derate linearly at 6.5mW/°C for ambient temperatures above +75°C.

2. For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature.

DC ELECTRICAL CHARACTERISTICS $V_s = \pm 15V$ unless otherwise specified.

	DADAMETER		SE531 ¹			NE531			
	PARAMEIER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNII
V _{os}	Offset voltage	$R_{S} \le 10k\Omega, T_{A} = 25 ^{\circ}C$ $R_{S} \le 10k\Omega, over temp$ Over temp		2.0 10	5.0 6.0		2.0 10	6.0 7.5	mV mV µV/°C
I _{OS} ΔI _{OS}	Offset current	$T_A = 25 \text{ °C}$ $T_A = HIGH$ $T_A = LOW$ Over temp		30 0.4	200 200 500		50 0.4	200 200 300	nA nA nA nA/°C
I _{BIAS} AI _B	Input current	$T_A = 25 ^{\circ}C$ $T_A = HIGH$ $T_A = LOW$ Over temp		300 2	500 500 1500		400 2	1500 1500 2000	nA nA nA nA/℃
V _{CM} CMRR	Common mode voltage range Common mode rejection ratio	$T_A = 25$ °C $T_A = 25$ °C, $R_S ≤ 10kΩ$ Over temp $R_S ≤ 10kΩ$	± 10 70	90		± 10 70	100		V dB dB
R _{IN}	Input resistance	$T_A = 25 \degree C$		20			20		MΩ
V _{OUT}	Output voltage swing	$R_L \ge 10k\Omega$, over temp	± 10	± 13		± 10	± 13		V
I _{CC} P _D	Supply current Power consumption	$T_{A} = 25 °C$ T_{MAX} $T_{A} = 25 °C$			7.0 7.0 210			10 10 300	mA mA mW
PSRR	Power supply rejection ratio	$R_S ≤ 10kΩ$, $T_A = 25$ °C $R_S ≤ 10kΩ$, over temp		10	150		10	150	μV/V μV/V
R _{OUT}	Output resistance	$T_A = 25 ^{\circ}C$		75			75		Ω
A _{VOL}	Large signal voltage gain	$\begin{split} T_{A} &= 25^{\circ}\text{C}, \ \text{R}_{L} \geq 10 \text{k}\Omega, \ \text{V}_{OUT} = \pm 10\text{V} \\ \text{R}_{L} \geq 10 \text{k}\Omega, \ \text{V}_{OUT} = \pm 10\text{V}, \ \text{over temp} \end{split}$	50 25	100		20 15	60		V/mV V/mV
V _{INN}	Input noise voltage	25°C, f = 1kHz		20			20		nV/√Hz
I _{SC}		25°C	5	15	45	5	15	45	mA

NOTE:

NOTE: 1. Temperature range: SE531 - 55°C ≤ T_A ≤ 125°C NE531 0°C ≤ T_A ≤ 70°C

SE/NE531

	TEST CONDITIONS		NE531		SE531			
PARAMETER		Min	Тур	Max	Min	Тур	Max	
Full power bandwidth			500			500		kHz
Settling time (1%) (.1%)	$A_V = +1, V_{IN} = \pm 10V$		1.5 2.5			1.5 2.5		μS μS
Large signal overshoot Small signal overshoot	$A_V = +1$, $V_{IN} = \pm 10V$ $A_V = +1$, $V_{IN} = 400mV$		2 5			2 5		% %
Small signal risetime	$Av = +1, V_{IN} = 400 mV$		300			300		ns
Slew rate	$A_V = 100$ $A_V = 10$ $A_V = 1 \text{ (noninverting)}$ $A_V = 1 \text{ (inverting)}$		35 35 30 35		20 25	35 35 30 35		V/μs V/μs V/μs V/μs

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$ unless otherwise specified.

-

NOTE

1. All AC testing is performed in the transient response test circuit.

TEST LOAD CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS ($V_S = \pm 15V$, $T_A = +25^{\circ}C$, unless otherwise specified.)

SE/NE531

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

i

-

HIGH SLEW RATE OPERATIONAL AMPLIFIER

.....

-

- -

SE/NE531

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

-

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS (Cont'd)

SE/NE531

CYCLIC A TO D CONVERTER

One interesting, but, much ignored A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts V_{ref} from the input and doubles the remainder if the polarity was correct. In Figure 1 the signal is full wave rectified and the remainder of V_{in} – V_{ref} is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of V_{ref}. Possessing high potential accuracy, the circuit using NE531 devices settles in 5 μ s.

TRIANGLE AND SQUARE WAVE GENERATOR

The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by the output swing of the op amp A-1 and R1/R2 sets the triangle amplitude. The frequency of oscillation in either case is

$$f = \frac{1}{4RC} \cdot \frac{R2}{R1}$$
 (3-23)

The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical.

The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open loop, there is no need for compensation. The triangle-generating amplifier must be compensated.The NE5535 device can be used as well, except for the lower frequency response.

