OKI semiconductor MSM82C12RS/GS

8-BIT INPUT/OUTPUT PORT

GENERAL DESCRIPTION

MSM82C12 is an 8 bit input/output port employing 3 μ silicon gate CMOS technology. It insures low operating power. This device incorporates service request flip-flop for generation and control of interrupts for CPU, in addition to a 8-bit latch circuit having a three-state output buffer.

It is effective when used as an address latch device to separate the time division bus line outputs in systems employing MSM80C85A CPU or similar processors using multiplexed address/data bus line.

FEATURES

- Operated on a low power consumption due to silicon gate CMOS.
- 3 V ~ 6 V single power supply
- Full static operation
- Parallel 8-bit data register and buffer
- Provided with interrupt generating function by the adoption of the service request flip-flop
- Equipped with a clear terminal which operates asynchronously
- TTL compatible
- 24-pin DIP (MSM82C12RS)
- 24-pin flat package (MSM82C12GS)
- Functionally compatible with 8212

CIRCUIT CONFIGURATION

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	ltem	Input/Output	Function
DI1~DI8	Data input	Input	These pins are 8-bit data inputs. The data input is connected to input D pins of the 8-bit data latch circuit built in the device.
DO ₁ ~DO ₈	Data output	Output	These pins are 8-bit data outputs. Each bit is composed of 3- state output buffers. These buffers can be made into enable or disable (high imped- ance status).
MD	Mode input	Input	This input pin is used for status control of output buffers and for selection clock input to data latch.
STB	Strobe input	Input	This pin is a clock input of data latch. It is also used to reset the internal service request flip-flop at the same time.
DS1, DS2	Device select input	Input	The AND of these two inputs functions to make the status con- trol of output buffers or becomes clock input to data latch. It also functions to make set/reset of the internal service request flip-flop.
CLR	Clear input	Input	This pin clears the internal data latch in low level. It also sets the internal service request flip-flop at this time. The clear is operated asynchronously to the clock.
INT	Interrupt output	Output	This pin is output of the internal service request flip-flop, but is inverted to output it in low level operation.
Vcc			+5V power supply
GND			GND

I/O • MSM82C12RS/GS = -

FUNCTIONAL DESCRIPTION

Output Buffer Status Control and Data Latch Clock Input

When the input MD is in high level, the output buffer is enabled and the device select input (DS1.DS2) becomes clock input to data latch. When the input MD is in low level, the status of output buffer is determined by the device select input (DS1.DS2) (the output buffer is enabled when (DS1.DS2) is in high level). At this time, the input STB becomes clock input to data latch.

MD	(DS1 · DS2)	STB	$DO_1 \sim DO_8$
0	0	0	High impedance status
0	0	1	High impedance status
1	0	0	Data latch
1	0	1	Data latch
0	1	0	Data latch
0	1	1	Data in
1	1	0	Data in
1	1	1	Data in

Service Request Flip-flop

The service request flip-flop is used to generate and control interrupt for CPU when the MSM82C12 is used as input/output port in a microcomputer system. The flip-flop is set asynchronously by input CLR. When the flip-flop is set, the system is in non-interrupt status.

CLR	(DS1 · DS2)	STB	٩	INT
0	0	O	1	1
0	1	0	1	0
1	1	-1	1	0
1	1	о	1	0
1	o	0	1	1
1	o	7	0	0

Clear

When the clear input becomes low level, the internal data latch is cleared irrespective of clock and it become low level.

ABSOLUTE MAXIMUM RATINGS

0	Querter	On a distance	Lin		
Parameter	Symbol	Conditions	MSM82C12RS	MSM82C12GS	
Supply Voltage	Vcc	With	-0.5 to -	v	
Input Voltage	VIN	respect	-0.5 to 1	V	
Output Voltage	Vout	to GND	to GND -0.5 to V _{CC} +0.5		V
Storage Temperature	Tstg		-55 to +150		°C
Power Dissipation	PD	Ta = 25°C	0.9 0.7		w

OPERATING RANGE

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	3 to 6	v
Operating Temperature	Тор	-40 to +85	°C

RECOMMENDED OPERATING CONDITION

Parameter	Symbol	Min.	Typ.	Max,	Unit
Supply Voltage	Vcc	4.5	5	5,5	v
Operating Temperature	Тор	-40	+25	+85	°C
"L" Input Voltage	VIL	-0.3		+0.8	v
"H" Input Voltage	VIH	2.2		V _{CC} +0.3	v

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
"L" Output Voltage	VOL	I _{OL} = 4mA				0.4	V
"H" Output Voltage	∨он	I _{OH} = -4mA		3.7			v
Input Leak Current ILI		0≨VIN≦VCC	$V_{CC} = -4.5V$	-10		10	μA
Output Leak Current	IL0	0≦V _{OUT} ≦V _{CC}	$Ta = -40^{\circ}C$	-10		10	μA
Supply Current (Standby) ICCS		VIH≧V _{CC} -0.2V VIL≦0.2V	to +85°C		0.1	100	μA
Average Supply Current (active)		f = 1 MHz				1	mA

DC CHARACTERISTICS

AC CHARACTERISTICS

 $(V_{CC} = 4.5 \sim 5.5V, T_a = -40^{\circ}C + 85^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks	
Pulse Width	tpw	30			ns		
Data to Output Delay	tPD		20	45	ns		
Write Enable to Output Delay	tWE		31	60	ns		
Data Set Up Time	^t SET	15			ns	Lord 20pE	
Data Hold Time	tH	30			ns		
Clear to Output Delay	tC		19	40	ns		
Reset to Output Delay	tR		21	45	ns		
Set to Output Delay	ts		25	45	ns		
Output Enable Time	tΕ		52	90	ns	Load 20pF +	
Output Disable Time	tD		30	55	ns	1 kΩ	

Note: TYP is measured where $V_{CC} = 5$ V and Ta = 25°C.

Timing is measured where VL = VH = 1.5V in both input and output.

t c and t D are measured at VOL + 0.5V or VOH – 0.5V when the two are made into high impedance status.

OUTPUT CHARACTERISTICS (DC Characteristics Reference Value)

(1) Output "H" voltage (V_{OH}) vs. output current (I_{OH})

Note: The direction of flowing in is taken as positive for output current.

I/O · MSM82C12RS/GS = -

OUTPUT CHARACTERISTICS (AC Characteristics Reference Value)

(1) tpD vs. load capacitance

(2) tpD and twE vs. supply voltage

TIMING CHART

Data Latch Operation

Gate Buffer Operation

Interrupt Operation

■ I/O · MSM82C12RS/GS ■ -

Clear Operation

Output Buffer Enable/Disable (High Impedance Status) Operation

EXAMPLE OF APPLICATION OF MSM82C12

Address Latch of MSM80C85A

Used to separate the time division data bus (8 low order bits of the address bus and 8-bit data bus) into

the address bus and data bus by means of the ALE (Address Latch Enable) signal.

