OKI semiconductor MSM6243

SPEECH SYNTHESIS LSI WITH 192 KBIT ROM

GENERAL DESCRIPTION

The Oki MSM6243 is a single-chip, CMOS, speech synthesis LSI for ADPCM systems. It contains 192k bits of speech data ROM storage. This IC has an input interface, a timing generation circuit, and a 10 bit DA converter. Therefore, voice output systems may be constructed easily by connecting the voice output circuit consisting of a simple input circuit, filter, amplifier, and speaker to the chip.

FEATURES

- CMOS single chip
- Low power consumption
- Custom ROM
- Selection of supply voltage: 3V system or 5V system.
- ADPCM bit length: 4 bits
- Maximum word number: 124 words
 Maximum speaking time: 20 seconds
- (compressed ADPCM)
 Selection of class A or class B analogue output is possible.
- Built-in 10 bit DA converter

- Oscillator frequency: 30 to 132 kHz (5V system).
- Chip, 40 pins plastic DIP, 44 pins or 60 pins plastic flat package. 2 types of plastic flat package are provided depending on terminal pin bending or not bending.

Terminal pin not bending MSM6243-XXGS Terminal pin bending MSM6243-XXGS-K

- When placing an order, specify the type.
- Word selection through an internal random number circuit is possible (maximum 32 words).

T₁, T₂, S/P and SD₃, SD₂, SD₁, SD₀ are test pins.

BLOCK DIAGRAM

PAD LAYOUT

PAD LOCATION

Ded No.	Cumbal	Position		
Pau No.	Symbol	Х	Y	
1	SLB	- 2300	- 1125	
2	V _{DD} ′	- 2300	- 1425	
3	SLA	- 2300	- 1725	
4	MSB	- 2300	- 2000	
5	DAU	- 2300	- 2570	
6	DAL	-2110	-2615	
7	SPE	- 1560	-2615	
8	VCK	-675	- 2625	
9	S/P	- 395	- 2625	
10	VSS	885	- 2625	
11	SD0	1075	- 2625	
12	SD1	1480	- 2625	
13	SD2	1660	- 2625	
14	SD3	2060	- 2625	
15	T2	2295	- 2325	
16	T1	2295	- 1925	
17	LOAD	2295	- 1745	
18	Ao	2295	- 1345	
19	A1	2295	440	
20	A2	2295	745	
21	Аз	2295	1145	
22	A4	2295	1325	
23	A5	2295	1730	
24	A6	2295	1910	
25	AC	2295	2310	
26	BUSY/NAR	2295	2625	
27	VDD	1965	2625	
28	XT	1650	2625	
29	ХТ	1345	2625	

1.4

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

3V System ($V_{DD} = 3.1V$ TYP)

Absolute maximum rating

$(V_{SS} = 0V)$

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V _{DD}	Ta = 25°C	$-0.3 \sim +5.0$	v
Input Voltage	Vi		$-0.3 \sim V_{\text{DD}}$	v
Storage Temperature	T _{stg}		-55 ~ +150	°C

• Operating range

 $(V_{SS} = 0V)$

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage		—	+2.4 ~ 3.6	v
Operating Temperature	T _{op}	—	-10 ~ +60	°C
DAU, DAL Output Level	V _{DD}	No-load	$0 \sim V_{DD}$	v

• DC characteristics

 $(V_{DD} = 3.1V, V_{SS} = 0V, Ta = 25^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH}	_	2.6	—	—	v
"L" Input Voltage	VIL	_	_	_	0.5	v
"H" Input Current ¹	I _{IH1}	V _{IH} = 3.1V	_	0.01	0.5	μA
"H" Input Current ^{*2}	I _{IH2}	$V_{IH} = 3.1V$	10	—	150	μA
"L" Input Current	l _{IL}	$V_{IL} = 0V$	_	-0.01	-0.5	μA
"H" Output Current	I _{ОН}	V _{OH} = 2.7V	-200	_	—	μA
"L" Output Current	l _{OL}	$V_{OL} = 0.4V$	200	—	-	μA
Operating Power Consumption	I _{DD1}	_		0.1	0.5	mA
Standby Power Consumption	I _{DD2}	Class B output selection and oscillation stop.	_	0.01	0.5	μΑ
Power Consumption ^{*3} in the case of oscillation	I _{DD3}	Standby and class B output selection.	_	4	30	μΑ
DA Output Precision	V _E	No-load and class A output selection.	_	_	100	mV
DA Output Impedance	V _{OR}	—	_	50	_	kΩ

Notes:

*1. This applies to the AC, LOAD and A_0 to A_6 pins.

*2. This applies to the input pin except AC, LOAD and A $_0$ to A $_6$ pins.

For SLA, and SLB pins, this applies in the case of AC input "H". (In the case of AC input "L", this conforms to Note 1.)

*3. This applies when RFB exists and $f_{OSC} = 32.768$ kHz.

5V System ($V_{DD} = 5.0V$ TYP)

Absolute maximum rating

 $(V_{SS} = 0V)$

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V _{DD}	Ta = 25°C	-0.3 ~ +7.0	v
Input Voltage	Vi		$-0.3 \sim V_{DD}$	v
Storage Temperature	T _{stg}	_	-55 ~ +150	°C

,

• Operating range

 $(V_{SS} = 0V)$

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V _{DD}	_	+4.5 ~ +5.5	v
Operating Temperature	T _{OP}	_	-30 ~ +70	°C
DAU, DAL Output Level	VOD	No-load	$0 \sim V_{DD}$	v

DC characteristics

 $(V_{DD} = 3.1V, V_{SS} = 0V, Ta = -30 \sim +70^{\circ})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
"H" Input Voltage	VIH	_	4.2	-	-	v
"L" Input Voltage	VIL	_	_	_	0.8	v
"H" Input Current ¹	lini	V _{IH} = 5.0V	_	_	1	μA
"H" Input Current ^{*2}	I _{IH2}	V _{IH} = 5.0V	20	_	400	μA
"L" Input Current	l _{IL}	$V_{iL} = 0V$		_	-1	μA
"H" Output Current	Іон	V _{OH} = 4.6V	-1	_	_	mA
"L" Output Current	l _{oL}	$V_{OL} = 0.4V$	1	_	_	mA
Operating Power Consumption	I _{DD1}	-		0.2	0.7	mA
Standby Power Consumption	I _{DD2}	Class B output selection and oscillation stop.		0.01	10	μA
Power Consumption ³ in the case of oscillation	I _{DD3}	Standby and class B output selection.	_	15	100	μA
DA Output Precision	V _E	No-load and class A output selection	_	_	130	mV
DA Output Impedance	V _{OR}	_	—	60	-	kΩ

Notes:

For the pins of SLA and SLB, this applies in the case of AC input "H". (In the case of AC input "L", this conforms to Note 1.)

*3. This applies when RFB exists and fosc = 32.768 kHz.

^{*1.} This applies to the AC, LOAD and A_0 to A_6 pins.

^{*2.} This applies to the input pin except AC, LOAD and Ao to Ao pins.

AC CHARACTERISTICS

(V_DD = +2.4 to +5.5V are common for 3V system and 5V systems. Ta = -30 to +70°C, fosc = 32.768 kHz.)

Parameter	Parameter Symbol Conditions		Min.	Тур.	Max.	Unit
Oscillator frequency (1)	fosci	3V system	30	32.768	35	kHz
Oscillator frequency (2)	f _{OSC2}	5V system	30	32.768	120	kHz
Oscillator duty-cycle	fduty	_	40	50	60	%
LOAD input ^{*1} pulse width	tL	In the case of $f_{sample} = 8.19 \text{ kHz}$ and CPU interface	1	_	40	μS
AC input pulse width	t _{W(AC)}	-	1	-	_	μS
Sampling frequency (1)	f _{S1}	f _{osc} /4	_	8.192	-	kHz
Sampling frequency (2)	f _{S2}	f _{OSC} /5	_	6.554	_	kHz
Sampling frequency (3)	f _{S3}	f _{OSC} /8	-	4.096	-	kHz
NAR minimum "H" level width	t _{MN}	In the case of f _{S1} selection	1	-	-	μS
Hold time for LOAD	t _H	In the case of f _{S1} selection	1	_		μS

*1. $t_{L(MAX)}$ in the case of SW input interface is equal to the speaking time of a specified word.

PIN DESCRIPTION

Dia Marya					
Pin Name	CHIP	40 DIP	44 FLT	60 FLT	1/0
AC	25	16	11	16	I

All clear

LSI comes to standby state by "H" input, and SLA and SLB pins are pulled down to "L" level. Since this pin is started by LOAD input, pulse input can be used.

In this LSI, since power on clear circuit is not built-in, apply AC pulse when power is turned on.

Ao	18	9	4	5	1
A 1	19	10	5	10	1
A2	20	11	6	11	1
Аз	21	12	7	12	1
A4	22	13	8	13	1
A5	23	14	9	14	1
A6	24	15	10	15	. I

Address

These pins are used to specify the speaking word code.

Speaking word code is latched into inside by the LOAD pulse rise.

LOAD	17	8	3	3	L.

Speaking word code is latched into inside by the LOAD pulse rise.

When the system is reset by previously applied AC signal, the system reset is cancelled in the case of LOAD pulse rise, and LSI is started. And when NAR output mentioned later is in the "H" level, LOAD signal comes to effective.

BUSY/NAR 26 17 12	17	0
-------------------	----	---

Next address request

BUSY/NAR can be switched in an LSI, and an either of them may be specified on the occasion of order. In the case of NAR use, LOAD input comes to effective with "H" level, and in the case of BUSY use, LOAD input comes to effective with "L" level.

хт	29	20	15	20	1

Crystal

This is crystal input pin for internal clock oscillation.

This also becomes input pin when an external clock is used.

XT	28	19	14	19	I

This is crystal input pin for internal clock oscillation.

DAU	5	36	34	47	0
DAL	6	37	• 35	48	0

DA upper, DA lower

The output of 10 bits DA converter is connected to these pins directly. Since output impedance of these pins are great and LPF is not built in, connect the LPF through a low impedance output buffer outside. In the selection of class A mode, output pin is only DAU.

PIN DESCRIPTION (Continued)

Dia Mara		110			
Pin Name	CHIP	40 DIP	44 FLT	60 FLT	1/0
SLA SLB	3 1	34 32	32 30	45 43	1

Selecter A, selecter B

Switchover of DA converter output condition to class A mode or class B mode.

SLA	SLB	Mode	Output Pin
Open (L)	Open (L)	Class B × 2	DAU, DAL
V _{DD} (H)	Open (L)	Class B × 1	Same as above
Open (L)	V _{DD} (H)	Class B × 4	Same as above
V _{DD} (H)	V _{DD} (H)	Class A	DAU

MSB	4	35	33	46	1/0	
-----	---	----	----	----	-----	--

In the case of class B mode, this pin becomes as follows:

• In the case of MSB = "L" output, DAU output is effective.

• In the case of MSB = "H" output, DAL output is effective.

In the case of class A mode, this pin becomes as follows:

In the case of MSB = "L" output, DAU output value is V_{DD}/2 or more.
In the case of MSB = "H" output, DAU output value becomes V_{DD}/2 or less.

In the case of internal circuit test, this pin is used as input pin.

SPE	7	38	36	49	1/0	
						-

Speaker enable

In the case of "H" level output, DA output is effective. In the case of internal circuit test, this pin is used as input pin.

[°] VCK	8	39	38	51	0

Voice clock

Sampling frequency is output through this pin.

SD ₀	1.00	11	2	41	57	1/0	
SD1		12	3	42	58	1/0	
SD2		13	4	43	59	1/0	
SD3		14	5	44	60	1/0	

These pins are used for internal circuit test. These pins carry out I/O of 4 bits ADPCM data. Usually, set them to open.

S/P	9	40	38	52	I

Serial/parallel

These pins are used for internal circuit test. Usually, set them to GND level.

T 1	16	7	2	2	
T2	15	6	1	1	•

Test

These pins are used for internal circuit test. Usually, set them to GND level

TIMING CHART

Power On

LSI Start and No Operation (Standby)

1. Start in the case of CPU interface

2. Transfer to standby in the case of CPU interface

Start of SW input Interface and standby 1. Single word speaking

2. Repetition of word speaking

FUNCTIONAL DESCRIPTION

Speaking Word Code Specification

User can specify word codes set by $A_0 \sim A_6$ and can select either CPU interface or SW input interface.

1. CPU interface

In this case, user specified words are maximum 124 words. For A₀ to A₆, the following 3 codes, "1111111", "0111111", "10111111", are test codes, and the code "0000000" is an END code, therefore, these 4 codes can not be used.

The procedure up to the LSI operation start is as follows: Input A_0 to $A_6 \rightarrow$ LOAD pulse apply \rightarrow latched inside, also LSI operation starts simultaneously.

LOAD pulse is effective when NAR output is "H".

2. SW input interface

By the reason described in clause 9.1.1. CPU interface, number of words is set to maximum 124 words with combination of A_0 to A_6 .

After the code is set by A_0 to A_6 , when "H" level LOAD input is switched by push switch, etc., the specified word starts speaking. (From standby to operation state).

When speaking of the specified word is completed, if the LOAD input is set being "H" as it is, repeat speaking of the same word, and if the LOAD input turns to "L", LSI moves to standby state automatically.

Therefore, for example, so far the push switch is being pushed as it is, speaking of the same word is repeated. When the push switch is released, the repetition is stopped at the same time of the speaking ends.

To make speaking of different words continuously, change the codes of A_0 to A_6 before the first word speaking comes to end, and keep the LOAD in "H" state.

Sampling Frequency Specification

An user can specify available sampling frequency for each word when ordering.

Relation between sampling frequency and oscillator frequency is as follows:

In the case of $f_{(OSC)} = 32.768 \text{ kHz}$ Selection 1. 32.768 kHz $4 \Rightarrow 8.2 \text{ kHz}$ Selection 2. 32.768 kHz $5 \Rightarrow 6.55 \text{ kHz}$ Selection 3. 32.768 kHz $8 \Rightarrow 4.1 \text{ kHz}$

Straight ADPCM and Compressed ADPCM 1. Straight ADPCM

Features of the straight ADPCM are as follows:

- 1) ADPCM bit length Fixed in 4 bits.
- 2) Deletion of silent component is possible.
- 3) High bit rate, high tone quality.
- 4) Suitable for a sound effect

Bit rate (B·R) example:

f_{GAMPLE} = 8.2 kHz ADPCM bit length = 4 bits Deleted silent data ≒ 1/5 (voice) B·R ≒ 8.2×4×4/5 ≒ 26.3 kbits/sec

2. Compressed ADPCM

Features of the compressed ADPCM are as follows:

- 1) ADPCM bit length Fixed in 4 bits
- 2) Deletion of data by repeated detection of speech waveform.
- 3) Deletion of silent component is possible.
- 4) Low bit rate
- 5) Mainly applies to speech.
- Bit rate example:

 $f_{SAMPLE} = 8.2 \text{ kHz} \\ {ADPCM bit length = 4 bits} \\ {Number of average waveform repetition = 3 (deleted data = 2/3)} \\ Deleted silent data = 1/5 \\ B \cdot R = 8.2 \times 4 \times 1/3 \times 4/5 = 8.8 \text{ kbits/sec}$

Sampling Frequency and Band 1. Simple relation between sampling frequency and band $f_{SAMPLE} \times 1/2 = f_{BAND(UL)}$

Here, f_{BAND(UL)} means upper limit of the band.

f SAMPLE	f _{BAND}	Characteristics
8.2 kHz	DC ~ 4.1 kHz	Clear comprehending almost all tones of voice.
6.55 kHz	DC ~ 3.2 kHz	High tone female voice sounds usual.
4.1 kHz	DC ~ 2.0 kHz	Both male and female voices sound nasal and unclear.

2. Relation between sampling frequency and LPF (Low Pass Filter) is as follows:

 $f_{SAMPLE} \times 1/2 = f_C$ (cut-off frequency of ideal filter)

Practically, according to the skirt characteristics of filter, f_c shall be designed to be lower than the above mentioned equation. That is, the band will be further narrowed according to filter characteristics.

As an example, the f_C and skirt characteristics of filter used for speech analysis by OKI are shown as follows.

f SAMPLE	fc	Skirt character	f _{BAND}
8.2 kHz	3.4 kHz	-48 dB/oct	Dc ~ 3.4 kHz
5.55 kHz	2.7 kHz	-48 dB/oct	DC ~ 2.7 kHz
4.1 kHz	1.7 kHz	-48 dB/oct	DC ~ 1.7 kHz

Precautions in Use

1. Relation between LOAD and NAR

A LOAD pulse input is effective when NAR output is "H" state, and at the LOAD pulse rise NAR output transfers to "L" state which will be held till the completion of the former word speaking.

Therefore, use of NAR output is capable of speaking smoothly of the sentence composed of some words.

2. Internal random number circuit

Use of internal random number circuit may be specified on the occasion of order, but the specification prohibits external code input by $A_0 \sim A_6$ and maximum word number is limited to 32 words.

3. Analog output (DAU, DAL)

The output of 10 bits DA converter is connected to DAU and DAL pins directly.

Since this output impedance is great and LPF is not built-in, it is necessary to connect outside LPF through the low impedance output buffer.

Circuit example:

For output status, the following modes of class A and class B are obtained by 2 pins of SLA and SLB.

SLA	SLB	Mode	Output pin
Open (L)	Open (L)	Class B×2	DAU, DAL
V _{DD} (H)	Open (L)	Class B×1	Same as above
Open (L)	V _{DD} (H)	Class B×4	Same as above
V _{DD} (H)	V _{DD} (H)	Class A	DAU

EXAMPLE OF OUTPUT INTERFACE

• In the case of class B use, output interface is connected with MSC1161GS (provided, for only 3V system)

Output of class A

USER SPECIFIED PARAMETER

No.	Item	User specification				Remarks		
1	Shipping form		DIP (40 pin)		Flat (60 pin)		Pin without bending for GS	
		Chip			GS	GS-K	Pin bending for GS-K	_r
2	Supply voltage	3V syste (2.4 ∼ 3.	em 6V)	5V system (4.5 ~ 5.5V)		em .5V)		
3	Operational temperature	℃~°						
4	Interface condition	SW input interface		CPU input interface				
5	BUSY/NAR	BUSY		NAR				
6	Word code input	External		Internal random number		Refer to circuit 1.		
7	Oscillator	32.768 kHz		Other than 32.768 kHz		In the case other than 32.768 kHz, specify the oscillator frequency in the range of 30 to 132 kHz.		
8	Sampling frequency	8.2 kHz (1/4)	6.55 (1/	kHz ′5)	4.1	kHz /8)	When oscillator frequency is other than 32.768 kHz, specify dividing ratio within a parenthesis.	
9	R _{FB} of internal oscillation circuit	Exists		Not exists		Exists → Connect the resonator to XT and XT. Not exists → Apply external clock to TX Refer to circuit 2.		
10	Specification of correspond- ence between speaking word and word code $(A_0 \text{ to } A_6)$	Specify		Not specify		When specified, attach corresponsing table with this paper When not specified, OKI decides it.		
11	Editing of speaking words	Editing		No editing		In the case of editing, attach an example sentence with this paper. Ex. 3 o'clock 10 minutes		

Note 1. For parameters of No. 4, 5, 6, 8, 9, 10, and 11, corresponds with ROM mask. Note 2. When an user creates a voice data, never write the voice data in 256 words×126 bits (3 kbits) from the top.

