Signetics

Linear Products

DESCRIPTION

The NE/SE538 is a new generation operational amplifier featuring high slew rates combined with improved input characteristics. Internally-compensated for gains of 5 or larger, the SE538 offers guaranteed minimum slew rates of $40V/\mu s$ or larger. Industry standard pinout and internal compensation allow the user to upgrade system performance by directly replacing general purpose amplifiers, such as 748, 101A and 741.

NE/SE538 High Slew Rate Op Amp

Product Specification

FEATURES

- 2mV typical input offset voltage
- 80nA max input offset current
- Short-circuit protected
- Offset null capability
- Large common-mode and differential voltage ranges
- 60V/μs typical slew rate (gain of +5, -4 min)
- 6MHz typical gain bandwidth product (gain +5, -4 minimum)
- Internal frequency compensation (gain of +5, ~4 minimum)
- Pinout: standard single op amp (748, 101A, 741, etc).

PIN CONFIGURATIONS

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

High Slew Rate Op Amp

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic SO	0 to +70°C	NE538D
8-Pin Plastic DIP	0 to +70°C	NE538N
8-Pin Ceramic DIP	0 to +70°C	NE538FE
8-Pin Plastic DIP	-55°C to +125°C	SE538N
8-Pin Ceramic DIP	-55°C to +125°C	SE538FE

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage SE military grade NE commercial grade	± 22 ± 18	v v
PD	Maximum power dissipation, T _A =25°C (still air) ¹ D package F package N package	790 830 1200	mW mW mW
	Differential input voltage	± 30	v
V _{IN}	Input voltage ²	± 15	v
T _A	Operating ambient temperature range SE military grade NE commercial grade	-55 to +125 0 to 70	ပံ ပံ
	Output short-circuit ³	indefinite	
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1. Derate above 25°C, at the following rates:

D package at 6.3mW/°C

F package at 6.7mW/°C

N package at 9.6mW/°C

2. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.

 Short-circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. **NE/SE538**

-

High Slew Rate Op Amp

NE/SE538

SYMBOL	PARAMETER	TEST CONDITIONS	SE538			NE538			
			Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Input offset voltage	$\label{eq:Rs} \begin{split} & R_{S} \leq 10 \mathrm{k} \Omega \\ & R_{S} \leq 10 \mathrm{k} \Omega, \text{ over temp.} \end{split}$		0.7	4.0 5.0		2.0	6.0 7.0	mV mV
ΔV _{OS}	Input offset voltage drift	$R_{S} = 0\Omega$, over temp.		4.0			6.0		μV/°C
los Δlos	Input offset current	Over temp. Over temp.		5 25	20 40		15 40	40 80	nA nA pA/°C
l _B Δl _B	Input current	Over temp. Over temp.		45 50	80 200		65 80	150 200	nA nA pA/°C
V _{CM}	Input common-mode voltage range		± 12	± 13		± 12	± 13		v
CMRR	Common-mode rejection ratio	$R_S \le 10k\Omega$, over temp.	70	90		70	90		dB
PSRR	Power supply rejection ratio	$R_{S} \leq 10k\Omega$, over temp.		30	150		30	150	<i>μ</i> V/V
R _{IN}	Input resistance		3	10		1	6		MΩ
A _{VOL}	Large-signal voltage gain	$ \begin{split} \textbf{R}_{L} &\geq 2k\Omega, \ , \ \textbf{V}_{OUT} = \pm \ \textbf{10V} \\ & \text{Over temp.}, \\ \textbf{R}_{L} &\geq 2k\Omega, \ \textbf{V}_{OUT} = \pm \ \textbf{10V} \end{split} $	50 25	200		50 25	200		V/mV V/mV
Vout	Output voltage swing	$\begin{array}{l} \text{Over temp., } R_{L} \geq 2 k \Omega \\ \text{Over temp., } R_{L} \geq 10 k \Omega \end{array}$	± 10 ± 12	± 13 ± 14		± 10 ± 12	± 13 ± 14		v v
lcc	Supply current	Over temp.		2 2.2	3 3.6		2 2.2	3 3.6	mA mA
PD	Power dissipation	Over temp.		60 66	90 108		60 66	90 108	mW mW
I _{SC}	Output short-circuit current		10	25	50	10	25	50	mA
ROUT	Output resistance			100			100		Ω

DC ELECTRICAL CHARACTERISTICS T_A = 25°C, V_S = \pm 15V, unless otherwise specified.

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		SE538			NE538		
			Min	Тур	Max	Min	Тур	Max	UNIT
GBW	Gain bandwidth product (Gain +5, -4 minimum)			6			6		MHz
t _R	Transient response Small-signal rise time Small-signal overshoot			0.25 6			0.25 6		μs %
ts	Settling time	To 0.1%	Τ	1.2			1.2		μs
SR	Slew rate	$\begin{array}{l} \mbox{Minimum gain} = 5 \\ \mbox{Noninverting } R_L \geq 2k\Omega \end{array}$	40	60			60		V/µs
VNOISE	Input noise voltage	f = 1kHz, T _A = 25°C		30			30		nV/√Hz

NE/SE538

High Slew Rate Op Amp

TYPICAL PERFORMANCE CHARACTERISTICS

High Slew Rate Op Amp

NE/SE538

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

NE/SE538

High Slew Rate Op Amp

TEST LOAD CIRCUITS

High Slew Rate Op Amp

NE/SE538

APPLICATIONS

The internal frequency compensation is designed for a minimum inverting gain of 4 and a minimum non-inverting gain of 5. Below these gains the NE538 will be unstable and will need external compensation (see Figures 1 and 2).

The higher slew rate of the NE538 has made this device guite appealing for high-speed designs, and the fact that it has a standard pinout will allow it to be used to upgrade existing systems that now use the µA741 or µ748.

Equations:

$$f_{LAG} = \frac{1 (6MHz)}{10} = \frac{1}{2^{\pi}R_{L}C_{L}}$$

$$f_{LEAD} = 6MHz = \frac{1}{2^{\pi}R_FC_F}$$

VOLTAGE COMPARATOR

Inexpensive voltage comparators with only modest parameters are often needed. The op amp is often used in the configuration because the high gain provides good selectivity. Figure 6 shows a circuit usable with most any op amp. The zener is selected for the output voltage required (5.1 volt for TTL), and the resistor provides some current protection to the op amp output structure. VBEE can be any voltage within the wide common-mode range of the amplifier - another advantage of using op amps for comparators.

