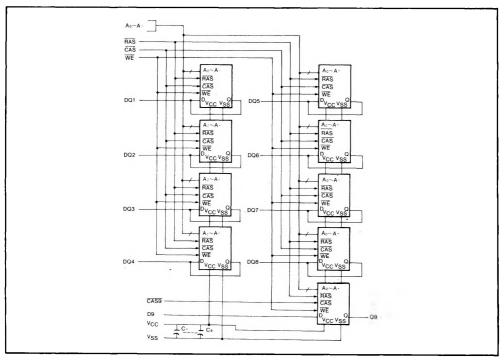
OKI semiconductor MSC2301YS9/KS9

65,536 BY 9 BIT DYNAMIC RAM MODULE

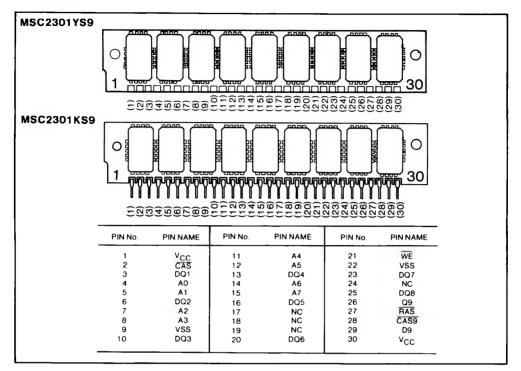
GENERAL DESCRIPTION

The Oki MSC2301YS9/KS9 is a fully decoded, 65,536 words \times 9 bit NMOS dynamic random access memory composed of nine 64K DRAMs in plastic leaded chip carrier. The mounting of nine PLCCs together with nine 0.2μ F decoupling capacitors on a 30 pin glass epoxy Single-In-Line Package provides any application where high density and large capacity of storage memory are required. The electrical characteristics of the MSC2301YS9/KS9 are quite same as the original MSM3764A; each timing requirements are noncritical, and power supply tolerance is very wide.

FEATURES


- 65,536 word \times 9 bit Organization
- Single +5V Supply (10% Tolerance)
- 30-Pin Socket Insertable Module
- Refresh Period ... 2ms (128 cycles)
- All Inputs, Outputs, Clocks
- Fully TTL compatible
 3-States Outputs
- Common CAS Control for Eight Common Data-In and Data-Out Lines

FUNCTIONAL BLOCK DIAGRAM


 Separate CAS Control for One Separate Pair of Data-In and Data-Out Lines

Preliminary

- Row Access Time; 120ns max. (MSC2301-12YS9/KS9) 150ns max. (MSC2301-15YS9/KS9)
- Low Power Dissipation; 2970mW max. (MSC2301-12YS9/KS9) 2725mW max. (MSC2301-15YS9/KS9)
- Operating Temperature ... 0°C to 70°C

PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage on V _{CC} supply relative to V _{SS}	Vcc	-1 to +7	v
Operating temperature	T _{opr}	0 to 70	°C
Storage temperature	⊤ _{stg}	-40 to +125	°C
Power dissipation	PD	9	w
Short circuit output current		50	mA

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DYNAMIC RAM · MSC2301 YS9/KS9

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating temperature
Supply Voltage	Vcc	4.5	5.0	5.5	v	
Supply voltage	Vss	0	0	0	v	
Input High Voltage, all inputs	VIH	2.4		6.5	v	0°C to +70°C
Input Low Voltage, all inputs	VIL	1.0		0.8	v]

RECOMMENDED OPERATING CONDITIONS (Referenced to V_{SS})

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	120ns MODULE		150ns MODULE		Unit
Faranleter		Min.	Max.	Min.	Max.	Unit
Operating Current* Average power supply current (RAS, CAS cycling; t _{RC} = min.)	ICC1		540		495	mA
Standby Current* Power supply current (RAS = CAS = VIH)	ICC2		45		45	mA
Refresh Current* Average power supply current (RAS cycling, CAS = V _{IH} ; t _{RC} =min.)	ICC3		360	- ît	360	mA
Page Mode Current* Average power supply current (RAS = V _{IL} , CAS cycling; t _{PC} =min.)	ICC4		450		405	mA
Input Leakage Current Input leakage current, any input ($0V \le V_{IN} \le 5.5V$, all other pins not under test = 0V)	IL1	-90	90	-90	90	μΑ
Output Leakage Current (Data out is disabled, $0V \le V_{OUT} \le 5.5V$)	IL0	-10	10	-10	10	μA
Output Levels Output high voltage $(I_{OH} = -5mA)$ Output low voltage $(I_{OL} = 4.2mA)$	Voh Vol	2.4	0.4	2.4	0.4	v v

Note*: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 MHz)$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance (A ₀ ~ A ₇)	C _{IN1}	40	70	pF
Input Capacitance (RAS, CAS, WE)	C _{IN2}	40	75	pF
Data Input/Output Capacitance (DQ)	CDQ	7	20	pF
Input Capacitance (CAS9)	C _{IN3}	5	10	pF
Input Capacitance (D9)	C _{IN4}	4	10	pF
Output Capacitance (Q9)	Соит	4	15	pF

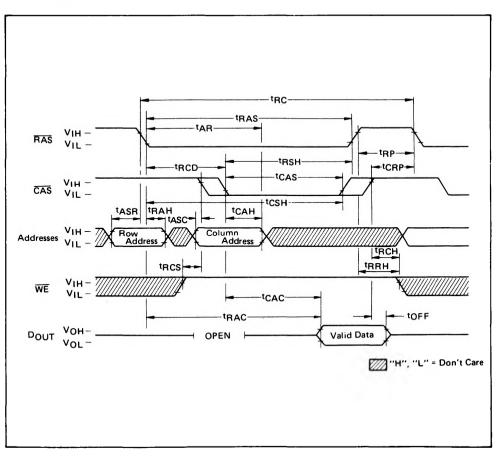
Capacitance measured with Boonton Meter.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

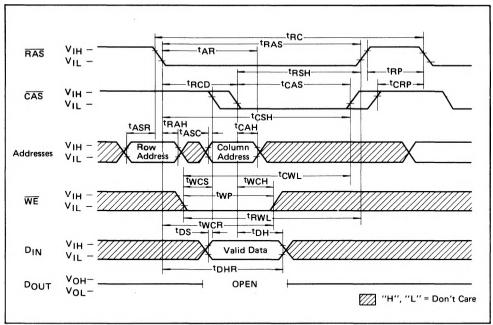
Parameter	Symbol	Units	MSC2301- 12YS/KS		MSC2301- 15YS/KS		Note
			Min.	Max.	Min.	Max.	
Refresh period	tREF	ms		2		2	
Random read or write cycle time	tRC	ns	220		260		
Page mode cycle time	tPC	ns	120		145		
Access time from RAS	^t RAC	ns		120		150	4,6
Access time from CAS	tCAC	ns		60		75	5,6
Output buffer turn-off delay	tOFF	ns	0	35	0	40	
Transition time	tT	ns	3	35	3	35	
RAS precharge time	tRP	ns	90		100		
RAS pulse width	tRAS	ns	120	10,000	150	10,000	
RAS hold time	tRSH	ns	60		75		
CAS precharge time	tCP	ns	50		60		
CAS pulse width	tCAS	ns	60	10,000	75	10,000	
CAS hold time	tCSH	ns	120		150		


AC CHARACTERISTICS (Continued)

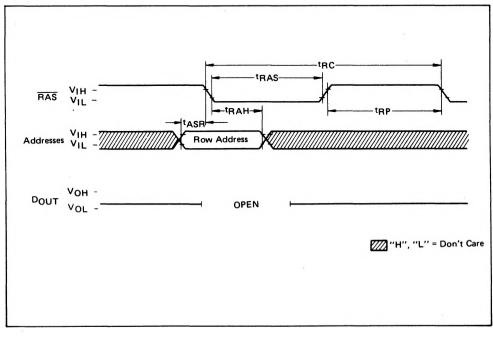
(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

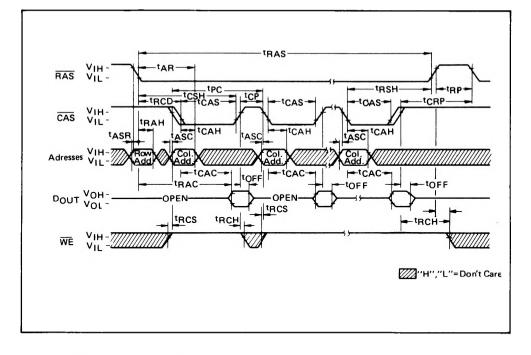
Parameter	Symbol	Units	MSC2301- 12YS/KS		MSC2301- 15YS/KS		Note
			Min.	Max.	Min.	Max.	
RAS to CAS delay time	tRCD	ns	25	60	25	75	7
CAS to RAS precharge time	tCRP	ns	0		0		
Row Address set-up time	tASR	ns	0		0		
Row Address hold time	^t RAH	ns	15		15		
Column Address set-up time	tASC	ns	0		0		
Column Address hold time	tCAH	ns	20	-	20		
Column Address <u>hold</u> time reference to RAS	tAR	ns	80		95		
Read command set-up time	tRCS	ns	0		0		
Read command hold time	^t RCH	ns	0		0		
Write command set-up time	twcs	ns	-10		-10		
Write command hold time	twch	ns	40		45		
Write command hold time referenced to RAS	tWCR	ns	100		120		
Write command pulse width	twp	ns	40		45		
Write command to RAS lead time	tRWL	ns	40		45		
Write command to CAS lead time	tCWL	ns	40		45		
Data-in set-up time	t _{DS}	ns	0		0		
Data-in hold time	tDH	ns	40		45		
Data-in hold time referenced to RAS	^t DHR	ns	100		120		


- Notes: 1 An initial pause of 100 μ s is required after power-up followed by any 8 RAS cycles (Example: RAS only) before proper device operation is achieved.
 - 2 AC measurements assume at $t_T = 5$ ns
 - 3 V_{IH} (Min.) and V_{IL} (Max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} and V_{IL}.
 - 4 Assumes that t_{RCD} < t_{RCD} (Max.) If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the values shown.
 - 5 Assumes that t_{RCD} < t_{RCD} (Max.).
 - 6 Measured with a load circuit equivalent to 2TTL loads and 100 pF.
 - 7 Operation within the t_{RCD} (Max.) limit insures that t_{RAC} (Max.) can be met. t_{RCD} (Max.) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (Max.) limit, then access time is controlled exclusively by t_{CAC} .

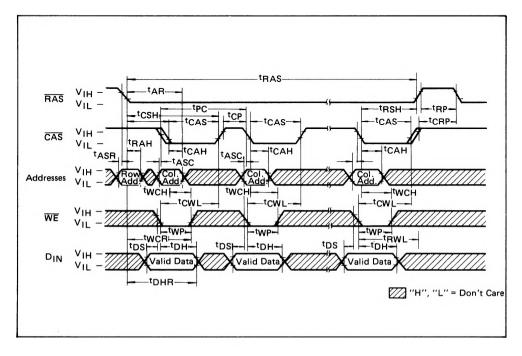
READ CYCLE TIMING

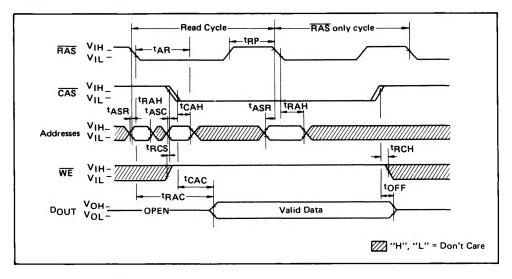

WRITE CYCLE TIMING

(EARLY WRITE)



RAS ONLY REFRESH TIMING


(CAS: VIH, WE & DIN: Don't care)


PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

HIDDEN REFRESH

FUNCTIONAL DESCRIPTION

Address Inputs:

A total of sixteen binary input address bits are required to decode any 1 of 65536 storage cell locations within the MSC2301. Eight row-address bits are established on the input pins ($A_0 \sim A_7$) and latched with the Row Address Strobe (RAS). The eight column-address bits are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS, CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the addresses inputs have been changed from row-addresses.

Write Enable:

The read mode or write mode is selected with the WE input. A logic high (1) on WE dictates read mode; logic low (0) dictates write mode. Data input is disabled when read mode is selected.

Data Input:

Data is written into the MSC2301 during a write cycle. The last falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{IN}) register. In a write cycle, if \overline{WE} is brought low (write mode) before \overline{CAS} , D_{IN} is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} .

Data Output:

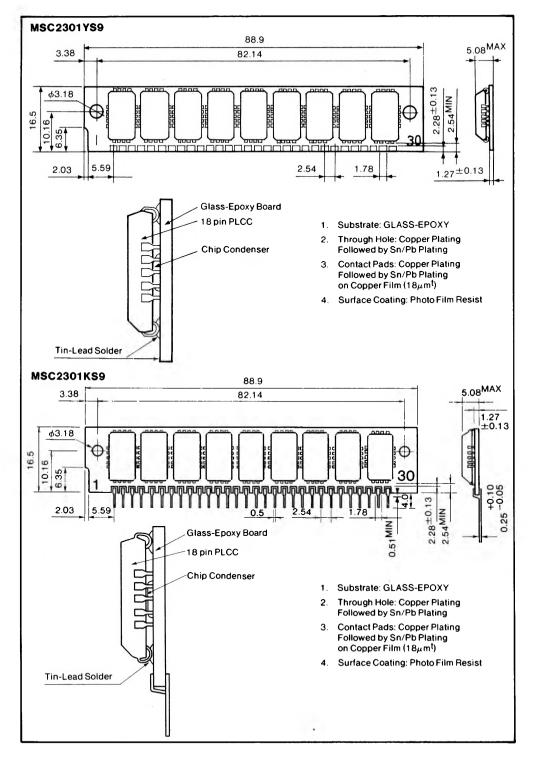
The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high impedance state until CAS is brought low. In a read cycle, the output is valid after t_{RAC} from transition of RAS when t_{RCD} (Max.) is satisfied, or after t_{CAC} from transition of CAS when the transition occurs after t_{RCD} (Max.). Data remain valid until CAS is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid.

Page Mode:

Page-mode operation permits strobing the row-address into the MSC2301 while maintaining RAS at a logic low (0) throughout all successive memory operations in which the rowaddress doesn't change. Thus the power dissipated by the negative going edge of RAS is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 128 row-addresses ($A_0 \sim A_6$) at least every two milliseconds. During refresh, either V_{IL} or V_{IH} is permitted for A₇. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in


each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

Hidden Refresh:

RAS ONLY REFRESH CYCLE may take place while maintaining valid output data. This feature is referred to as Hidden Refresh.

Hidden Refresh is performed by holding \overline{CAS} as V_{II} from a previous memory read cycle.

DYNAMIC RAM · MSC2301 YS9/KS9 -

