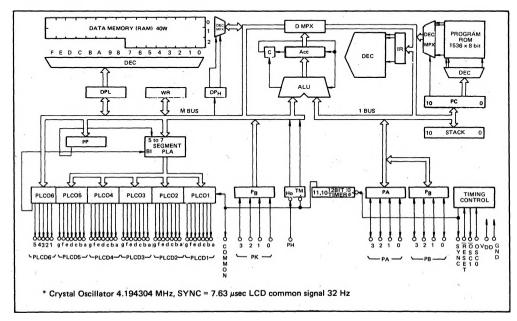
OKI semiconductor MSM58421

CMOS 4-BIT SINGLE CHIP MICROCONTROLLER WITH LCD DRIVER

GENERAL DESCRIPTION

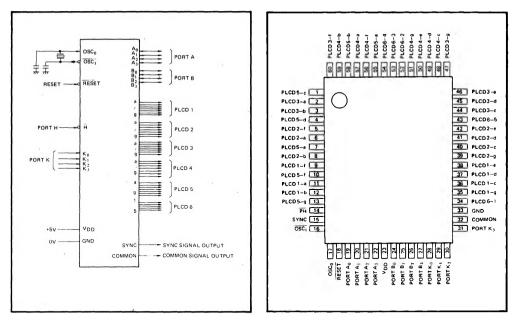
The OKI MSM58421 is a low-power, high-performance 4-bit single-chip microcontroller implemented in complementary metal oxide semiconductor technology.

Integrated within this one chip is a 5 digit 7-segment LCD driver and PLA which can change the character font for the 7 segments freely under the control of the mask programmable data.


Also integrated in this chip are mask ROM of 1536×8 bits for programming, data RAM of 40×4 bits, 13 general-purpose input/output ports, 12-bit timer, and clock oscillator to facilitate easy application to equipment with an LCD display.

FEATURES

- Low Power Consumption CMOS 4-bit One-Chip Microcomputer
- 100% Static Logic
- 1536 × 8 bits Mask ROM
- 40 × 4 bits Data RAM
- 1 Static Register
- Built-in 12-bit Timer (with 32 Hz Common Output)
- All Input Ports Contain Schmitt Trigger Circuits
- 8-bit Interface Bus


- 52 Instructions
- 94% of the 52 Instructions are 1 Byte and 1 Machine Cycle
- Integrated with 13 Input/Output Ports and 40 Static LCD Driver Circuit
- +5V Single Power Supply, 60-Pin Mold Flat Package
- 7-Segment Character User Programmable Font (32 Words × 7 Segments)
- Various Functions Changeable under Mask Program Control

FUNCTIONAL BLOCK DIAGRAM

LOGIC SYMBOL

PIN CONFIGURATION

PIN DESCRIPTION

Designation	Pin No.	Function
GND	33	Circuit GND potential
V _{DD}	23	Main power source (+5V)
OSC.	17	Crystal OSC input, external clock input
OSC1	16	Crystal OSC input, external clock output (not TTL compatible)
PA, PB	19 to 22 24 to 27	Pseudo-bidirectional ports for 4-bits parallel I/O. To input data from these ports, it is necessary to write "1" to them beforehand. When nothing is applied to their terminals, the content of output ports is written in them, so they can also be used as registers. In addition, it is possible to use them for make 8-bit parallel output depending on instructions.
PK	28 to 31	Input ports for 4-bit parallel input with no latching function.
PH	14	Input port with latching function to be set by negative logical signal. That is, this terminal is set at the time when the negative logical signal is applied to it from the outside. It is reset automatically after execution of the test instruction of this port.
RESET	18	The RESET signal which input has priority over all of other signals and performs the following functions: (1) Resets all bits of the program counter; (2) Resets the timer counter and timer flag; (3) Resets the port pointer; (4) Resets the accumulator; (5) Resets I/O ports PA and PB; (6) Resets the input port PH flag; (7) Initializes the output port PLCD for LCD; (8) Resets the machine cycle to M Since the RESET terminal is pulled up to V _{DD} by an internal resistor (approx. 800 k Ω), it is possible to make power ON/reset by connecting it with an external capacitor.

PIN DESCRIPTION (CONT.)

Designation	Pin No.					Fur	oction			
SYNC	15	General-purpose synchronizing signal output. The signal is output at the beginning of each machine cycle. Output constantly, this signal is used also as clock pulse to external units. The cycle of SYNC becomes 32 times that of the original oscillation (8 μ s when the clock pulse is 4 MHz).								
PLCD 1~6	1 to 13 34 to 60		bit para type). S	llel outp pecifica	out port	s, respe	ctively. They are used to direct driv t is done by the port pointer (PP) a			
				Conter	nt of PP					
			b3	b2	b۱	b₀	Port Specified			
			x	0	0	0	PLCD1			
			x	0	0	1	PLCD2			
			x	0	1	0	PLCD3			
			x	0	1	1	PLCD4			
			x	1	o	0	PLCD5			
			x	1	o	1	PLCD6 1 ~ 4			
			x	1	1	0	PLCD6 5 and BI			
			x	1	1	1				
		X: Don'tc Bl: 7 Segm The da Bl.	ent Dec				is written to 5 of PLCD6, and that	ofb₃to		
COMMON	32	COMMON (Pin 32) COMMON output terminal. This output signal is connected to the common ele of static type LCD. The frequency of the COMMON signal output is given with following equation:								
		f(COM) = Where the 50%)			SC) is 4	.19304	MHz, f _(COM) becomes 32 Hz (dut	y ratio:		

MASK OPTION TABLE

f(osc)=4.194304MHz

	Port K0	Port K2	Port K3	Commom	Timer
No.	28 pin	30 pin	31 pin	32 pin	Timer
0	K₀	K٢	K3	32Hz	12bit
1	K٥	BUZZER	COMMON	32Hz	12 bit
2	K٥	BUZZER	K3	32Hz	12 bit
3	K₀	BUZZER	K3	64Hz	1 1 bit
4	K٥	K2	K3	64Hz	11 bit
5	Kο	K2	K3	128Hz	10 bit
6	K٥	BUZZER	K3	128Hz	10 bit
7	Ko	K2	K3	256Hz	9 bit
8	K٥	K2	K3	512Hz	8 bit
9	Ko	BUZZER	K3	512Hz	8 bit

f (BUZZER)=2048Hz

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Power Supply Voltage	V _{DD}	- Ta = 25°C	-0.3 to 7	V
Input Voltage	VI	Ta = 25°C	-0.3 to V _{DD}	V
Power Dissipation	PD	Ta = 25°C per 1 package	200	mW
Storage Temperature	T _{stg}		-55 to +150	°C

OPERATING RANGE

Parameter	Symbol	Conditions	Limits	Unit	
Power Supply Voltage	V _{DD}	f(OSC) = 0 to 4.2 MHz	4 to 6	V	
Operating Temperature	TOP	-	-40 to +85	°C	
		MOS Load	15		
Fan Out (excluding COM, SEC)		TTL Load	1	-	

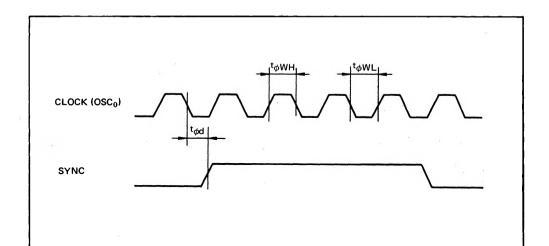
D.C. CHARACTERISTICS

 $(V_{DD} = 5V \pm 10\%, Ta = -40 \text{ to } +85^{\circ}\text{C})$

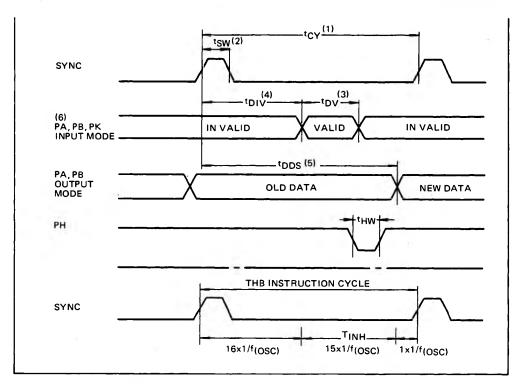
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
"H" Input Voltage	∨н		3.6			V
"L" Input Voltage	VIL				0.8	V
"H" Output Voltage ⁽¹⁾	VOH	I _O = -80μA	V _{DD} -0.1			v
"H" Output Voltage ⁽²⁾	Vон	1 ₀ = -20μA	V _{DD} -0.1			v
"H" Output Voltage(3)	VOH	$I_0 = -40\mu A$	4.2			V
"H" Output Voltage ⁽⁴⁾	VOH	$I_{O} = -15\mu A$	4.2			V
"L" Output Voltage ⁽¹⁾	VOL	I _O = 80μA			0.1	V
"L" Output Voltage ⁽²⁾	VOL	$I_0 = 20\mu A$			0.1	V
"L" Output Voltage ⁽⁵⁾	VOL	i _O = 1.6mA			0.4	V
OSCo Input Leak Current	hH/hL	$V_{I} = V_{DD}/V_{I} = 0V$			10/-10	μA
Input Current ⁽⁶⁾	կн⁄կг	$V_{I} = V_{DD}/V_{I} = 0V$			1/-20	μA
PA PB "H" Output Current	юн	V _O =0.4V			-1	mA
"H" Output Current(3)	ЮН	V _O =2.5V	-0.25			mA
"L" Output Current ⁽⁴⁾	IOL	$V_0 = 0.4V$	1.6			mA
Input Capacity	CI	f=1MHz, Ta=25°C		5		pF
Output Capacity	CO	f=1MHz, Ta=25°C		7		pF
Current Consumption	IDD	f = 4.194304 MHz, at no load		2	5	mA

Notes: (1) Applied to COMMON (2) Applied to SEGMENT (3) Applied to SYNC

(4) Applied to PA, PB

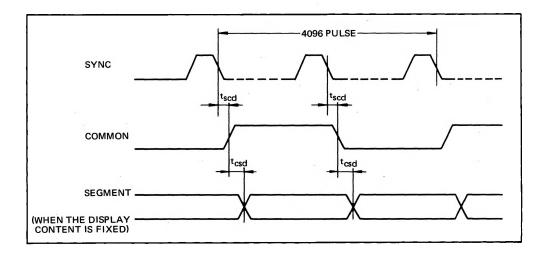

(5) Applied to SYNC, PA, and PB (6) Applied to RESET, PK, and PH

• MSM58421 •-


SWITCHING CHARACTERISTIC

 $(V_{DD} = 5V \pm 10\%, Ta = -40^{\circ} \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SYNC Delay Time from Clock (OSCo)	t _{ød}	C _L = 50pF			800	ns
Clock (OSC ₀) Pulse Width	^t φWH ^t φWL		115			ns
Cycle Time	tCY		(1)			μs
SYNC Pulse Width	tsw		(2)			μs
PA PB Data Valid Time PK	tDV	C _L = 50pF	(3)			μs
PA PB Data Invalid Time PK	tDIV	CL = 50pF			(4)	μs
Data Delay Time	tDDS	CL = 50pF	500			ns
Port H Set Pulse Width ⁽⁷⁾	tHW		500			ns
COMMON Delay Time from SYNC	tSCd	C _L = 50pF			2	μs
SEGMENT Delay Time from COMMON	tCSd	C _L = 50pF			1	μs



MSM58421 •

Notes: (1) $t_{CV} = 32 \times 1/f_{(OSC)}$

- (2) $t_{SW} = 4 \times 1/f_{(OSC)}$
- (3) $t_{DV} = 8 \times 1/f_{(OSC)}$
- (4) $t_{\text{DIV}} = 16 \times 1/f(\text{OSC}) + 0.5 \,\mu\text{s}$
- (5) $t_{DDS} = 26 \times 1/f_{(OSC)} + 1 \,\mu s$
- (6) When data is input from PA or PB, set the contents of PA or PB to "1" prior to reading instruction.
- (7) At execution of the THB instruction, any input made during a period of T_{INH} (15 \times 1/f_(OSC)) shown in the above figure may be neglected.

DESCRIPTION OF TERMINALS

GND (Pin 33)

Circuit grounding potential

V_{DD} (Pin 23)

Main power supply

OSCo (Pin 17)

Input of internal oscillation circuit at one side of crystal resonator and ceramic vibrator.

OSC (Pin 16)

Output of internal oscillation circuit at the other side of crystal resonator and ceramic vibrator (not TTL compatible)

PA, PB (Pins 19 \sim 22 and 24 \sim 27)

These are quasi-bidirectional ports for 4-bit parallel I/O. To input data from these ports, it is necessary to write "1" to them beforehand. When nothing is applied to their terminals, the content of output ports is written in them, so they can also be used as registers. In addition, it is possible to use them to make an 8-bit parallel output depending on instructions.

PK (Pins 28 ~ 31)

Input ports for 4-bit parallel input with no latching function.

PH (Pin 14)

Input port with latching function to be set by negative logical signal.

This terminal is set at the time when the negative logical signal is applied to it from the outside. It is reset automatically after execution of the test instruction of this port.

RESET (Pin 18)

Reset must be active for greater than 1 machine cycle.

The RESET signal, when input, has priority over all of other signals and performs the following functions:

- (1) Resets all bits of the program counter;
- Resets the timer counter and timer flag;
- (3) Resets the port pointer;
- (4) Resets the accumulator;
- (5) Resets I/O ports PA and PB;
- (6) Resets the input port PH flag;
- (7) Initializes the output port PLCD for LCD; and
- (8) Resets the machine cycle to M₁.

Since the RESET terminal is pulled up to V_{DD} by an internal resistor (approx. $800k\Omega$), it is possible to activate power ON/reset by connecting it to an external capacitor.

SYNC (Pin 15)

This is a general-purpose synchronizing signal output. The signal is output at the beginning of each machine cycle. Output constantly, this signal is used also as clock pulse to external units.

The cycle of SYNC becomes 32 times that of the original oscillation (8μ s when the clock pulse is 4MHz).

PLCD 1 \sim 6 (Pins 1 \sim 13 and 34 \sim 60)

These are 7-bit and 5-bit parallel output ports, respectively. They are used to directly drive an LCD (static type). Specification of each port is done by the port pointer (PP) as shown in the table below;

	Content of PP		Content of PP Port Specified						
b₃	b₂	b۱	b٥	Fort Specified					
x	0	0	0	PLCD1					
x	0	0	1	PLCD2					
x	0	1	0	PLCD3					
x	0	1	1	PLCD4					
x	1	0	0	PLCD5					
x	1	0	1	PLCD6~4					
x	1	1	0	PLCD6 5 and BI					
х	1	1	1						

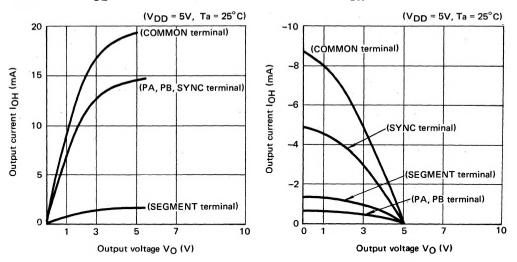
X: Don't Care

BI: 7 Segment Decoder PLA Blank Input The data of b₀, of the internal 4-bit bus is written to 5 of PLCD6, and that of b₃ to BI.

COMMON (Pin 32)

This is a COMMON output terminal. This output signal is connected to the common electrode of static type LCD. The frequency of the COMMON signal output is given with the following equation:

$f(COM) = f(OSC)/2^{17}$

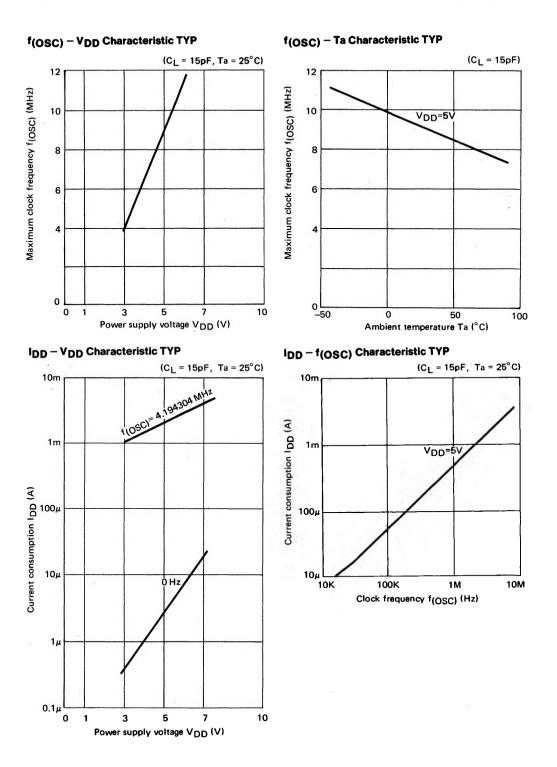

Where the basic clock $f_{(OSC)}$ is 4.19304 MHz, $f_{(COM)}$ becomes 32 Hz (duty ratio: 50%).

INSTRUCTIONS LIST

Mnemonic	Description	L					Code	_	-	Byte	Cycl
		7	6	5	4	3	2	1	0		
CLA CLL	Clear Accumulator	0	0	0	1	0	0	0	0	1	1
		0	0	1	0	0	0	0	0	1	1
CLH	Clear DP _H	0	1	1	0	0	0	0	0	1	1
LAI	Load Accumulator with Immediate	0	0	0	1	13	12	h	lo	1	1
LLI	Load DPL with Immediate	0	0	1	0	lз	12	h	lo	1	1
LHI	Load DP _H with Immediate	0	1	1	0	0	lo	11	lo	1	1
L	Load Accumulator with Memory	1	0	0	1	0	1	0	0	1	1
LAL	Load Accumulator with DPL	0	1	0	1	0	1	0	1	1	1
LLA	Load DPL with Accumulator	0	1	0	1	0	1	0	0	1	1
LAW	Load Accumulator with W Register	11	0	0	0	0	1	0	0	1	1
SI	Store Accumulator to Memory then Increment DPL	1	0	0	1	0	0	0	0	1	1
LWA	Load W Register with Accumulator	11	0	0	0	0	0	0	0	1	1
LPA	Load Port Pointer with Accumulator	0	1	0	1	1	0	0	0	1	1
LTI	Load Timer with Immediate "0" (Clear Timer & TMF)	0	1	1	0	1	0	0	0	1	1
X	Exchange Accumulator with Memory	1	0	0	1	1	0	0	0	1	1
INA	Increment Accumulator	to	0	0	0	0	0	0	1		
INL	Increment DP ₁	0	1	ŏ	1	ō	1	1	1		l i
INM	Increment Memory	0	1	0	1	1	1	ò	1		
INW	Increment W Register	1	ò	0	0	1	ò	0	0		
DCA	-	1	_	-	-	1	-	-	-		· ·
	Decrement Accumulator	0	0	0	0	-	1	1	1	1	1
DCL	Decrement DPL	0	1	0	1	0	1	1	0	1	1
DCM	Decrement Memory	0	1	0	1	1	1	0	0	1	1
CAO	Complement Accumulator of One	0	1	0	1	0	0	0	0	1	1
RAL	Rotate Accumulator Left through Carry	0	1	0	0	0	1	1	1	1	1
AC	Add Memory to Accumulator with Carry	0	1	0	0	1	1	0	0	1	1
AS	Add Memory to Accumulator, Skip if Carry	0	1	0	0	1	1	1	0	1	1
AIS	Add Immediate to Accumulator, Skip if Carry	0	0	0	0	lз	12	h	lo	1	1
DAS	Decimal adjust Accumulator in Subtraction	0	1	0	1	1	0	1	0	1	1
СМ	Compare Accumulator with Memory	0	1	0	1	1.	1	1	0	1	1
SMB	Set Memory Bit	1	0	1	1	1	0	11	lo	1	1
RMB	Reset Memory Bit	1	0	1	1	1	1	h	10	1	1
TAB	Test Accoumulator Bit	li	õ	1	ò	ò	ò	Б	lo	1	1
тмв	Test Memory Bit		ō	1	õ	õ	1	h	10	1	
THB	Test H Port Bit		ŏ	i	ŏ	1	1	0	õ	1	1
TTM	Test Time flag		õ	1	ō	1	1	1	ō	1	
TC	Test Carry flag	0	1	ò	ō	ò	ò	1	ŏ	1	
SC	Set Carry flag	0	1	ő	0	0	0	ò	ő	1	
RC	Reset Carry flag	0	1	0	0	0	0	0	1	1	
			_		· ·						
J	Jump	0	0 6	1 5	1 4	0 3	10 2	9 1	в Io	2	2
JC	Jump in Current Page	1	1	15	14	13	12	- In	10	1	1
JA	Jump with Accumulator		1	15 0	14 0	13 0	12 0	1	10		
CAL	Call Subroutine	0	0	1	1	1	-	1 9		2	2
UAL		17	16	1 5	1	1 3	10 2	19 1	8 Io	2	2
RT	Return from Subroutine	lő	1	0	1	1	0	0	1	1	1
OTD	Output Table Data	10	1	1	1	ō	0	ō	1	1~15	2
OA	Output Accumulator to Port A	0	1	i	1	ō	ŏ	1	ò	1 1	1
OB	Output Accumulator to Port B	0	1	1	1	ŏ	ŏ	1	1		
OP	•	0	1	1	1	0	1	ö	0		
	Output Accumulator to Port designated Port Pointer	-				-		-	-	1 °	· ·
OPM	Output Memory to Port P designated Port Pointer	0	1	1	1	0	1	1	0		
IA	Input Port A in Accumulator	0	1	1	1	1	0	1	0	1	1
IB	Input Port B in Accumulator	0	1	1	1	1	0	1	1	{ 1	1
IK	Input Port K in Accumulator	0	1	1	1	1	1	0	0	1	1
NOP	No Operation	То	0	0	0	0	0	0	0	1	1

TYPICAL PERFORMANCE CURVES

Output Current (IOL) TYP


tTHL - CL Characteristic TYP

Output Current (IOH) TYP

• MSM58421 •

