- Low Supply Voltage Range 1.8 V to 3.6 V
- Ultralow-Power Consumption:
 - Active Mode: 200 μA at 1 MHz, 2.2 V
 - Standby Mode: 0.8 μA
 - Off Mode (RAM Retention): 0.1 μ A
- Wake-Up From Standby Mode in less than 6 μs
- 16-Bit RISC Architecture, 125 ns Instruction Cycle Time
- Basic Clock Module Configurations:
 - Various Internal Resistors
 - Single External Resistor
 - 32 kHz Crystal
 - High Frequency Crystal
 - Resonator
 - External Clock Source
- 16-Bit Timer_A With Three Capture/Compare Registers
- Serial Onboard Programming, No External Programming Voltage Needed

Family Members Include:

MSP430F110: 1KB + 128B Flash Memory

128B RAM

MSP430F112: 4KB + 256B Flash Memory

256B RAM

- Available in a 20-Pin Plastic Small-Outline Wide Body (SOWB) Package and 20-Pin Plastic Thin Shrink Small-Outline Package (TSSOP)
- For Complete Module Descriptions, Refer to the MSP430x1xx Family User's Guide, Literature Number SLAU049

DW OR PW PACKAGE (TOP VIEW)

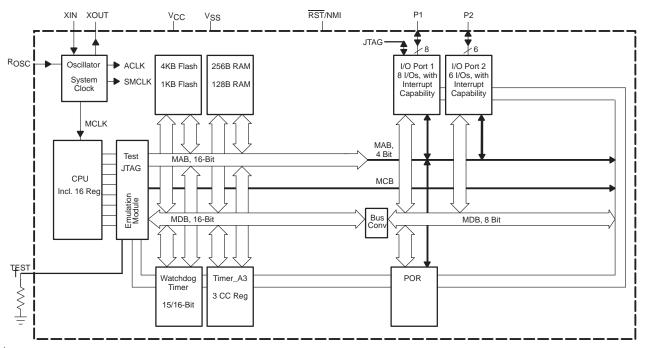
TEST VCC P2.5/R _{OSC} VSS VSS VOUT/TCLK XIN RST/NMI P2.0/ACLK P2.1/INCLK	10 2 3 4 5 6 7 8	20 19 18 17 16 15 14 13	P1.7/TA2/TDO/TDI P1.6/TA1/TDI P1.5/TA0/TMS P1.4/SMCLK/TCK P1.3/TA2 P1.2/TA1 P1.1/TA0 P1.0/TACLK P2.4/TA2

description

The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.

The MSP430F11x series is an ultralow-power mixed signal microcontroller with a built in 16-bit timer and fourteen I/O pins.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data and display them or transmit them to a host system. Stand alone RF sensor front-end is another area of application.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

	PACKAGEI	DEVICES	
TA	PLASTIC 20-PIN SOWB (DW)	PLASTIC 20-PIN TSSOP (PW)	
-40°C to 85°C	MSP430F110IDW MSP430F112IDW	MSP430F110IPW MSP430F112IPW	

functional block diagram

[†] A pulldown resistor of 30 k Ω is needed on F11x devices.

Terminal Functions

TERMINAL NAME	NO.	I/O	DESCRIPTION
P1.0/TACLK	13	I/O	General-purpose digital I/O pin/Timer_A, clock signal TACLK input
P1.1/TA0	14	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1	15	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2	16	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK/TCK	17	I/O	General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming and test
P1.5/TA0/TMS	18	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for device programming and test
P1.6/TA1/TDI	19	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal
P1.7/TA2/TDO/TDI [†]	20	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input during programming
P2.0/ACLK	8	I/O	General-purpose digital I/O pin/ACLK output
P2.1/INCLK	9	I/O	General-purpose digital I/O pin/Timer_A, clock signal at INCLK
P2.2/TA0	10	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0B input, compare: Out0 output/BSL receive
P2.3/TA1	11	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1B input, compare: Out1 output
P2.4/TA2	12	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output
P2.5/ROSC	3	I/O	General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency
RST/NMI	7	- 1	Reset or nonmaskable interrupt input
TEST	1	- 1	Selects test mode for JTAG pins on Port1. Must be tied low with less than 30 k Ω .
VCC	2		Supply voltage
V _{SS}	4		Ground reference
XIN	6	I	Input terminal of crystal oscillator
XOUT/TCLK	5	I/O	Output terminal of crystal oscillator or test clock input

[†] TDO or TDI is selected via JTAG instruction.

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.


The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	S	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode AM;
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 1 (LPM1);
 - CPU is disabled
 ACLK and SMCLK remain active. MCLK is disabled
 DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator remains enabled ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled
 ACLK is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the memory with an address range of 0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog	WDTIFG (Note1) KEYV (Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator fault Flash memory access violation	NMIIFG (Notes 1 and 5) OFIFG (Notes 1 and 5) ACCVIFG (Notes 1 and 5)	(non)-maskable, (non)-maskable, (non)-maskable	0FFFCh	14
			0FFFAh	13
			0FFF8h	12
			0FFF6h	11
Watchdog timer	WDTIFG	maskable	0FFF4h	10
Timer_A3	TACCR0 CCIFG (Note 2)	maskable	0FFF2h	9
Timer_A3	TACCR1 and TACCR2 CCIFGs, TAIFG (Notes 1 and 2)	maskable	0FFF0h	8
			0FFEEh	7
			0FFECh	6
			0FFEAh	5
			0FFE8h	4
I/O Port P2 (eight flags – see Note 3)	P2IFG.0 to P2IFG.7 (Notes 1 and 2)	maskable	0FFE6h	3
I/O Port P1 (eight flags)	P1IFG.0 to P1IFG.7 (Notes 1 and 2)	maskable	0FFE4h	2
			0FFE2h	1
			0FFE0h	0, lowest

NOTES: 1. Multiple source flags

- 2. Interrupt flags are located in the module
- 3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0-5) are implemented on the '11x devices.
- 4. Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.
- 5. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.

special function registers

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

Address	7	6	5	4	3	2	1	0	_
0h			ACCVIE	NMIIE			OFIE	WDTIE	l
'			rw-0	rw-0			rw-0	rw-0	
WIDTIE	\Mataba	og Timor into	errupt opoble	Inactive if	votobdog me	do io coloote	ad Active if N	Matabalan Ti	~

WDTIE: Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer

is configured in interval timer mode.

OFIE: Oscillator fault enable

NMIIE: Nonmaskable interrupt enable

ACCVIE: Flash access violation interrupt enable

Address	7	6	5	4	3	2	1	0
01h								

interrupt flag register 1 and 2

WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation.

Reset on V_{CC} power-up or a reset condition at RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI-pin

Address	7	6	5	4	3	2	1	0
03h								

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is Reset or Set by PUC.rw-(0,1): Bit can be read and written. It is Reset or Set by POR.

SFR bit is not present in device.

memory organization

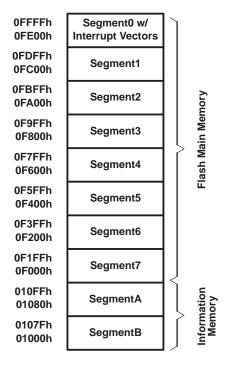
	MSP430F110
FFFFh FFE0h	Int. Vector
FFDFh	1 KB Flash
FC00h	Segment0,1
10FFh	128B Flash
1080h	SegmentA
0FFFh	1 KB
0C00h	Boot ROM
027Fh 0200h	128B RAM
01FFh	16b Per.
0100h	1021011
00FFh 0010h 000Fh	8b Per.
	SFR
0000h	

MSP430F112						
FFFFh FFE0h	Int. Vector					
FFDFh	4 KB Flash Segment0-7	Main Memory				
F000h						
10FFh	2×128B Flash	Information Memory				
1000h	SegmentA,B	Welliory				
0FFFh	1 KB Boot ROM					
0C00h						
02FFh						
	256B RAM					
0200h						
01FFh	16b Per.					
0100h						
00FFh	8b Per.					
0010h						
000Fh	SFR					
0000h		l				

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report *Features of the MSP430 Bootstrap Loader*, Literature Number SLAA089.

BSL Function	DW & PW Package Pins
Data Transmit	14 - P1.1
Data Receive	10 - P2.2


flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0-n.
 Segments A and B are also called information memory.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

flash memory (continued)

NOTE: All segments not implemented on all devices.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the *MSP430x1xx Family User's Guide*, literature number SLAU049.

oscillator and system clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μ s. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

digital I/O

There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external pins):

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of port P2.
- Read/write access to port-control registers is supported by all instructions.

NOTE:

Six bits of port P2, P2.0 to P2.5, are available on external pins – but all control and data bits for port P2 are implemented.

watchdog timer

The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

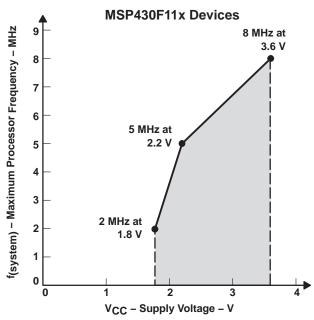
		Timer_A3 Sig	gnal Connections		
Input Pin Number	Device Input Signal	Module Input Name	Module Block	Module Output Signal	Output Pin Number
13 - P1.0	TACLK	TACLK			
	ACLK	ACLK	_		
	SMCLK	SMCLK	Timer	NA	
9 - P2.1	INCLK	INCLK			
14 - P1.1	TA0	CCI0A			14 - P1.1
10 - P2.2	TA0	CCI0B	0000	TAO	18 - P1.5
	DVSS	GND	CCR0		10 - P2.2
	DVCC	Vcc			
15 - P1.2	TA1	CCI1A			15 - P1.2
11 - P2.3	TA1	CCI1B	0004		19 - P1.6
	DV _{SS}	GND	CCR1	TA1	11 - P2.3
	DV _{CC}	Vcc			
16 - P1.3	TA2	CCI2A			16 - P1.3
	ACLK (internal)	CCI2B	0000	TA2	20 - P1.7
	DVSS	GND	CCR2		12 - P2.4
	DVCC	Vcc			

peripheral file map

PER	IPHERALS WITH WORD ACCES	S	
Timer_A	Reserved Reserved Reserved Reserved Capture/compare register Capture/compare register Capture/compare register Timer_A register Reserved Reserved Reserved Reserved Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector	TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV	017Eh 017Ch 017Ah 0178h 0176h 0174h 0172h 0170h 016Eh 016Ch 016Ah 0168h 0166h 0164h 0162h 0160h 012Eh
Flash Memory	Flash control 3 Flash control 2 Flash control 1	FCTL3 FCTL2 FCTL1	012Ch 012Ah 0128h
Watchdog	Watchdog/timer control	WDTCTL	0120h
PER	IPHERALS WITH BYTE ACCES	S	
Basic Clock	Basic clock sys. control2 Basic clock sys. control1 DCO clock freq. control	BCSCTL2 BCSCTL1 DCOCTL	058h 057h 056h
Port P2	Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input	P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN	02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h
Port P1	Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input	P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN	026h 025h 024h 023h 022h 021h 020h
Special Function	SFR interrupt flag2 SFR interrupt flag1 SFR interrupt enable2 SFR interrupt enable1	IFG2 IFG1 IE2 IE1	003h 002h 001h 000h

absolute maximum ratings†

Voltage applied at V _{CC} to V _{SS}	
Voltage applied to any pin (referenced to V _{SS})	0.3 V to V _{CC} +0.3 V
Diode current at any device terminal	±2 mA
Storage temperature, T _{stq} (unprogrammed device)	–55°C to 150°C
Storage temperature, T _{stg} (programmed device)	–40°C to 85°C


[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS.

recommended operating conditions

			MIN	NOM	MAX	UNITS
Supply voltage during program	execution, V _{CC} (see Note 1)		1.8		3.6	V
Supply voltage during program	/erase flash memory, V _{CC}		2.7		3.6	V
Supply voltage, V _{SS}			0		V	
Operating free-air temperature range, T _A –40 85		85	°C			
	LF mode selected, XTS=0	Watch crystal		32768		Hz
LFXT1 crystal frequency, f(LFXT1) (see Note 2)	O V	1.11-				
(LFXII) (See Note 2)	X11 mode selected, X1S=1	Crystal	1.8 3.6 \\ 2.7 3.6 \\ 0 \\ -40 85 \\ rystal 32768 H resonator 450 8000 \\ 1000 8000 \\ 1000 8000 \\ 2.2 V dc 5 MI	KHZ		
		V _{CC} = 1.8 V	dc		2	MHz
Processor frequency f(system)	Processor frequency f _(system) (MCLK signal)		dc		5	MHz
		V _{CC} = 3.6 V	dc		8	MHz

NOTES: 1. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 M Ω from XOUT to VSS when VCC <2.5 V. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 4 MHz at $V_{CC} \ge 2.2 \text{ V}$. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 8 MHz at V_{CC} ≥ 2.8 V.

2. The LFXT1 oscillator in LF-mode requires a watch crystal. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or crystal.

NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.7 V.

Figure 1. Frequency vs Supply Voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

supply current (into V_{CC}) excluding external current

PARAMETER		TEST CONDITIONS		MIN TYP MAX		UNIT	
		$T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$	V _{CC} = 2.2 V		200	250	
I(AM)	Active mode	f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz	V _{CC} = 3 V		300	350	μΑ
·(Alvi)	7.04.70040	$T_A = -40^{\circ}C + 85^{\circ}C,$	V _{CC} = 2.2 V		1.6	3	
		f(MCLK) = f(SMCLK) = f(ACLK) = 4096 Hz	V _{CC} = 3 V		3	4.3	μΑ
1,,	Low power mode (LDMO)	$T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$	V _{CC} = 2.2 V		32	45	
I(CPUOff)	Low-power mode, (LPM0)	f(MCLK) = 0, $f(SMCLK) = 1$ MHz, f(ACLK) = 32,768 Hz	V _{CC} = 3 V		55	70	μΑ
	Low power mode (LDMS)	$T_A = -40^{\circ}C + 85^{\circ}C$	V _{CC} = 2.2 V		11	14	
I(LPM2)	I(LPM2) Low-power mode, (LPM2) f	f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 0	V _{CC} = 3 V		17	22	μΑ
		T _A = -40°C			0.8	0.8 1.2	
		T _A = 25°C	V _{CC} = 2.2 V		0.7	1	μΑ
10	Low power made (LDM2)	T _A = 85°C			1.6	2.3	
I(LPM3)	Low-power mode, (LPM3)	$T_A = -40^{\circ}C$			1.8	2.2	
		T _A = 25°C	V _{CC} = 3 V		1.6	1.9	μА
		T _A = 85°C]		2.3	3.4	
		$T_A = -40^{\circ}C$ $f_{(MCLK)} = 0 \text{ MHz}$			0.1	0.5	
I(LPM4)	Low-power mode, (LPM4)	$T_{\Delta} = 25^{\circ}C$ $f(SMCLK) = 0 MHz$	V _{CC} = 2.2 V/3 V		0.1	0.5	μΑ
•		$T_A = 85^{\circ}C$ $f(ACLK) = 0 \text{ Hz}, SCG0 = 1$			0.8	1.9	

NOTE: All inputs are tied to 0 V or V_{CC}. Outputs do not source or sink any current.

current consumption of active mode versus system frequency, F version

 $I_{AM} = I_{AM[1 \text{ MHz}]} \times f_{system} [MHz]$

current consumption of active mode versus supply voltage, F version

 $I_{AM} = I_{AM[3\ V]} + 120\ \mu A/V \times (V_{CC} - 3\ V)$

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Schmitt-trigger inputs Port 1 to Port P2; P1.0 to P1.7, P2.0 to P2.5

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V	Desitive asian input threehold veltage	V _{CC} = 2.2 V	1.1	1.3	V
V _{IT+} Positive-going input threshold voltage	V _{CC} = 3 V	1.5	1.8	V	
\/	No mosti co modinari inmestatione als contrares	V _{CC} = 2.2 V	0.4	0.9	V
V_{IT-}	Negative-going input threshold voltage	V _{CC} = 3 V	.90	1.2	V
V	Input voltage hyptoresis (V———V——)	V _{CC} = 2.2 V	0.3	1	V
V _{hys}	Input voltage hysteresis, (V _{IT+} – V _{IT-})	V _{CC} = 3 V	0.5	1.4	ľ

standard inputs - RST/NMI; TCK, TMS, TDI

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
VIL	Low-level input voltage	Vaa 22V/2V	Vss	V _{SS} +0.0	V
V_{IH}	High-level input voltage	V _{CC} = 2.2 V / 3 V	0.8×V _{CC}	VCC	V

inputs Px.x, TAx

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		2.2 V/3 V 1.5			cycle		
t(int)	External interrupt timing	Port P1, P2: P1.x to P2.x, External trigger signal for the interrupt flag. (see Note 1)	2.2 V 62				
, ,		lor the interrupt mag, (see Note 1)	3 V	50			ns
		2.2 V/3 V	1.5			cycle	
t(cap)	Timer_A, capture timing	TA0, TA1, TA2 (see Note 2)	2.2 V	62			
,			3 V	50			ns
4	Timer_A clock frequency	TACLK INCLKA A	2.2 V			8	N.41.1-
f(TAext)	externally applied to pin	TACLK, INCLK $t(H) = t(L)$	3 V			10	MHz
,	T		2.2 V			8	
f(TAint)	Timer_A clock frequency	SMCLK or ACLK signal selected	3 V			10	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum t_(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t_(int). Both the cycle and timing specifications must be met to ensure the flag is set. t_(int) is measured in MCLK cycles.

The external capture signal triggers the capture event every time the mimimum t_(Cap) cycle and time parameters are met. A capture
may be triggered with capture signals even shorter than t_(Cap). Both the cycle and timing specifications must be met to ensure a
correct capture of the 16-bit timer value and to ensure the flag is set.

leakage current

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	High the advantage of the second	Port P1: P1.x, $0 \le x \le 7$ (see Notes 1 and 2)	$V_{CC} = 2.2 \text{ V/3 V},$			±50	- 4
Ilkg(Px.x)	High-impedance leakage current	Port P2: P2.x, $0 \le x \le 5$ (see Notes 1 and 2)	$V_{CC} = 2.2 \text{ V/3 V},$			±50	nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional pullup or pulldown resistor.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

outputs Port 1 to Port 2; P1.0 to P1.7, P2.0 to P2.5

	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		$I_{(OHmax)} = -1.5 \text{ mA}$.,	See Note 1	V _{CC} -0.25	Vcc	
1 ,,	High-level output voltage	$I_{(OHmax)} = -6 \text{ mA}$	$V_{CC} = 2.2 \text{ V}$	See Note 2	VCC-0.6	Vcc	V
VOH	Port 1	$I_{(OHmax)} = -1.5 \text{ mA}$	V 2V	See Note 1	V _{CC} -0.25	Vcc	V
		$I_{(OHmax)} = -6 \text{ mA}$	vCC = 3 v	See Note 2	VCC-0.6	Vcc	
		$I_{(OHmax)} = -1 \text{ mA}$	V 00V	See Note 3	V _{CC} -0.25	V _{CC}	
	High-level output voltage	$I_{(OHmax)} = -3.4 \text{ mA}$	ACC = 5.5 A	See Note 3	V _{CC} -0.6	V _{CC}	v
VOH	Port 2	$I_{(OHmax)} = -1 \text{ mA}$., .,	See Note 3	V _{CC} -0.25	V _{CC}	V
		$\frac{I(OHmax) = -1.5 \text{ mA}}{I(OHmax) = -6 \text{ mA}} V_{CC} = 3 \text{ M}$ $\frac{I(OHmax) = -1 \text{ mA}}{I(OHmax) = -3.4 \text{ mA}} V_{CC} = 2.2 \text{ m}$ $\frac{I(OHmax) = -3.4 \text{ mA}}{I(OHmax) = -3.4 \text{ mA}} V_{CC} = 3 \text{ M}$ $\frac{I(OHmax) = -3.4 \text{ mA}}{I(OHmax) = 1.5 \text{ mA}} V_{CC} = 2.2 \text{ m}$ $\frac{I(OLmax) = 1.5 \text{ mA}}{I(OLmax) = 1.5 \text{ mA}} V_{CC} = 2.2 \text{ m}$	ACC = 3 A	See Note 3	VCC-0.6	Vcc	
		$I_{(OLmax)} = 1.5 \text{ mA}$.,	See Note 1	VSS	V _{SS} +0.25	
1 ,,	Low-level output voltage	I _(OLmax) = 6 mA	VCC = 2.2 V	See Note 2	VSS	V _{SS} +0.6	V
VOL	VOL Port 1 and Port 2	$I_{(OLmax)} = 1.5 \text{ mA}$	V 2.V	See Note 1	VSS	V _{SS} +0.25	V
		I _(OLmax) = 6 mA	VCC = 3 V	See Note 2	VSS	V _{SS} +0.6	

- NOTES: 1. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified.
 - 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.
 - 3. One output loaded at a time.

outputs P1.x, P2.x, TAx

	PARAMETER	TEST CO	NDITIONS	VCC	MIN	TYP	MAX	UNIT
f(P20)		P2.0/ACLK, $C_L = 20 pF$		2.2 V/3 V			fSystem	
f(TAx)	Output frequency	TA0, TA1, TA2, C _L = 20 pF Internal clock source, SMC (See Note 1)		2.2 V/3 V	dc		fSystem	MHz
			fSMCLK = fLFXT1 = fXT1		40%		60%	
			fSMCLK = fLFXT1 = fLF	2.2 V/3 V	35%		65%	
		P1.4/SMCLK, C _L = 20 pF	fSMCLK = fLFXT1/n	2.2 7/0 7	50%– 15 ns	50%	50%+ 15 ns	
t(Xdc)	Duty cycle of O/P frequency		fSMCLK = fDCOCLK	2.2 V/3 V	50%– 15 ns	50%	50%+ 15 ns	
			$f_{P20} = f_{LFXT1} = f_{XT1}$		40%		60%	
		P2.0/ACLK, C _L = 20 pF	$f_{P20} = f_{LFXT1} = f_{LF}$	2.2 V/3 V	30%		70%	
			$f_{P20} = f_{LFXT1/n}$			50%		
t(TAdc)		TA0, TA1, TA2, $C_L = 20 \text{ pF}$,	Duty cycle = 50%	2.2 V/3 V		0	±50	ns

NOTE 1: The limits of the system clock MCLK have to be met. MCLK and SMCLK can have different frequencies.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

PUC/POR

	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
t(POR_Delay)					150	250	μs
		T _A = -40°C		1.4		1.8	V
^V POR	POR	T _A = 25°C	V = = = 2 2 V/2 V	1.1		1.5	V
		T _A = 85°C	$V_{CC} = 2.2 \text{ V/3 V}$	0.8		1.2	V
V _(min)				0		0.4	V
t(reset)	PUC/POR	Reset is accepted internally		2			μs

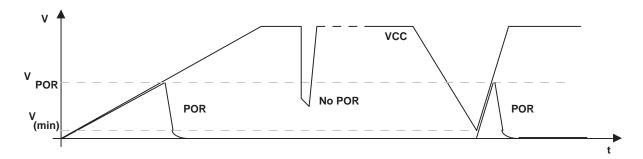


Figure 2. Power-On Reset (POR) vs Supply Voltage

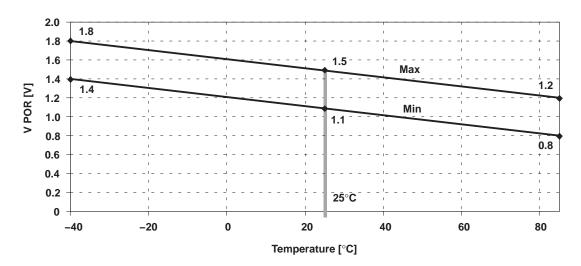


Figure 3. V_{POR} vs Temperature

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

wake-up from lower power modes (LPMx)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t(LPM0)		V _{CC} = 2.2 V/3 V		100		
t(LPM2)		V _{CC} = 2.2 V/3 V		100		ns
		$f(MCLK) = 1 MHz$, $V_{CC} = 2.2 V/3 V$			6	
t(LPM3)	Balancian (and Nata 4)	$f(MCLK) = 2 MHz, V_{CC} = 2.2 V/3 V$			6	μs
	Delay time (see Note 1)	$f_{(MCLK)} = 3 \text{ MHz}, V_{CC} = 2.2 \text{ V/3 V}$			6	
		$f(MCLK) = 1 MHz, V_{CC} = 2.2 V/3 V$			6	
t(LPM4)		$f(MCLK) = 2 MHz, V_{CC} = 2.2 V/3 V$			6	μs
		$f(MCLK) = 3 MHz, V_{CC} = 2.2 V/3 V$			6	

NOTE 1: Parameter applicable only if DCOCLK is used for MCLK.

RAM

	PARAMETER	MIN	TYP	MAX	UNIT
V(RAMh)	CPU halted (see Note 1)	1.6			V

NOTE 1: This parameter defines the minimum supply voltage V_{CC} when the data in the program memory RAM remains unchanged. No program execution should happen during this supply voltage condition.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

DCO

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
,	D 0 000 0 MOD 0 DOOD 0 T 0500	V _{CC} = 2.2 V	0.08	0.12	0.15	
f(DCO03)	$R_{Sel} = 0$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	VCC = 3 V	0.08	0.13	0.16	MHz
£	D . 4 DCO 2 MOD 0 DCOD 0 T. 25°C	V _{CC} = 2.2 V	0.14	0.19	0.23	MHz
f(DCO13)	$R_{\text{Sel}} = 1$, DCO = 3, MOD = 0, DCOR = 0, $T_{\text{A}} = 25^{\circ}\text{C}$	V _{CC} = 3 V	0.14	0.18	0.22	IVITZ
f(DOOON)	$R_{Sel} = 2$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	$V_{CC} = 2.2 \text{ V}$	0.22	0.30	0.36	MHz
f(DCO23)	NSE = 2, DOO = 3, MOD = 3, DOON = 3, TA = 23 0	VCC = 3 V	0.22	0.28	0.34	IVII IZ
f(DOOOS)	$R_{Sel} = 3$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25^{\circ}C$	V _{CC} = 2.2 V	0.37	0.49	0.59	MHz
f(DCO33)	NSE = 3, DCO = 3, WOD = 0, DCOR = 0, TA = 23 C	$V_{CC} = 3 V$	0.37	0.47	0.56	IVII IZ
f(200 to)	B 4 DCC - 2 MOD - 0 DCCB - 0 T 25°C	V _{CC} = 2.2 V	0.61	0.77	0.93	MHz
f(DCO43)	$R_{Sel} = 4$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	V _{CC} = 3 V	0.61	0.75	0.9	IVITIZ
.	D . F DCO 2 MOD 0 DCOD 0 T. 25°C	V _{CC} = 2.2 V	1	1.2	1.5	MHz
f(DCO53)	$R_{Sel} = 5$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	VCC = 3 V	1	1.3	1.5	IVIIIZ
.	D . C DCC 2 MOD 0 DCCD 0 T. 050C	V _{CC} = 2.2 V	1.6	1.9	2.2	MHz
f(DCO63)	$R_{Sel} = 6$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	V _{CC} = 3 V	1.69	2.0	2.29	IVIHZ
.	D . 7 DCO 2 MOD 0 DCOD 0 T. 0500	V _{CC} = 2.2 V	2.4	2.9	3.4	NAL I-
f(DCO73)	$R_{Sel} = 7$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	V _{CC} = 3 V	2.7	3.2	3.65	MHz
	D 7 D00 7 M0D 0 D00D 0 7 0500	V _{CC} = 2.2 V	4	4.5	4.9	
f(DCO77)	$R_{Sel} = 7$, DCO = 7, MOD = 0, DCOR = 0, $T_A = 25$ °C	V _{CC} = 3 V	4.4	4.9	5.4	MHz
f(DCO47)	R _{Sel} = 4, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V/3 V	F _{DCO40} x1.7	F _{DCO40} x2.1	F _{DCO40} x2.5	MHz
S _(Rsel)	S _R = f _{Rsel+1} /f _{Rsel}	V _{CC} = 2.2 V/3 V	1.35	1.65	2	
S _(DCO)	S _{DCO} = f _{DCO+1} /f _{DCO}	V _{CC} = 2.2 V/3 V	1.07	1.12	1.16	ratio
	Temperature drift, R _{sel} = 4, DCO = 3, MOD = 0	V _{CC} = 2.2 V	-0.31	-0.36	-0.40	21.10
Dt	(see Note 1)	V _{CC} = 3 V	-0.33	-0.38	-0.43	%/°C
DV	Drift with V _{CC} variation, R _{Sel} = 4, DCO = 3, MOD = 0 (see Note 1)	V _{CC} = 2.2 V/3 V	0	5	10	%/V

NOTE 1: These parameters are not production tested.

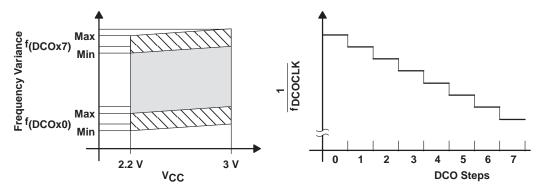


Figure 4. DCO Characteristics

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

- Individual devices have a minimum and maximum operation frequency. The specified parameters for f_(DCOx0) to f_(DCOx7) are valid for all devices.
- All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.
- DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S_{DCO}.
- Modulation control bits MOD0 to MOD4 select how often $f_{(DCO+1)}$ is used within the period of 32 DCOCLK cycles. The frequency $f_{(DCO)}$ is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{32 \times f_{(DCO)} \times f_{(DCO+1)}}{MOD \times f_{(DCO)} + (32 - MOD) \times f_{(DCO+1)}}$$

crystal oscillator, LFXT1

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
		XTS=0; LF mode selected. V _{CC} = 2.2 V / 3 V	12	
C _{XIN}	Input capacitance	XTS=1; XT1 mode selected. $V_{CC} = 2.2 \text{ V} / 3 \text{ V} \text{ (Note 1)}$	2	pF
0	Output associtores	XTS=0; LF mode selected. VCC = 2.2 V / 3 V	12	
CXOUT	Output capacitance	XTS=1; XT1 mode selected. $V_{CC} = 2.2 \text{ V} / 3 \text{ V} \text{ (Note 1)}$	2	pF
V _{IL}	Input levels at XIN	V _{CC} = 2.2 V/3 V (see Note 2)	V _{SS} 0.2×V _{CC}	V
VIH	IIIput ieveis at Aliv	VCC = 2.2 V/3 V (See Note 2)	0.8×V _{CC} V _{CC}	

NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

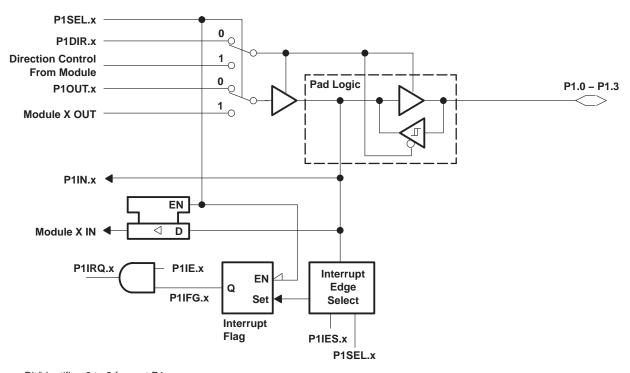
Flash Memory

	PARAMETER	TEST CONDITIONS	VCC	MIN	NOM	MAX	UNIT
VCC(PGM/ ERASE)	Program and Erase supply voltage			2.7		3.6	٧
fFTG	Flash Timing Generator frequency			257		476	kHz
IPGM	Supply current from DV _{CC} during program		2.7 V/ 3.6 V		3	5	mA
IERASE	Supply current from DV _{CC} during erase		2.7 V/ 3.6 V		3	5	mA
tCPT	Cumulative program time	see Note 1	2.7 V/ 3.6 V			4	ms
tCMErase	Cumulative mass erase time	see Note 2	2.7 V/ 3.6 V	200			ms
	Program/Erase endurance			10 ⁴	10 ⁵		cycles
^t Retention	Data retention duration	T _J = 25°C		100			years
t _{Word}	Word or byte program time				35		
^t Block, 0	Block program time for 1 St byte or word				30		
^t Block, 1-63	Block program time for each additional byte or word	and Nata O			21		
^t Block, End	Block program end-sequence wait time	see Note 3			6		^t FTG
t _{Mass} Erase	Mass erase time				5297		
tSeg Erase	Segment erase time				4819	·	

- NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.
 - 2. The mass erase duration generated by the flash timing generator is at least 11.1ms (= 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).
 - 3. These values are hardwired into the Flash Controller's state machine ($t_{FTG} = 1/f_{FTG}$).

JTAG Interface

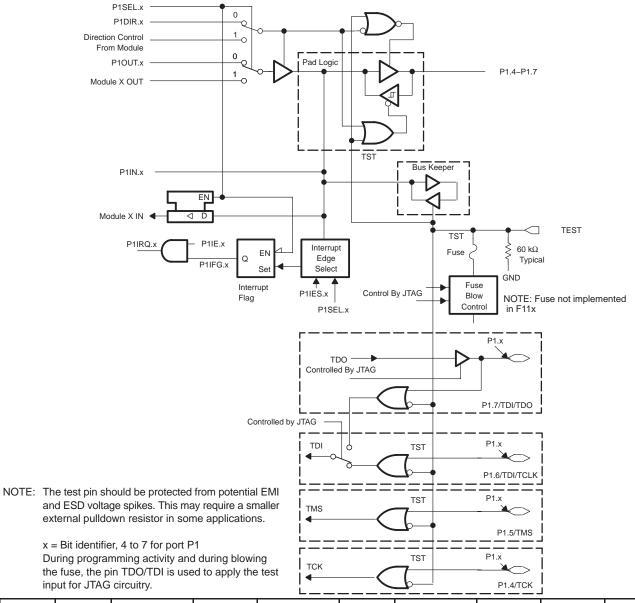
	PARAMETER	TEST CONDITIONS	vcc	MIN	NOM	MAX	UNIT
,	TOW is not for more than	and National	2.2 V	0		5	MHz
TCK	TCK input frequency	see Note 1	3 V	0		10	MHz
R _{Internal}	Internal pull-up resistance on TMS, TCK, TDI/TCLK	see Note 2	2.2 V/ 3 V	25	60	90	kΩ


NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.

input/output schematic

Port P1, P1.0 to P1.3, input/output with Schmitt-trigger

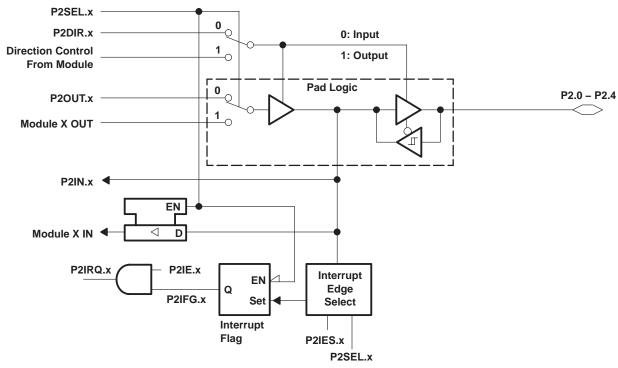

NOTE: x = Bit/identifier, 0 to 3 for port P1

PnSel.x	PnDIR.x	Direction control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.0	P1DIR.0	P1DIR.0	P1OUT.0	V _{SS}	P1IN.0	TACLK [†]	P1IE.0	P1IFG.0	P1IES.0
P1Sel.1	P1DIR.1	P1DIR.1	P1OUT.1	Out0 signal†	P1IN.1	CCI0A†	P1IE.1	P1IFG.1	P1IES.1
P1Sel.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 signal [†]	P1IN.2	CCI1A [†]	P1IE.2	P1IFG.2	P1IES.2
P1Sel.3	P1DIR.3	P1DIR.3	P1OUT.3	Out2 signal†	P1IN.3	CCI2A [†]	P1IE.3	P1IFG.3	P1IES.3

[†] Signal from or to Timer_A

input/output schematic (continued)

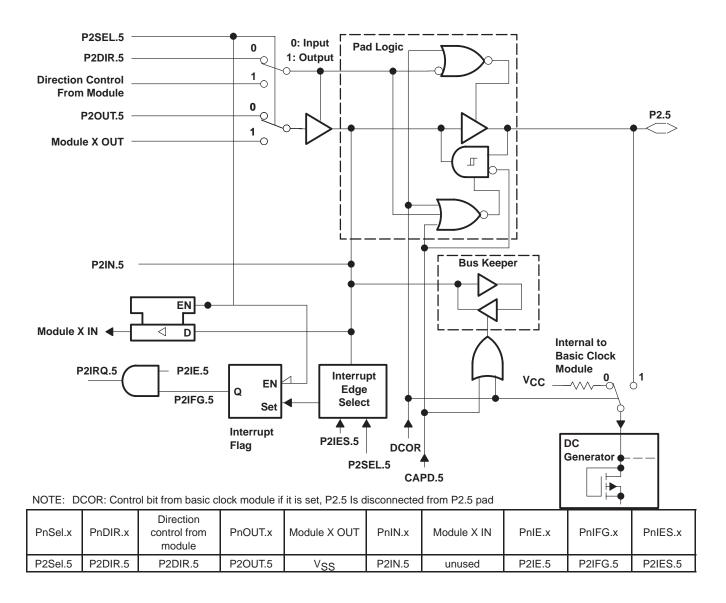
Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features


PnSel.x	PnDIR.x	Direction control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.4	P1DIR.4	P1DIR.4	P1OUT.4	SMCLK	P1IN.4	unused	P1IE.4	P1IFG.4	P1IES.4
P1Sel.5	P1DIR.5	P1DIR.5	P1OUT.5	Out0 signal†	P1IN.5	unused	P1IE.5	P1IFG.5	P1IES.5
P1Sel.6	P1DIR.6	P1DIR.6	P1OUT.6	Out1 signal†	P1IN.6	unused	P1IE.6	P1IFG.6	P1IES.6
P1Sel.7	P1DIR.7	P1DIR.7	P1OUT.7	Out2 signal [†]	P1IN.7	unused	P1IE.7	P1IFG.7	P1IES.7

[†] Signal from or to Timer_A

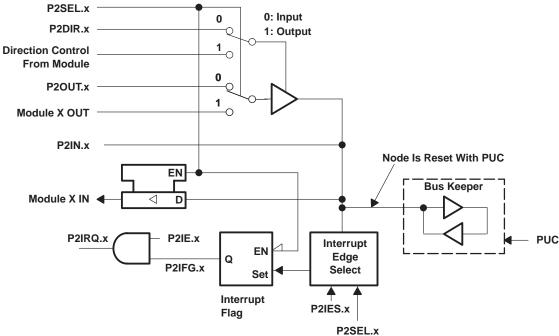
input/output schematic (continued)

Port P2, P2.0 to P2.4, input/output with Schmitt-trigger


NOTE: x = Bit Identifier, 0 to 4 For Port P2

PnSel.x	PnDIR.x	Direction control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	ACLK	P2IN.0	unused	P2IE.0	P2IFG.0	P1IES.0
P2Sel.1	P2DIR.1	P2DIR.1	P2OUT.1	V _{SS}	P2IN.1	INCLK†	P2IE.1	P2IFG.1	P1IES.1
P2Sel.2	P2DIR.2	P2DIR.2	P2OUT.2	Out0 signal†	P2IN.2	CCI0B†	P2IE.2	P2IFG.2	P1IES.2
P2Sel.3	P2DIR.3	P2DIR.3	P2OUT.3	Out1 signal [†]	P2IN.3	CCI1B†	P2IE.3	P2IFG.3	P1IES.3
P2Sel.4	P2DIR.4	P2DIR.4	P2OUT.4	Out2 signal [†]	P2IN.4	unused	P2IE.4	P2IFG.4	P1IES.4

[†] Signal from or to Timer_A


input/output schematic (continued)

Port P2, P2.5, input/output with Schmitt-trigger and R_{OSC} function for the Basic Clock module

input/output schematic (continued)

Port P2, unbonded bits P2.6 and P2.7

NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins

P2Sel.x	P2DIR.x	Direction control from module	P2OUT.x	Module X OUT	P2IN.x	Module X IN	P2IE.x	P2IFG.x	P2IES.x
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	V _{SS}	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	Vss	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7

NOTE: A good use of the unbonded bits 6 and 7 of port P2 is to use the interrupt flags. The interrupt flags can not be influenced from any signal other than from software. They work then as a soft interrupt.

APPLICATION INFORMATION

JTAG fuse check mode

The JTAG protection fuse is not implemented in the MSP430F11x devices.

www.ti.com 24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
MSP430F110AIDW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI			
MSP430F110AIDWR	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI			
MSP430F110AIPW	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI			
MSP430F110AIPWR	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI			
MSP430F110IDW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI	-40 to 85		
MSP430F110IDWR	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI	-40 to 85	MSP430F110	
MSP430F110IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430F110	Samples
MSP430F110IPWR	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85	430F110	
MSP430F112AIDW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI			
MSP430F112AIPW	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI			
MSP430F112IDW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI	-40 to 85		
MSP430F112IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MSP430F112	Samples
MSP430F112IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430F112	Samples
MSP430F112IPWR	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

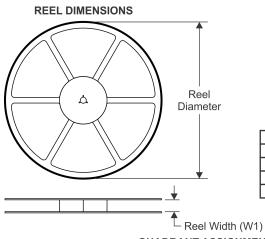
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

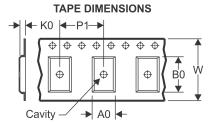
PACKAGE OPTION ADDENDUM

24-Jan-2013

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

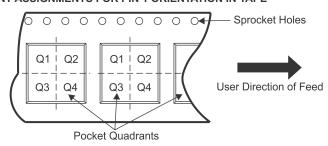
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

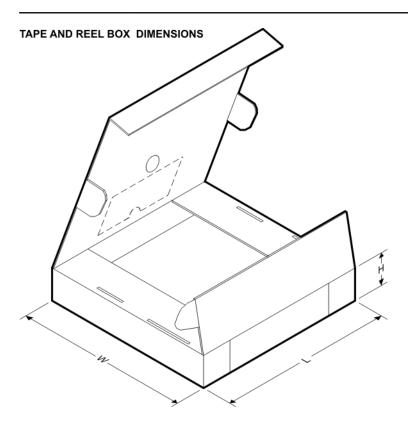

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

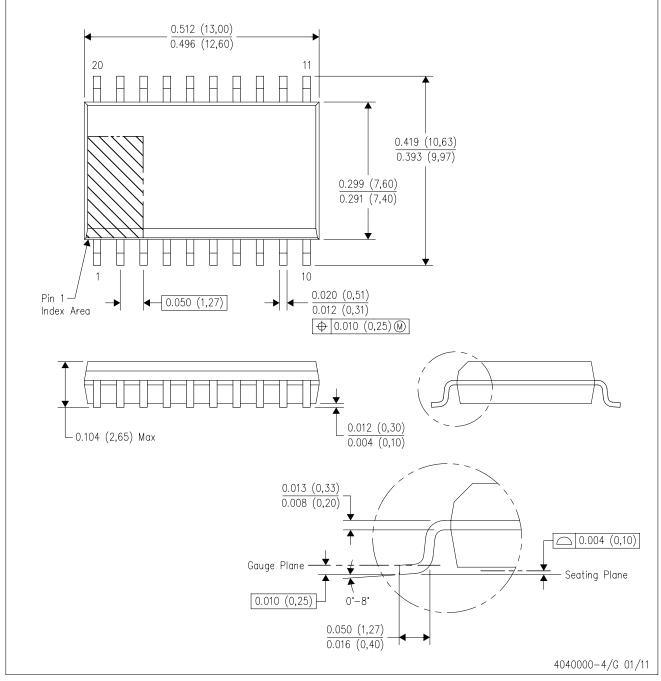
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F112IDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

www.ti.com 26-Jan-2013

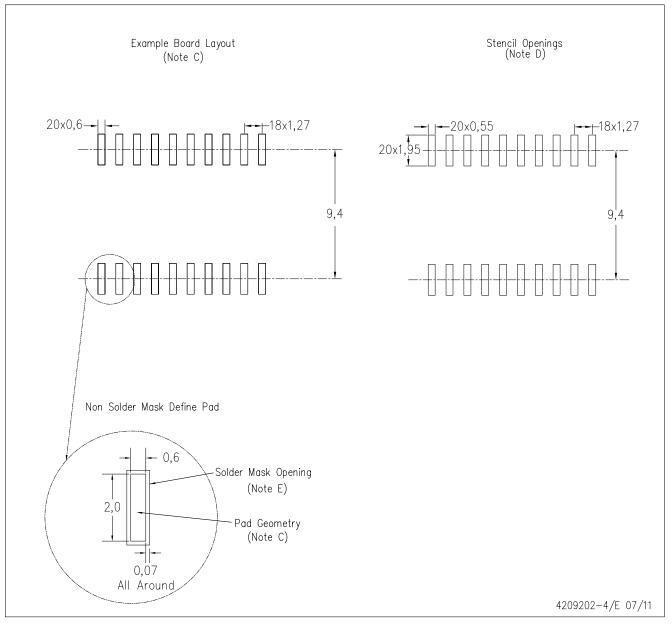


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F112IDWR	SOIC	DW	20	2000	367.0	367.0	45.0

DW (R-PDSO-G20)

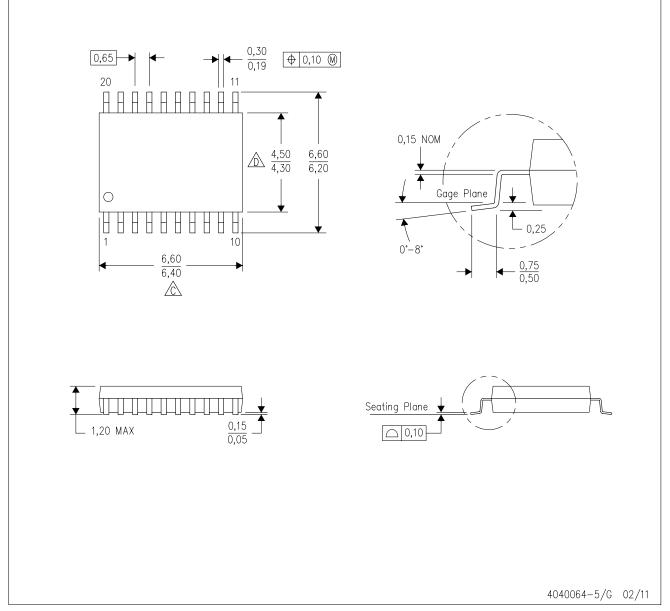
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

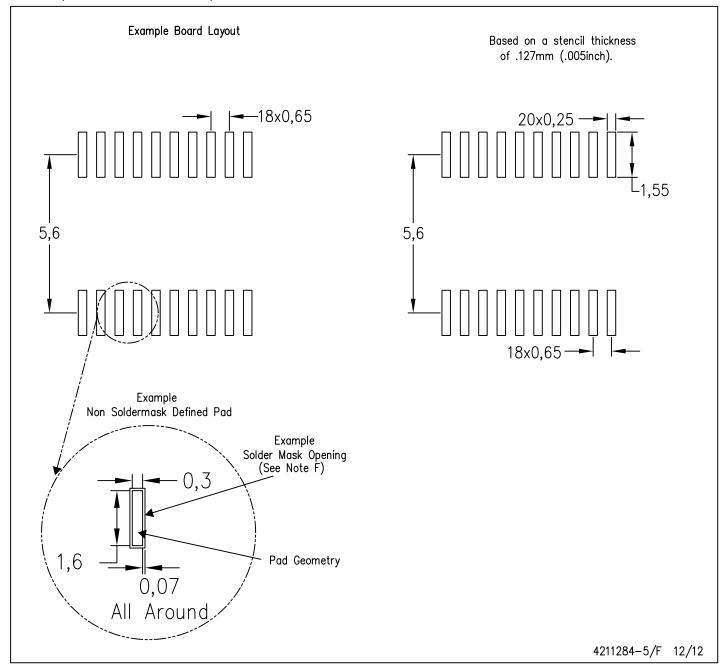
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>