Hardware Specification

MPC852TEC/D Rev. 1.7, 5/2003

MPC852T Hardware Specifications

MOTOROLA intelligence everywhere^{**} digitaldna^{**}

This document contains detailed information for the MPC852T on power considerations, DC/AC electrical characteristics, and AC timing specifications. The MPC852T contains a PowerPCTM processor core. This document contains the following topics:

Торіс	Page
Part I, "Overview"	1
Part II, "Features"	2
Part III, "Maximum Tolerated Ratings"	5
Part IV, "Thermal Characteristics"	6
Part V, "Power Dissipation"	7
Part VI, "DC Characteristics"	7
Part VII, "Thermal Calculation and Measurement"	9
Part VIII, "Power Supply and Power Sequencing"	11
Part IX, "Mandatory Reset Configurations"	12
Part X, "Layout Practices"	13
Part XI, "Bus Signal Timing"	13
Part XII, "IEEE 1149.1 Electrical Specifications"	42
Part XIII, "CPM Electrical Characteristics"	43
Part XIV, "FEC Electrical Characteristics"	56
Part XV, "Mechanical Data and Ordering Information"	60
Part XVI, "Document Revision History	69

Part I Overview

The MPC852T PowerQUICCTM is a 0.18 micron derivative of the MPC860 PowerQUICC Family and can operate up to 100 MHz on the MPC8xx Core with a 66 MHz external bus. The MPC852T has a 1.8 V core and has a 3.3 V I/O operation with 5 V TTL compatibility. The MPC852T Integrated Communications Controller is a versatile one-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications. It particularly excels in Ethernet control applications including CPE equipment, Ethernet routers & hubs, VoIP clients, and WiFi access points.

The MPC852T is a PowerPC architecture-based derivative of Motorola's MPC860 Quad Integrated Communications Controller (PowerQUICC). The CPU on the MPC852T is the MPC8xx core, a 32-bit microprocessor which implements the PowerPC architecture, incorporating memory management units (MMUs) and instruction and data caches. The MPC852T is the subset of this family of devices and is mainly described in this document.

Part II Features

The MPC852T is comprised of three modules that each use the 32-bit internal bus: the MPC8xx core, the system integration unit (SIU), and the communication processor module (CPM). The MPC852T block diagram is shown in Figure 2-1.

The following list summarizes the key MPC852T features:

- Embedded MPC8xx core up to 100 MHz
- Maximum frequency operation of the external bus is 66 MHz
 - The 50 MHz / 66 MHz core frequencies support both 1:1 and 2:1 modes
 - The 80 MHz / 100 MHz core frequencies support 2:1 mode only
- Single-issue, 32-bit core (compatible with the PowerPC architecture definition) with 32, 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch, without conditional execution
 - 4-Kbyte data cache and 4-Kbyte instruction cache
 - 4-Kbyte instruction cache is two-way, set-associative with 128 sets
 - 4-Kbyte data cache is two-way, set-associative with 128 sets
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups
- Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
- 32 address lines
- Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank
 - Up to 30 wait states programmable per memory bank
 - Glueless interface to DRAM, SIMMS, SRAM, EPROMs, flash EPROMs, and other memory devices
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four \overline{CAS} lines, four \overline{WE} lines, one \overline{OE} line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbyte–256 Mbyte)
 - Selectable write protection
 - On-chip bus arbitration logic

- Fast Ethernet Controller (FEC)
- General-purpose timers
 - Two 16-bit timers or one 32-bit timer
 - Gate mode can enable/disable counting
 - Interrupt can be masked on reference match and event capture
- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Clock synthesizer
 - Decrementer and time base
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 7 port pins with interrupt capability
 - 18 internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - 8-Kbytes of dual-port RAM
 - 8 serial DMA (SDMA) channels
 - Three parallel I/O registers with open-drain capability
- Two baud rate generators
 - Independent (can be connected to any SCC3/4 or SMC1)
 - Allow changes during operation
 - Autobaud support option
- Two SCCs (serial communication controllers)
 - Ethernet/IEEE 802.3 optional on SCC3 & SCC4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Universal asynchronous receiver transmitter (UART)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC))
- One SMC (serial management channels)
 - UART
- One SPI (serial peripheral interface)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus

- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one independent PCMCIA socket. 8 memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: = $\neq <>$
 - Each watchpoint can generate a break point internally
- Normal High and Normal Low Power Modes to conserve power
- 1.8 V Core and 3.3 V I/O operation with 5 V TTL compatibility, refer to Table 6-1 for a listing of the 5 V Tolerant pins

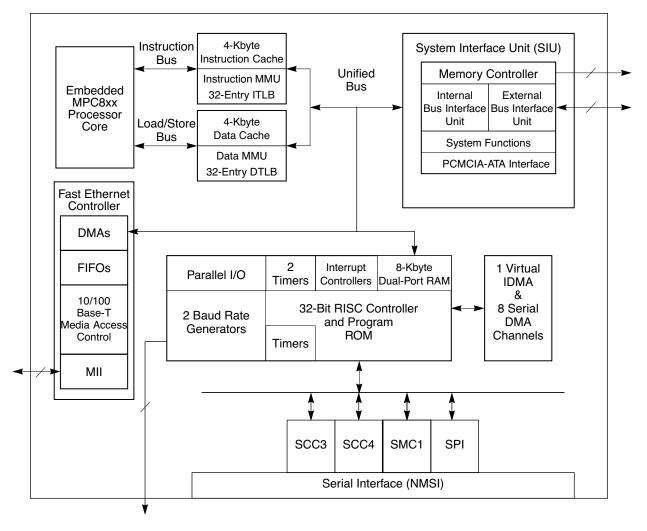


Figure 2-1. MPC852T Block Diagram

Part III Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC852T. Table 3-1 provides the maximum ratings, and provides the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	VDDL (core voltage)	-0.3 to 3.4	V
	VDDH (I/O voltage)	-0.3 to 4	V
	VDDSYN	-0.3 to 3.4	V
	Difference between VDDL to VDDSYN	100	mV
Input voltage ²	V _{in}	GND-0.3 to VDDH	V
Storage temperature range	T _{stg}	-55 to +150	°C

Table 3-1. Maximum Tolerated Ratings

 $^{1}\,$ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6-1. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC852T is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Table 3-2.	Operating	Temperatures
------------	------------------	---------------------

Rating	Symbol	Value	Unit
Temperature ¹ (standard)	T _{A(min)}	0	°C
	T _{j(max)}	95	°C
Temperature (extended)	T _{A(min)}	-40	°C
	T _{j(max)}	100	°C

Minimum temperatures are guaranteed as ambient temperature, T_A . Maximum temperatures are guaranteed as junction temperature, T_i .

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}). -- VDDH

Part IV Thermal Characteristics

Table 4-1 shows the thermal characteristics for the MPC852T.

Table 4-1. MPC852T Thermal Resistance Data

Rating	Env	Symbol	Value	Unit	
Junction to ambient ¹	Natural Convection	Single layer board (1s)	R _{0JA} ²	49	°C/W
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	32	
	Air flow (200 ft/min)	Single layer board (1s)	$R_{\theta JMA}^{3}$	41	
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	29	
Junction to board ⁴			$R_{\theta JB}$	24	
Junction to case 5			R _{θJC}	13	
Junction to package top ⁶	Natural Convection		Ψ_{JT}	3	
	Air flow (200 ft/min)		Ψ_{JT}	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Part V Power Dissipation

Table 5-1 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.

Die Revision	Bus Mode	Frequency	Typical ¹	Maximum ²	Unit
		50 MHz	110	140	mW
0	1:1	66 MHz	150	180	mW
	0 2:1	66 Mhz	140	160	mW
		80 Mhz	170	200	mW
		100 Mhz	210	250	mW

Table 5-1. Power Dissipation (P_D)

¹ Typical power dissipation is measured at 1.9V.

² Maximum power dissipation at VDDL and VDDSYN is at 1.9V. and VDDH is at 3.465V.

NOTE

Values in Table 5-1 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

NOTE

The VDDSYN Power Dissipation is negligible.

Part VI DC Characteristics

Table 6-1 provides the DC electrical characteristics for the MPC852T.

Table 6-1	. DC	Electrical	Specifications
-----------	------	------------	----------------

Characteristic	Symbol	Min	Max	Unit
Operating voltage	VDDH	3.135	3.465	V
	VDDL	1.7	1.9	V
	VDDSYN	1.7	1.9	V
	Difference between VDDL to VDDSYN	-	100	mV
Input High Voltage (all inputs except PA[0:3], PA[8:11], PB15, PB[24:25]; PB[28:31], PC[4:7], PC[12:13], PC15, PD[3:15], TDI, TDO, TCK, TRST, TMS, MII_TXEN, MII_MDIO) ¹	VIH	2.0	3.465	V

Characteristic	Symbol	Min	Max	Unit
Input Low Voltage	VIL	GND	0.8	V
EXTAL, EXTCLK Input High Voltage	VIHC	0.7 x VDDH	VDDH	V
Input Leakage Current, Vin = $5.5V$ (Except TMS, TRST, DSCK and DSDI pins) for 5 Volts Tolerant Pins ¹	l _{in}	_	100	μA
Input Leakage Current, Vin = VDDH (Except TMS, TRST, DSCK, and DSDI)	I _{In}	_	10	μA
Input Leakage Current, Vin = 0V (Except TMS, TRST, DSCK and DSDI pins)	I _{In}	_	10	μA
Input Capacitance ²	C _{in}	_	20	pF
Output High Voltage, IOH = -2.0 mA, VDDH = 3.0V Except XTAL and Open drain pins	VOH	2.4	_	V
Output Low Voltage IOL = 2.0 mA (CLKOUT) IOL = 3.2 mA^3 IOL = 5.3 mA^4 IOL = $7.0 \text{ mA} (Txd1/pa14, txd2/pa12)$ IOL = $8.9 \text{ mA} (TS, TA, TEA, BI, BB, HRESET, SRESET)$	VOL	_	0.5	V

Table 6-1. DC Electrical Specifications (continued)

¹ The PA[0:3], PA[8:11], PB15, PB[24:25]; PB[28:31], PC[4:7], PC[12:13], PC15, PD[3:15], TDI, TDO, TCK, TRST, TMS, MII_TXEN, MII_MDIO are 5V tolerant pins.

² Input capacitance is periodically sampled.

³ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IWP(0:1)/VFLS(0:1), RXD3/PA11, TXD3/PA10, RXD4/PA9, TXD4/PA8, TIN3/BRGO3/CLK5/PA3, BRGCLK2/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, TOUT4/CLK8/PA0, SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, SMTXD1/PB25, SMRXD1/PB24, BRGO3/PB15, RTS1/DREQ0/PC15, RTS3/PC13, RTS4/PC12, CTS3/PC7, CD3/PC6, CTS4/SDACK1/PC5, CD4/PC4, MII-RXD3/PD15, MII-RXD2/PD14, MII-RXD1/PD13, MII-MDC/PD12, MII-TXERR/RXD3/PD11, MII-RX0/TXD3/PD10, MII-TXD0/RXD4/PD9, MII-RXCLK/TXD4/PD8, MII-TXD3/PD5, MII-RXDV/RTS4/PD6, MII-RXERR/RTS3/PD7, MII-TXD2/REJECT3/PD4, MII-TXD1/REJECT4/PD3, MII_CRS, MII_MDIO, MII_TXEN, MII_COL

⁴ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6), CS(7), WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/ BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, GPL_A5, ALE_A, CE1_A, CE2_A, DSCK, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30)

Part VII Thermal Calculation and Measurement

For the following discussions, $P_D = (VDDL \times IDDL) + P_{I/O}$, where $P_{I/O}$ is the power dissipation of the I/O drivers.

NOTE

The VDDSYN Power Dissipation is negligible.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature °C

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T_{J} - T_{A}) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature. If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_B = board temperature °C

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd Mountain View, CA 94043	(415) 964-5111
MIL-SPEC and EIA/JESD (JEDEC) specifications (Available from Global Engineering Documents)	800-854-7179 or 303-397-7956
JEDEC Specifications	http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Part VIII Power Supply and Power Sequencing

This section provides design considerations for the MPC852T power supply. The MPC852T has a core voltage (VDDL) and PLL voltage (VDDSYN) which operates at a lower voltage than the I/O voltage VDDH. The I/O section of the MPC852T is supplied with 3.3V across VDDH and V_{SS} (GND).

The signal PA[0:3], PA[8:11], PB15, PB[24:25]; PB[28:31], PC[4:7], PC[12:13], PC15] PD[3:15], TDI, TDO, TCK, TRST, TMS, MII_TXEN, MII_MDIO are 5V tolerant. All inputs cannot be more than 2.5V greater than VDDH. In addition, 5 V tolerant pins can not exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- VDDL must not exceed VDDH during Power Up and Power Down.
- VDDL must not exceed 1.9 V, and VDDH must not exceed 3.465.

These cautions are necessary for the long term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power-up and the 1N5820 diodes regulate the maximum potential difference on power-down.

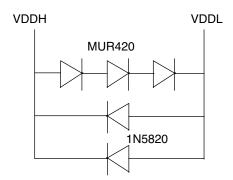


Figure 8-1. Example Voltage Sequencing Circuit

Part IX Mandatory Reset Configurations

The MPC852T requires a mandatory configuration during reset.

If Hardware Reset Configuration Word (HRCW) is enabled, by asserting the RSTCONF during HRESET assertion, the HRCW[DBGC] value needed to be set to binary X1 in the Hardware Reset Configuration Word (HRCW) and the SIUMCR[DBGC] should be programmed with the same value in the boot code after reset.

If Hardware Reset Configuration Word (HRCW) is disabled, by negating the $\overrightarrow{\text{RSTCONF}}$ during the $\overrightarrow{\text{HRESET}}$ assertion, the SIUMCR[DBGC] should be programmed with binary X1 in the boot code after reset.

The MBMR[GPLB4DIS], PAPAR, PADIR, PBPAR, PBDIR, PCPAR, and PCDIR are needed to be configured with the mandatory value in Table 9-1 in the boot code after the reset deasserts.

Register/Configuration	Field	Value (binary)
HRCW (Hardware Reset Configuration Word)	HRCW[DBGC]	0bX1
SIUMCR (SIU Module Configuration Register)	SIUMCR[DBGC]	0bX1
MBMR (Machine B mode Register)	MBMR[GPLB4DIS}	0
PAPAR (Port A Pin Assignment Register)	PAPAR[4-7] PAPAR[12-15]	0
PADIR (Port A Data Direction Register)	PADIR[4-7] PADIR[12-15]	1
PBPAR (Port B Pin Assignment Register)	PBPAR[14] PBPAR[16-23] PBPAR[26-27]	0

Table 9-1.	Mandatory	Reset	Configuration	of MPC852T
------------	-----------	-------	---------------	------------

Register/Configuration	Field	Value (binary)
PBDIR (Port B Data Direction Register)	PBDIR[14] PBDIR[16-23] PBDIR[26-27]	1
PCPAR (Port C Pin Assignment Register)	PCPAR[8-11] PCDIR[14]	0
PCDIR (Port C Data Direction Register)	PCDIR[8-11] PCDIR[14]	1

Table 9-1, Mandatory	v Reset Confi	guration of MPC852	Г
		guration of Mr 0002	•

Part X Layout Practices

Each V_{DD} pin on the MPC852T should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 μ F by-pass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC852T have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to *MPC866 User's Manual*, Section 14.4.3 Clock Synthesizer Power (VDDSYN, VSSSYN).

Part XI Bus Signal Timing

The maximum bus speed supported by the MPC852T is 66 MHz. Table 11-1 shows the frequency ranges for standard part frequencies.

Part Freq	50N	ЛНz	66N	ЛНz
	Min	Max	Min	Max
Core Freq	40	50	40	66.67
Bus Freq	40	50	40	66.67

Table 11-1. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Part Freq	50N	ЛНz	66N	ЛНz	801	ЛНz	100	MHz
	Min	Мах	Min	Max	Min	Max	Min	Мах
Core Freq	40	50	40	66.67	40	80	40	100
Bus Freq 2:1	20	25	20	33.33	20	40	20	50

Table 11-3 provides the bus operation timing for the MPC852T at 33 MHz, 40 Mhz, 50 MHz and 66 Mhz.

The timing for the MPC852T bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay

Table 11-3. Bus Operation Timings

Num	Characteristic	33 I	MHz	40 I	MHz	50 I	MHz	66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B1	Bus Period (CLKOUT) See Table 11-1	_	-	-	_	-	-	-	-	ns
B1a	EXTCLK to CLKOUT phase skew (-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1	_	1	_	1	ns
B1c	Frequency jitter on EXTCLK ¹	_	0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK ≥ 15 MHz	_	4	_	4	_	4	_	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz	_	5	_	5	_	5	_	5	ns
B2	CLKOUT pulse width low (MIN = 0.4 x B1, MAX = 0.6 x B1)	12.1	18.2	10.0	15.0	8.0	12.0	6.1	9.1	ns
B3	CLKOUT pulse width high (MIN = 0.4 x B1, MAX = 0.6 x B1)	12.1	18.2	10.0	15.0	8.0	12.0	6.1	9.1	ns
B4	CLKOUT rise time	_	4.00	_	4.00	_	4.00	_	4.00	ns
B5	CLKOUT fall time	_	4.00	—	4.00	—	4.00	—	4.00	ns

Num	Characteristic	33	MHz	40	MHz	50	MHz	66	MHz	11
Num		Min	Max	Min	Max	Min	Max	Min	Мах	Unit
B7	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) output hold (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	-	3.80	-	ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, BDIP, PTR output hold (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	_	ns
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), \overline{STS} output hold (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	-	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3) valid (MAX = 0.25 x B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B8a	CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR valid (MAX = 0.25 x B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} Valid ³ (MAX = 0.25 x B1 + 6.3)	_	13.80	_	12.50	_	11.30	_	10.00	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, PTR High-Z (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 x B1 + 6.0)	7.60	13.60	6.30	12.30	5.00	11.00	3.80	9.80	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 ²)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.80	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 x B1 + 4.8)	7.60	12.30	6.30	11.00	5.00	9.80	3.80	8.50	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} High-Z (MIN = 0.25 x B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to $\overline{\text{TEA}}$ assertion (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns

Nissaa	Oh ave stavistic	33	MHz	40 I	MHz	50	MHz	66 I	11	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 x B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B16a	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.50	_	4.50	_	4.50	_	4.50	_	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ³ (4MIN = 0.00 x B1 +.000)	4.00	_	4.00	_	4.00	-	4.00	_	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = 0.00 x B1 + 1.00 ⁴)	1.00	_	1.00	_	1.00	_	2.00	_	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	-	2.00	_	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 5 (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 5 (MIN = 0.00 x B1 + 1.00 6)	1.00	_	1.00	_	1.00	_	2.00	-	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 7 (MIN = 0.00 x B1 + 4.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 7 (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00)	_	8.00	_	8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns

	a	33	MHz	40	MHz	50 I	MHz	66 I	MHz	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B25	CLKOUT rising edge to \overline{OE} , WE(0:3)/BS_B[0:3] asserted (MAX = 0.00 x B1 + 9.00)	_	9.00		9.00		9.00		9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90	_	29.30	_	23.00	_	16.90	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to WE(0:3)/BS_B[0:3] negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	_	9.00	_	9.00	_	9.00	_	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to WE(0:3)/BS_B[0:3] negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 (MAX = $0.375 \times B1 + 6.6$)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	_	18.00	_	18.00	_	14.30	_	12.30	ns
B29	WE(0:3)/BS_B[0:3] negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

		33	MHz	40 N	ИНz	50 N	MHz	66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Мах	Unit
B29a	WE(0:3)/BS_B[0:3] negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	—	10.50	_	8.00	_	5.60	_	ns
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B29d	WE(0:3)/BS_B[0:3] negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29f	WE(0:3/BS_B[0:3]) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29h	WE(0:3)/BS_B[0:3] negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B30	\overline{CS} , $\overline{WE}(0:3)/BS_B[0:3]$ negated to A(0:31), BADDR(28:30) Invalid GPCM write access ⁸ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Num	Oh ann atamiatia	33 MHz 40 MHz	50 I	MHz	66 MHz		11::+			
Num	Characteristic	Min	Max	Min	Мах	Min	Мах	Min	Мах	Unit
B30a	$\label{eq:weighted} \hline WE(0:3)/BS_B[0:3] \mbox{ negated to} \\ A(0:31), \mbox{ BADDR}(28:30) \mbox{ Invalid} \\ GPCM, \mbox{ write access, TRLX = 0,} \\ CSNT = 1, \mbox{ CS negated to } A(0:31) \\ \mbox{ invalid GPCM write access TRLX = 0,} \\ CSNT = 1 \mbox{ ACS = 10, or } ACS == 11, \\ EBDF = 0 \mbox{ (MIN = } 0.50 \ x \mbox{ B1 - } 2.00) \\ \hline \hline \end{tabular}$	13.20	_	10.50	_	8.00	_	5.60	_	ns
B30b	$\label{eq:weighted_states} \begin{array}{l} \overline{\text{WE}}(0:3)/\text{BS}_{B}[0:3] \text{ negated to} \\ A(0:31) \text{ Invalid GPCM BADDR}(28:30) \\ \text{invalid GPCM write access, TRLX = 1,} \\ \text{CSNT = 1. } \overline{\text{CS}} \text{ negated to } A(0:31) \\ \text{Invalid GPCM write access TRLX = 1,} \\ \text{CSNT = 1, } ACS = 10, \text{ or } ACS = 11 \\ \text{EBDF = 0} (\text{MIN} = 1.50 \times \text{B1} - 2.00) \end{array}$	43.50	_	35.50	_	28.00	_	20.70	_	ns
B30c	$\label{eq:weighted} \begin{array}{l} \overline{\text{WE}}(0:3)/\text{BS}_{B}[0:3] \text{ negated to} \\ A(0:31), \text{ BADDR}(28:30) \text{ invalid} \\ \text{GPCM write access, TRLX = 0, CSNT} \\ = 1. \overline{\text{CS}} \text{ negated to } A(0:31) \text{ invalid} \\ \text{GPCM write access, TRLX = 0, CSNT} \\ = 1 \text{ ACS} = 10, \text{ ACS} = = 11, \text{ EBDF} = 1 \\ (\text{MIN} = 0.375 \text{ x B1} - 3.00) \end{array}$	8.40	_	6.40	_	4.50	_	2.70	_	ns
B30d	$\overline{WE}(0:3)/BS_B[0:3] \text{ negated to} \\ A(0:31), BADDR(28:30) \text{ invalid} \\ GPCM write access TRLX = 1, CSNT \\ =1, \overline{CS} \text{ negated to } A(0:31) \text{ invalid} \\ GPCM write access TRLX = 1, CSNT \\ = 1, ACS = 10 \text{ or } 11, EBDF = 1 \\ \end{array}$	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to \overline{CS} valid - as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid- as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns

	Characteristic	33	MHz	40 MHz		50 MHz		66 MHz		Unit
Num		Min	Max	Min	Max	Min	Max	Min	Мах	
B32	CLKOUT falling edge to \overline{BS} valid- as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid - as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to \overline{BS} valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to CS valid - as requested by CST2 in the corresponding word in UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B35	A(0:31), BADDR(28:30) to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Num	Characteristic	33 MHz 40 M		VHz 50 M		MHz 66		MHz		
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁹ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	-	ns
B38	CLKOUT falling edge to UPWAIT valid ⁹ (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00	_	1.00	_	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹⁰ (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	-	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD	-	TBD	-	TBD	-	TBD	ns

¹ If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

² For part speeds above 50MHz, use 9.80ns for B11a.

- ³ The timing required for BR input is relevant when the MPC852T is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC852T is selected to work with external bus arbiter.
- ⁴ For part speeds above 50MHz, use 2ns for B17.
- ⁵ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁶ For part speeds above 50MHz, use 2ns for B19.
- ⁷ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
- ⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.
- ⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 11-16.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 11-19.

Figure 11-1 is the control timing diagram.

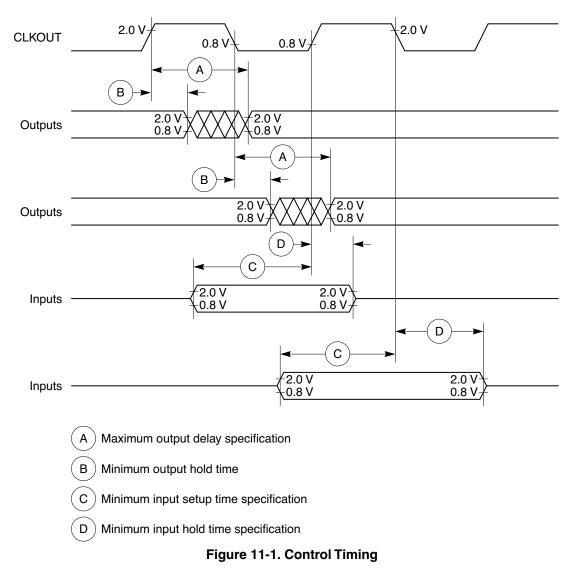


Figure 11-2 provides the timing for the external clock.

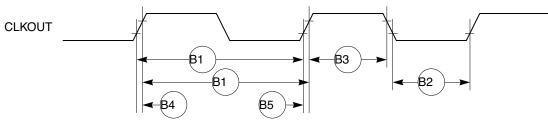


Figure 11-2. External Clock Timing

Figure 11-3 provides the timing for the synchronous output signals.

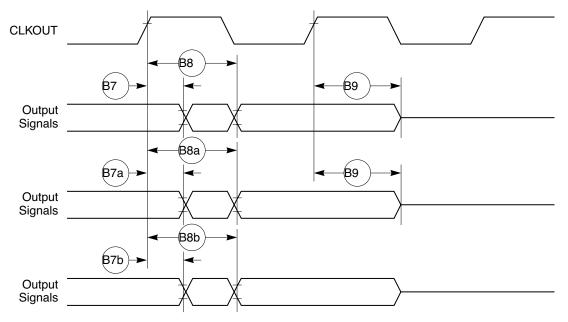
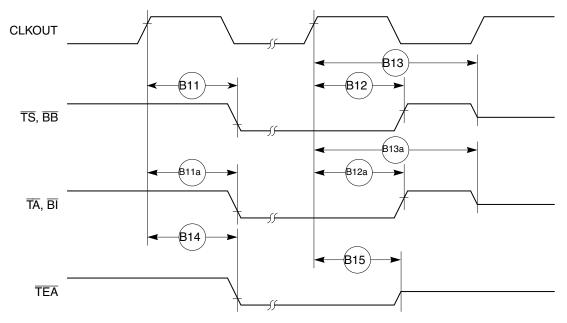
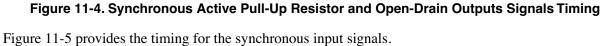




Figure 11-3. Synchronous Output Signals Timing

Figure 11-4 provides the timing for the synchronous active pull-up and open-drain output signals.

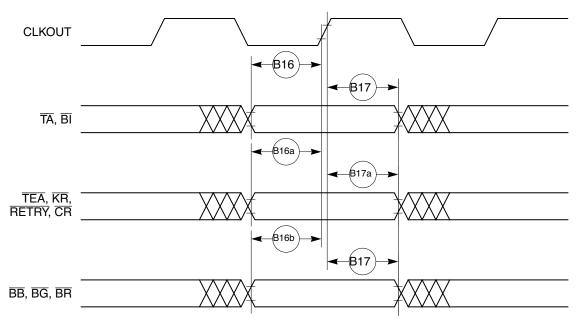


Figure 11-5. Synchronous Input Signals Timing

Figure 11-6 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

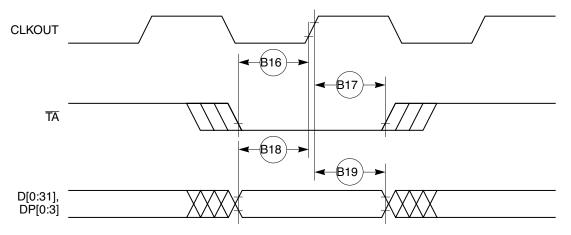


Figure 11-6. Input Data Timing in Normal Case

Figure 11-7 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

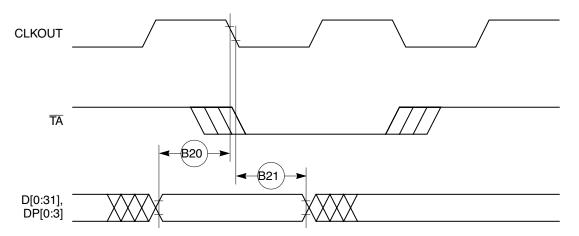


Figure 11-7. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 11-8 through Figure 11-11 provide the timing for the external bus read controlled by various GPCM factors.

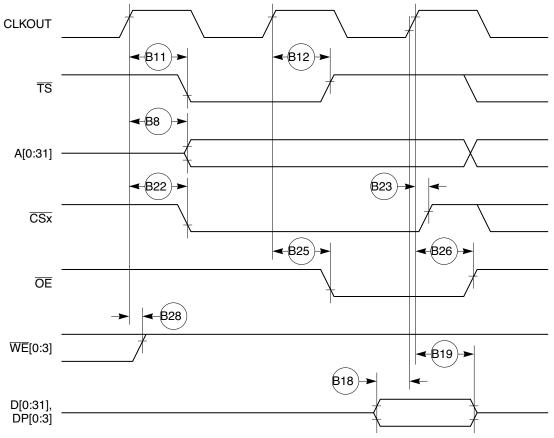
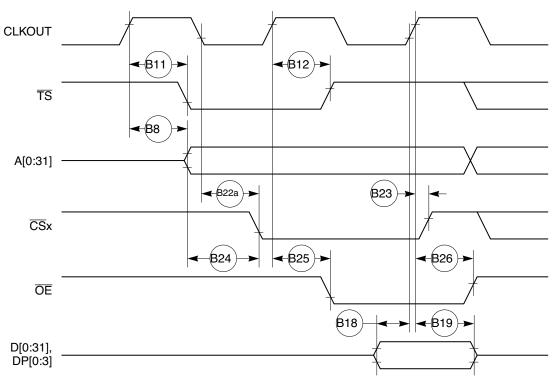
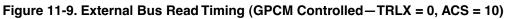




Figure 11-8. External Bus Read Timing (GPCM Controlled – ACS = 00)

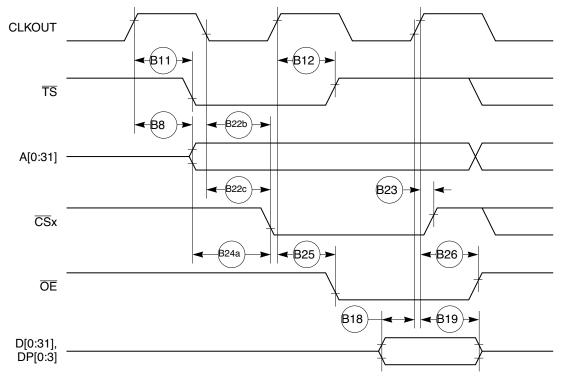


Figure 11-10. External Bus Read Timing (GPCM Controlled-TRLX = 0, ACS = 11)

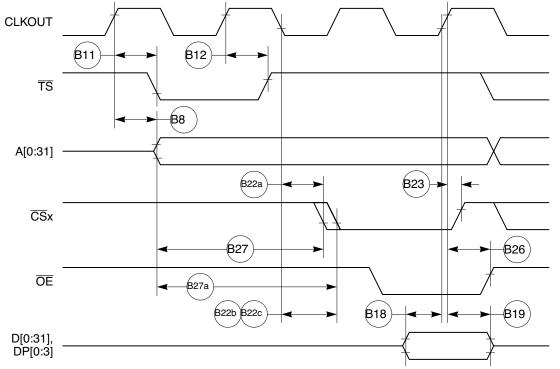


Figure 11-11. External Bus Read Timing (GPCM Controlled – TRLX = 1, ACS = 10, ACS = 11)

Figure 11-12 through Figure 11-14 provide the timing for the external bus write controlled by various GPCM factors.

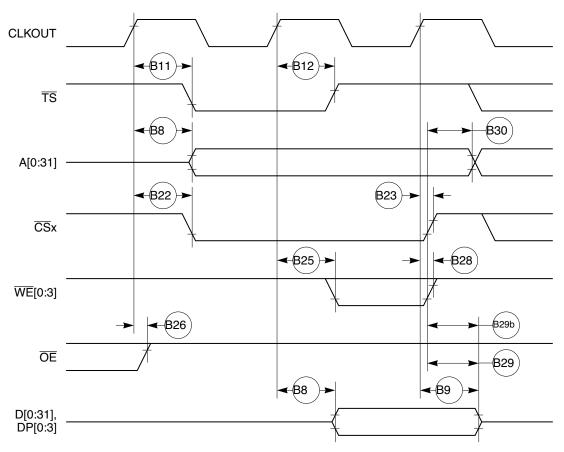


Figure 11-12. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

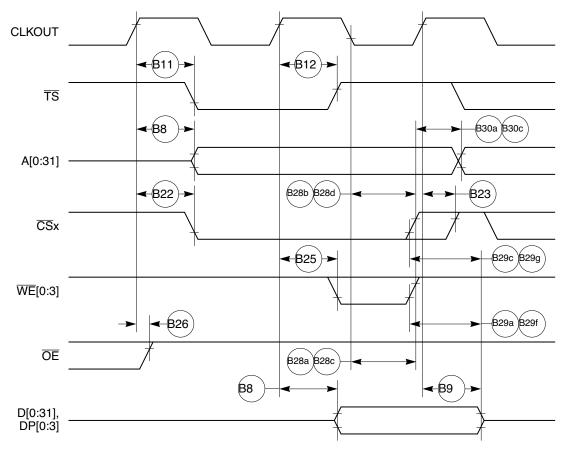


Figure 11-13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

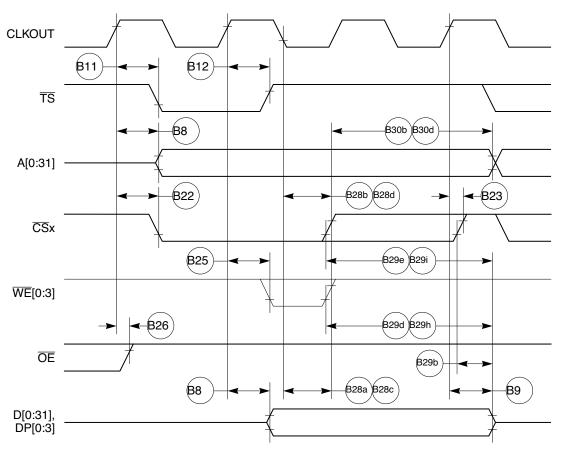


Figure 11-14. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 11-15 provides the timing for the external bus controlled by the UPM.

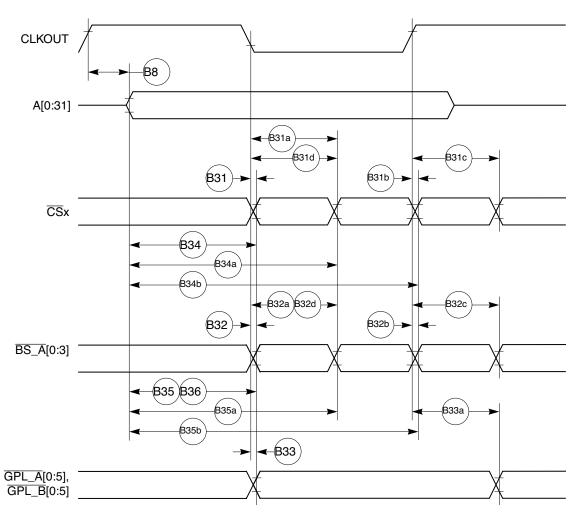


Figure 11-15. External Bus Timing (UPM Controlled Signals)

Figure 11-16 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

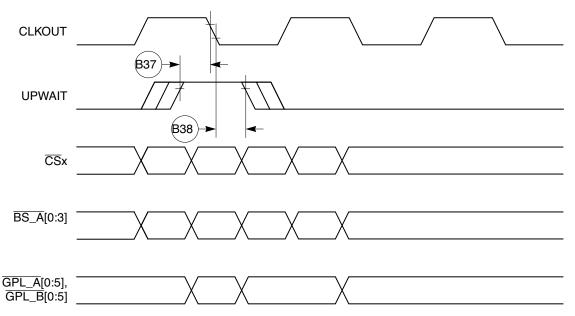
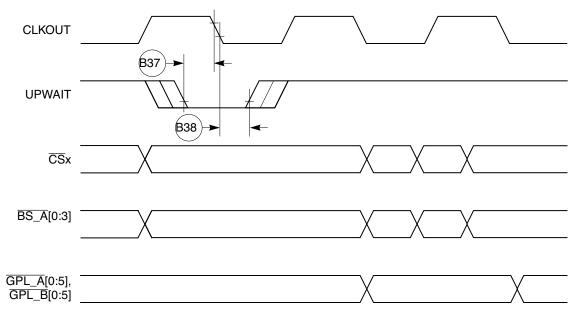



Figure 11-16. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 11-17 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 11-17. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Figure 11-18 provides the timing for the synchronous external master access controlled by the GPCM.

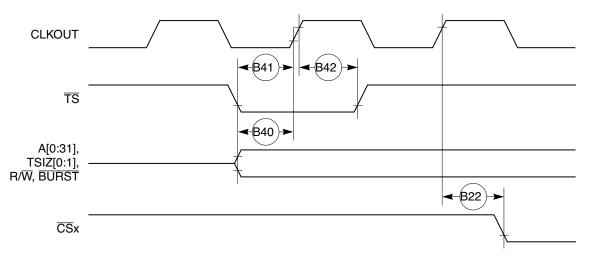
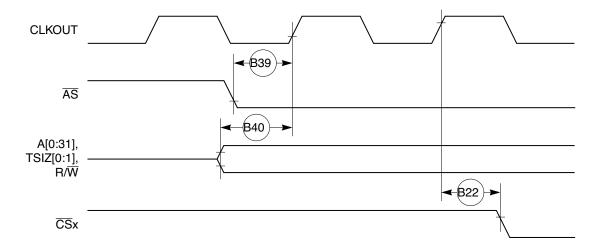



Figure 11-18. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 11-19 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 11-19. Asynchronous External Master Memory Access Timing (GPCM Controlled – ACS = 00)

Figure 11-20 provides the timing for the asynchronous external master control signals negation.

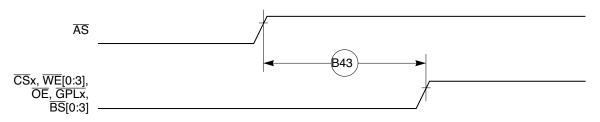


Table 11-4 provides interrupt timing for the MPC852T

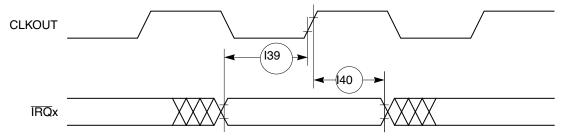

Num	Characteristic ¹	All Frequenc	Unit	
Num	Characteristic	Min	Max	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}		—

Table 11-4. Interrupt Timing

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the \overline{IRQ} lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC852T is able to support.

Figure 11-21 provides the interrupt detection timing for the external level-sensitive lines.

Figure 11-21. Interrupt Detection Timing for External Level Sensitive Lines

Figure 11-22 provides the interrupt detection timing for the external edge-sensitive lines.

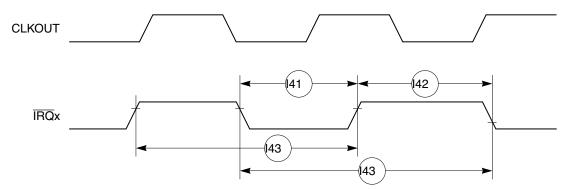


Figure 11-22. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11-5 shows the PCMCIA timing for the MPC852T.

Table 11-5. PCMCIA Timing

Nu m		33	MHz	40 I	MHz	50 MI	MHz	66 MHz		Uni
	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	t
J82	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted. ¹ (MIN = 0.75 x B1 - 2.00)	20.70		16.70	_	13.00	_	9.40	_	ns
J83	A(0:31), $\overline{\text{REG}}$ valid to ALE negation. ¹ (MIN = 1.00 x B1 - 2.00)	28.30	_	23.00	_	18.00	_	13.20	_	ns
J84	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
J85	CLKOUT to $\overline{\text{REG}}$ Invalid. (MIN = 0.25 x B1 + 1.00)	8.60	_	7.30	_	6.00	_	4.80	_	ns
J86	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
J87	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
J88	CLKOUT to PCOE, IORD, PCWE, IOWR assert time. (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
J89	CLKOUT to PCOE, IORD, PCWE, IOWR negate time. (MAX = 0.00 x B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
J90	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
J91	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)	_	15.60	_	14.30	_	13.00	_	11.80	ns
J92	PCWE, IOWR negated to D(0:31) invalid. ¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
J93	WAITA and WAITB valid to CLKOUT rising edge. ¹ (MIN = 0.00 x B1 + 8.00)	8.00	_	8.00	_	8.00	_	8.00	_	ns
J94	CLKOUT rising edge to \overline{WAITA} and \overline{WAITB} invalid. ¹ (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	_	2.00	_	2.00	—	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAITA signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITA assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC852T PowerQUICC User s Manual.

Figure 11-23 provides the PCMCIA access cycle timing for the external bus read.

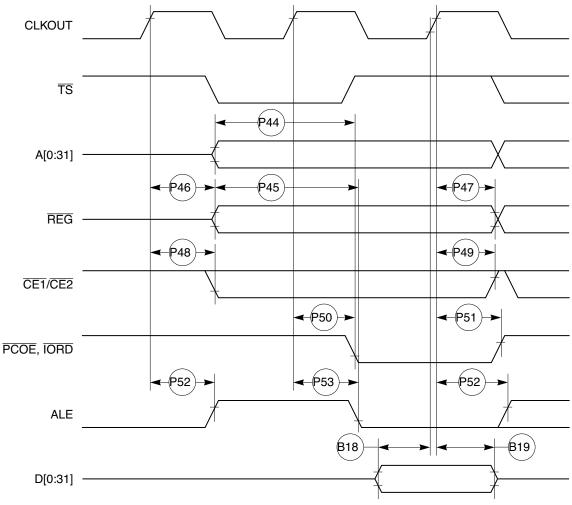


Figure 11-23. PCMCIA Access Cycles Timing External Bus Read

Figure 11-24 provides the PCMCIA access cycle timing for the external bus write.

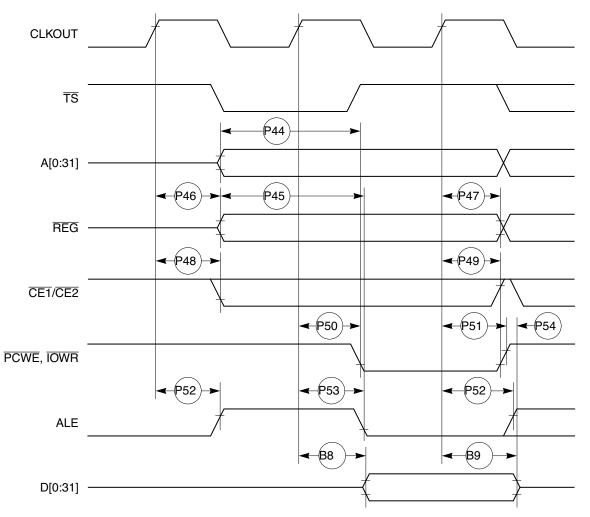
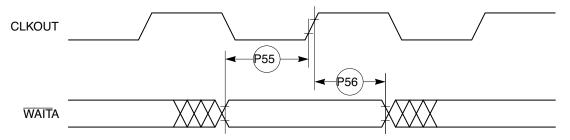
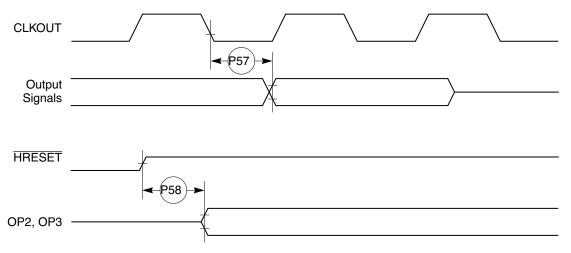


Figure 11-25 provides the PCMCIA $\overline{\text{WAIT}}$ signals detection timing.




Table 11-6 shows the PCMCIA port timing for the MPC852T.

Num	Characteristic	33	MHz	40 I	40 MHz 50 MHz		MHz	66 MHz		Unit	
	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Onit	
J95	CLKOUT to OPx Valid (MAX = 0.00 x B1 + 19.00)	_	19.00	_	19.00	_	19.00	_	19.00	ns	
J96	$\frac{\text{HRESET}}{\text{IRESET}} \text{ negated to OPx drive }^{1} (\text{MIN} = 0.75 \text{ x B1} + 3.00)$	25.70	_	21.70	_	18.00	_	14.40	_	ns	
J97	IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00)	5.00	—	5.00	_	5.00	—	5.00	_	ns	
J98	CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	—	1.00	_	1.00	_	ns	

Table 11-6. PCMCIA Port Timing

¹ OP2 and OP3 only.

Figure 11-26 provides the PCMCIA output port timing for the MPC852T.

Figure 11-26. PCMCIA Output Port Timing

Figure 11-27 provides the PCMCIA output port timing for the MPC852T.

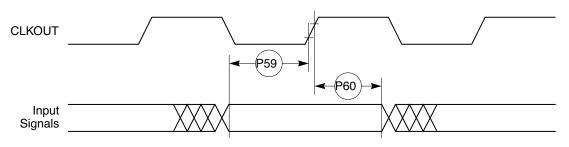


Figure 11-27. PCMCIA Input Port Timing

Table 11-7 shows the debug port timing for the MPC852T.

Num	Characteristic	All Frequenc	Unit	
Nulli	Unaracteristic	Min	Мах	Unit
J82	DSCK cycle time	3xT _{CLOCKOUT}		-
J83	DSCK clock pulse width	1.25xT _{CLOCKOUT}		-
J84	DSCK rise and fall times	0.00	3.00	ns
J85	DSDI input data setup time	8.00		ns
J86	DSDI data hold time	5.00		ns
J87	DSCK low to DSDO data valid	0.00	15.00	ns
J88	DSCK low to DSDO invalid	0.00	2.00	ns

Table 11-7. Debug Port Timing

Figure 11-28 provides the input timing for the debug port clock.

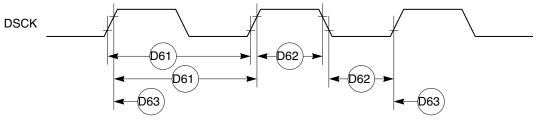


Figure 11-28. Debug Port Clock Input Timing

Figure 11-29 provides the timing for the debug port.

Figure 11-29. Debug Port Timings

Table 11-8 shows the reset timing for the MPC852T.

		33 MHz		40 MHz		50 MHz		66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
J82	CLKOUT to HRESET high impedance (MAX = 0.00 x B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
J83	CLKOUT to SRESET high impedance (MAX = 0.00 x B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
J84	RSTCONF pulse width (MIN = 17.00 x B1)	515.20	_	425.00	_	340.00	_	257.60	_	ns
J85	-	_	_	_	_	_	_	_	_	_
J86	Configuration data to HRESET rising edge set up time (MIN = 15.00 x B1 + 50.00)	504.50	_	425.00	_	350.00	_	277.30	_	ns
J87	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge set up time (MIN = 0.00 x B1 + 350.00)	350.00	_	350.00	_	350.00	_	350.00	_	ns
J88	Configuration data hold time after RSTCONF negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
J89	Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
J90	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J91	RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J92	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J93	DSDI, DSCK set up (MIN = 3.00 x B1)	90.90	_	75.00	_	60.00	_	45.50	_	ns
J94	DSDI, DSCK hold time (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
J95	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1)	242.40	_	200.00	_	160.00	_	121.20	_	ns

Table 11-8. Reset Timing

Figure 11-30 shows the reset timing for the data bus configuration.

Figure 11-30. Reset Timing—Configuration from Data Bus

Figure 11-31 provides the reset timing for the data bus weak drive during configuration.

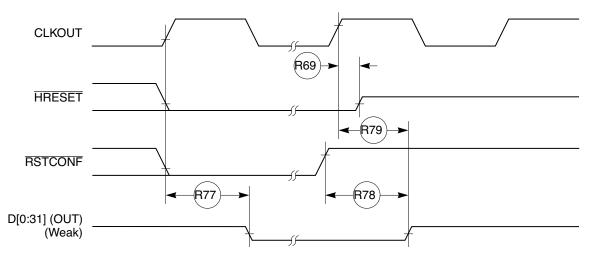


Figure 11-32 provides the reset timing for the debug port configuration.

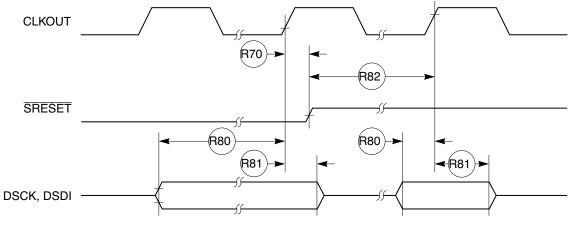


Figure 11-32. Reset Timing – Debug Port Configuration

Part XII IEEE 1149.1 Electrical Specifications

Table 12-1 provides the JTAG timings for the MPC852T shown in Figure 12-1 to Figure 12-4.

Table 12-1. JTAG Timing

Num	Characteristic	All Freq	Unit	
num	Characteristic		Max	Unit
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	-	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	-	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	-	50.00	ns
J93	TCK falling edge to output valid out of high impedance	-	50.00	ns
J94	TCK falling edge to output high impedance	-	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00	—	ns

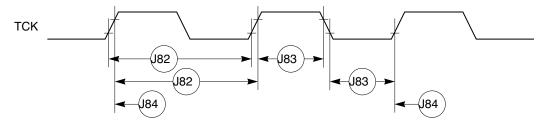


Figure 12-1. JTAG Test Clock Input Timing

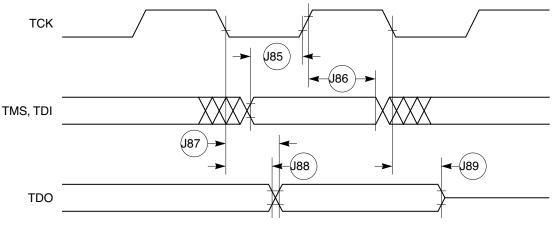


Figure 12-2. JTAG Test Access Port Timing Diagram

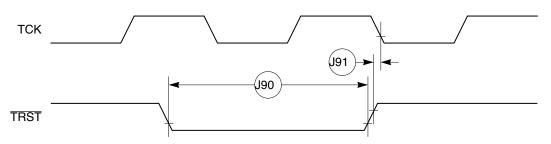


Figure 12-3. JTAG TRST Timing Diagram

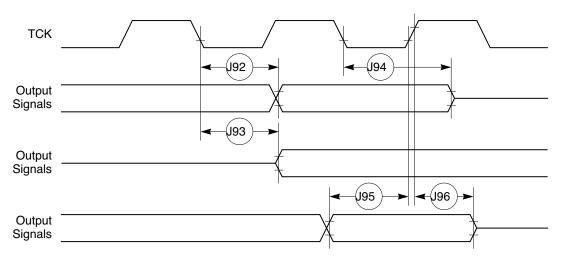


Figure 12-4. Boundary Scan (JTAG) Timing Diagram

Part XIII CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC852T.

13.1 Port C Interrupt AC Electrical Specifications

Table 13-1 provides the timings for port C interrupts.

Table 13-1.	Port C	: Interrupt	Timina
	I OIL C	micriapi	

Num	Characteristic		33.34 MHz		
	Unaracteristic	Min	Мах	Unit	
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns	
36	Port C interrupt minimum time between active edges	55		ns	

Figure 13-1 shows the port C interrupt detection timing.

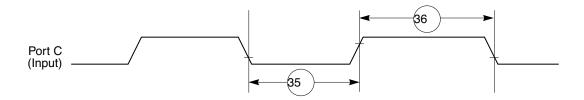


Figure 13-1. Port C Interrupt Detection Timing

13.2 IDMA Controller AC Electrical Specifications

Table 13-2 provides the IDMA controller timings as shown in Figure 13-2 to Figure 13-5.

Table 13-2. IDMA Controller Timing

Num	Characteristic		All Frequencies		
num			Max	Unit	
40	DREQ setup time to clock high	7	_	ns	
41	DREQ hold time from clock high	3	—	ns	
42	SDACK assertion delay from clock high	—	12	ns	
43	SDACK negation delay from clock low	—	12	ns	
44	SDACK negation delay from TA low	—	20	ns	
45	SDACK negation delay from clock high	—	15	ns	
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7	—	ns	

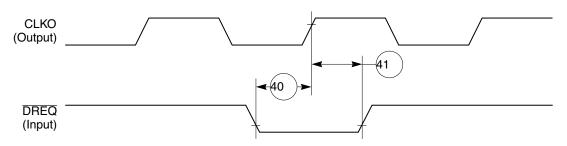


Figure 13-2. IDMA External Requests Timing Diagram

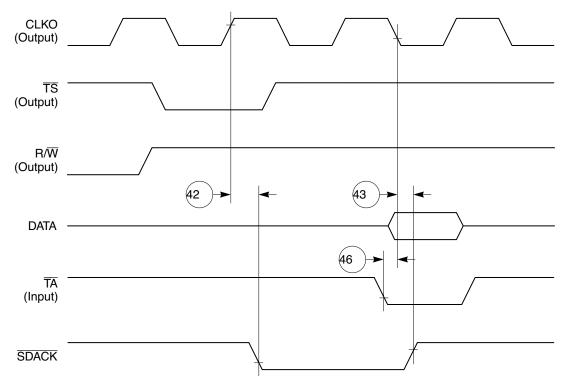


Figure 13-3. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

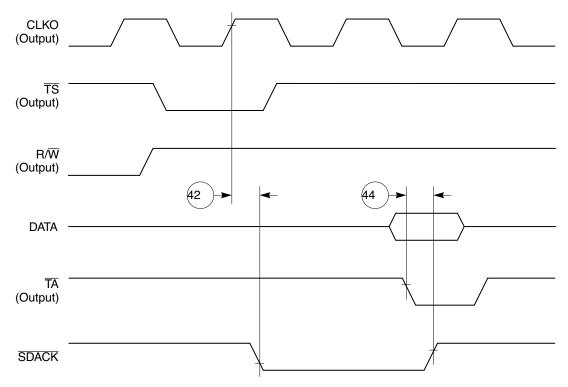


Figure 13-4. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

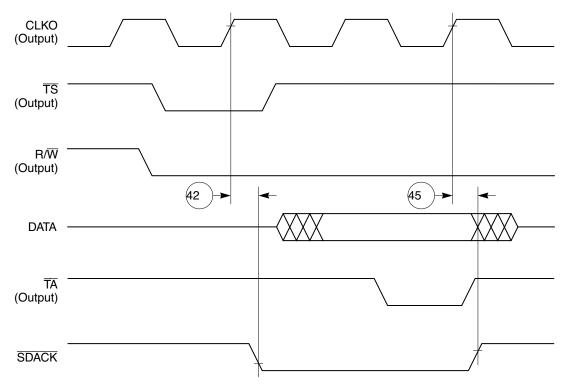


Figure 13-5. SDACK Timing Diagram – Peripheral Read, Internally-Generated TA

13.3 Baud Rate Generator AC Electrical Specifications

Table 13-3 provides the baud rate generator timings as shown in Figure 13-6.

Num	Characteristic	All Frequ	Unit	
	Characteristic	Min	Max	Unit
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

Table 13-3. Baud Rate Generator Timing

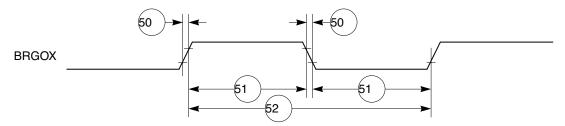


Figure 13-6. Baud Rate Generator Timing Diagram

13.4 Timer AC Electrical Specifications

Table 13-4 provides the general-purpose timer timings as shown in Figure 13-7.

Num	Characteristic	All Frequ	Unit	
		Min	Max	Unit
61	TIN/TGATE rise and fall time	10	—	ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

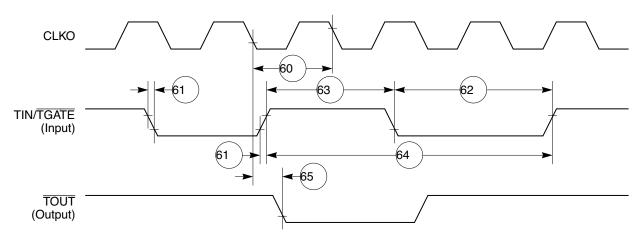


Figure 13-7. CPM General-Purpose Timers Timing Diagram

13.5 SCC in NMSI Mode Electrical Specifications

Table 13-5 provides the NMSI external clock timing.

Table 13-5. NMSI External	Clock Timing
---------------------------	---------------------

Num	Characteristic	All Frequencie	Unit	
Num	Characteristic	Min	Max	Unit
100	RCLK3 and TCLK3 width high ¹	1/SYNCCLK	_	ns
101	RCLK3 and TCLK3 width low	1/SYNCCLK +5	_	ns
102	RCLK3 and TCLK3 rise/fall time	_	15.00	ns
103	TXD3 active delay (from TCLK3 falling edge)	0.00	50.00	ns
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	50.00	ns
105	CTS3 setup time to TCLK3 rising edge	5.00	_	ns
106	RXD3 setup time to RCLK3 rising edge	5.00	_	ns
107	RXD3 hold time from RCLK3 rising edge ²	5.00	_	ns
108	CD3 setup Time to RCLK3 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK3 and SyncCLK/TCLK3 must be greater than or equal to 2.25/1.

² Also applies to \overline{CD} and \overline{CTS} hold time when they are used as an external sync signal.

Table 13-6 provides the NMSI internal clock timing.

Table 13-6. NMSI Internal Clock Timing

Num	Characteristic	A	II Frequencies	Unit
Num	Characteristic	Min	Мах	Unit
100	RCLK3 and TCLK3 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK3 and TCLK3 rise/fall time	—	_	ns

Num	Characteristic	A	I Frequencies	Unit
Num	Characteristic	Min	Мах	ns ns
103	TXD3 active delay (from TCLK3 falling edge)	0.00	30.00	ns
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	30.00	ns
105	CTS3 setup time to TCLK3 rising edge	40.00	_	ns
106	RXD3 setup time to RCLK3 rising edge	40.00	_	ns
107	RXD3 hold time from RCLK3 rising edge ²	0.00	_	ns
108	CD3 setup time to RCLK3 rising edge	40.00	_	ns

Table 13-6. NMSI Internal Clock Timing (continued)

¹ The ratios SyncCLK/RCLK3 and SyncCLK/TCLK3 must be greater or equal to 3/1.

² Also applies to \overline{CD} and \overline{CTS} hold time when they are used as an external sync signals.

Figure 13-8 through Figure 13-10 show the NMSI timings.

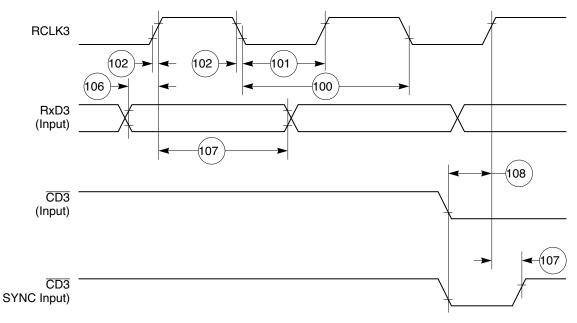
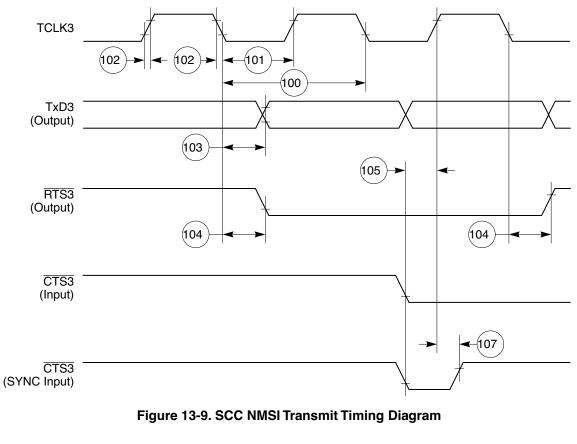



Figure 13-8. SCC NMSI Receive Timing Diagram

Ethernet Electrical Specifications

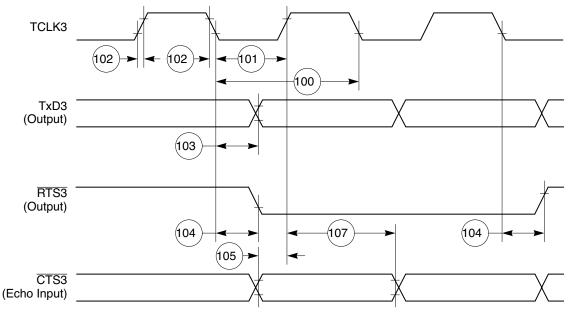


Figure 13-10. HDLC Bus Timing Diagram

13.6 Ethernet Electrical Specifications

Table 13-7 provides the Ethernet timings as shown in Figure 13-11 to Figure 13-15.

Num	Characteristic	All Fre	quencies	Unit
Num	Characteristic	Min	Max	
120	CLSN width high	40	-	ns
121	RCLK3 rise/fall time	_	15	ns
122	RCLK3 width low	40	-	ns
123	RCLK3 clock period ¹	80	120	ns
124	RXD3 setup time	20	-	ns
125	RXD3 hold time	5	-	ns
126	RENA active delay (from RCLK3 rising edge of the last data bit)	10	-	ns
127	RENA width low	100	-	ns
128	TCLK3 rise/fall time	_	15	ns
129	TCLK3 width low	40	-	ns
130	TCLK3 clock period ¹	99	101	ns
131	TXD3 active delay (from TCLK3 rising edge)	-	50	ns
132	TXD3 inactive delay (from TCLK3 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK3 rising edge)	10	50	ns
134	TENA inactive delay (from TCLK3 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK3 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK3 falling edge)	10	50	ns
137	REJECT width low	1	-	CLK
138	CLKO1 low to SDACK asserted ²	-	20	ns
139	CLKO1 low to SDACK negated ²	-	20	ns

Table 13-7. Ethernet Timing

¹ The ratios SyncCLK/RCLK3 and SyncCLK/TCLK3 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

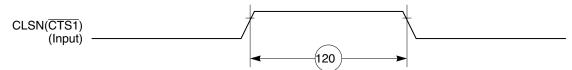


Figure 13-11. Ethernet Collision Timing Diagram

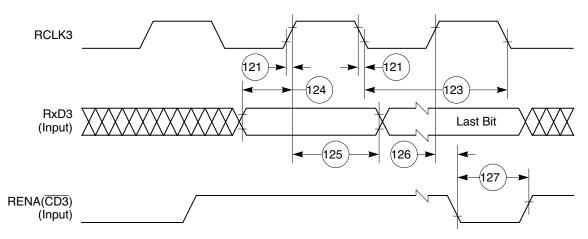


Figure 13-12. Ethernet Receive Timing Diagram

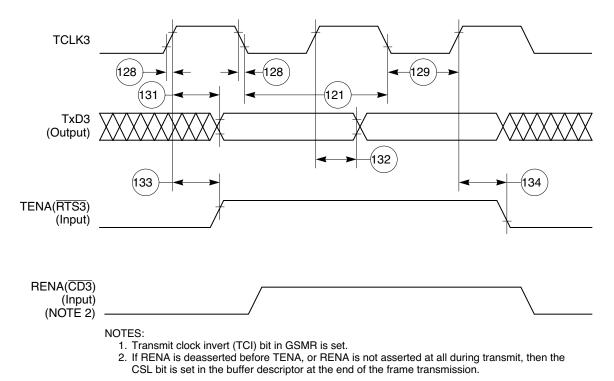


Figure 13-13. Ethernet Transmit Timing Diagram

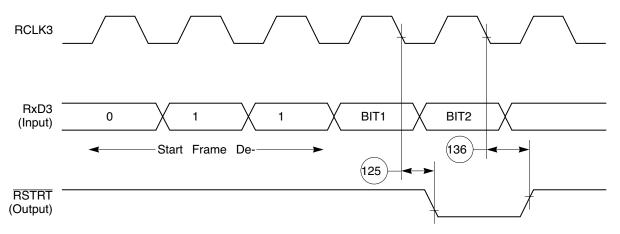


Figure 13-14. CAM Interface Receive Start Timing Diagram

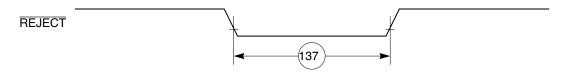


Figure 13-15. CAM Interface REJECT Timing Diagram

13.7 SPI Master AC Electrical Specifications

Table 13-8 provides the SPI master timings as shown in Figure 13-16 and Figure 13-17.

Table	13-8.	SPI	Master	Timing
-------	-------	-----	--------	--------

Num	Characteristic	All Frequ	iencies	Unit
Num	Characteristic	Min	Max	
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	15	—	ns
163	Master data hold time (inputs)	0	_	ns
164	Master data valid (after SCK edge)	_	10	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	_	15	ns
167	Fall time output	—	15	ns

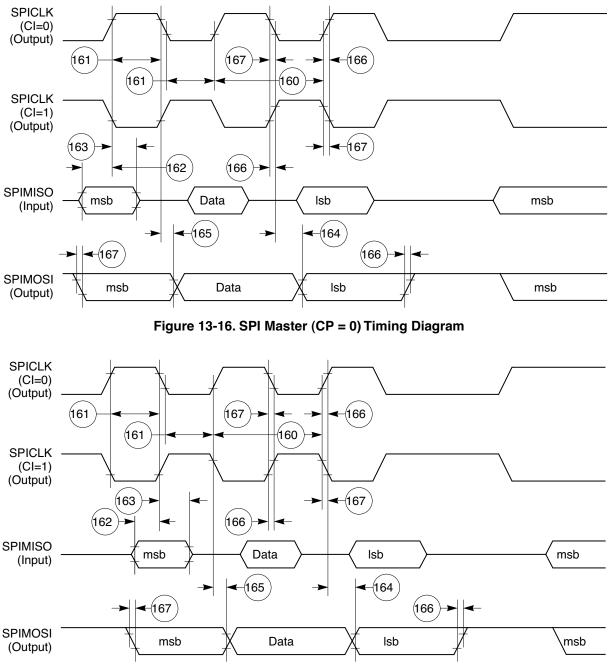


Figure 13-17. SPI Master (CP = 1) Timing Diagram

13.8 SPI Slave AC Electrical Specifications

Table 13-9 provides the SPI slave timings as shown in Figure 13-18 and Figure 13-19.

Num	Characteristic	All Frequ	iencies	Unit
Num		Min	Max — — —	
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	_	ns
172	Slave enable lag time	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	_	ns
176	Slave data hold time (inputs)	20	_	ns
177	Slave access time	—	50	ns

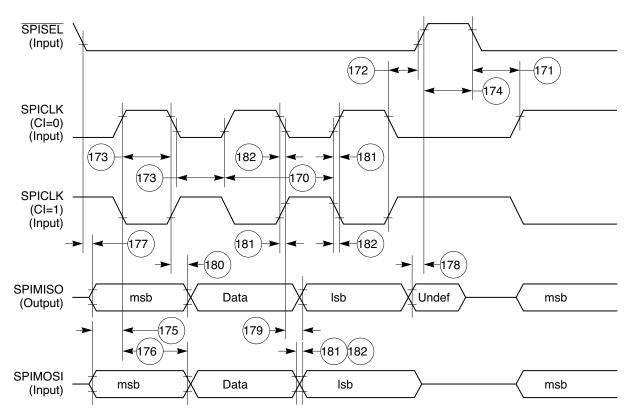
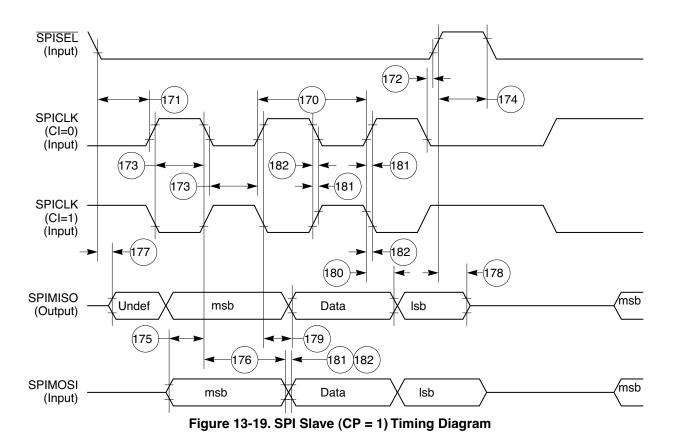



Figure 13-18. SPI Slave (CP = 0) Timing Diagram

Part XIV FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

14.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 14-1 provides information on the MII receive signal timing.

Table 14-1	. MII Re	eceive S	Signal	Timing
------------	----------	----------	--------	--------

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	-	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	-	ns

Num	Characteristic	Min	Max	Unit
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 14-1. MII Receive Signal Timing (continued)

Figure 14-1 shows MII receive signal timing.

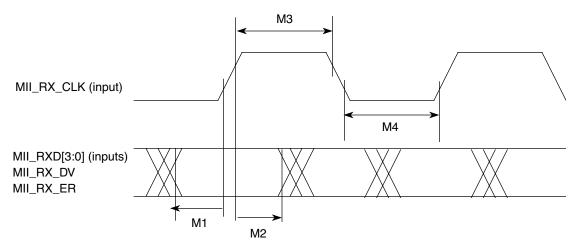


Figure 14-1. MII Receive Signal Timing Diagram

14.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%.

Table 14-2 provides information on the MII transmit signal timing,.

Table 14-2. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	—	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	_	25	
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period

Figure 14-2 shows the MII transmit signal timing diagram.

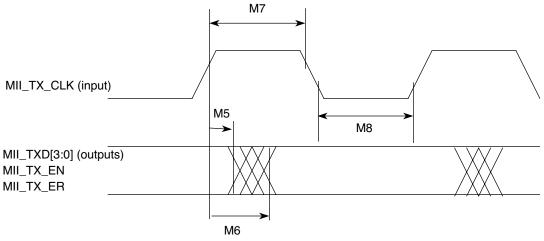


Figure 14-2. MII Transmit Signal Timing Diagram

14.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 14-3 provides information on the MII async inputs signal timing.

Table 14-3. MII Async Inputs Signal Timing

Num	Characteristic	Min	Max	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 14-3 shows the MII asynchronous inputs signal timing diagram.

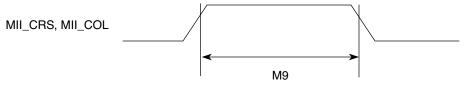


Figure 14-3. MII Async Inputs Timing Diagram

14.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 14-4 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Max	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 14-4. MII Serial Management Channel Timing

Figure 14-4 shows the MII serial management channel timing diagram.

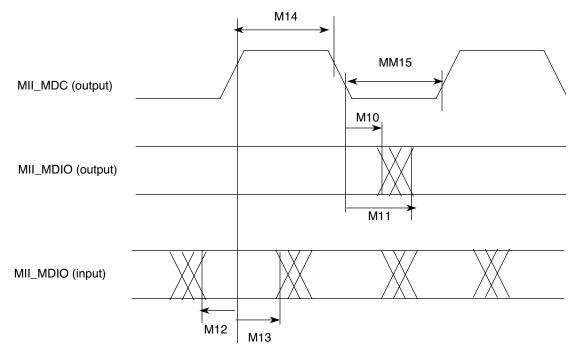


Figure 14-4. MII Serial Management Channel Timing Diagram

Part XV Mechanical Data and Ordering Information

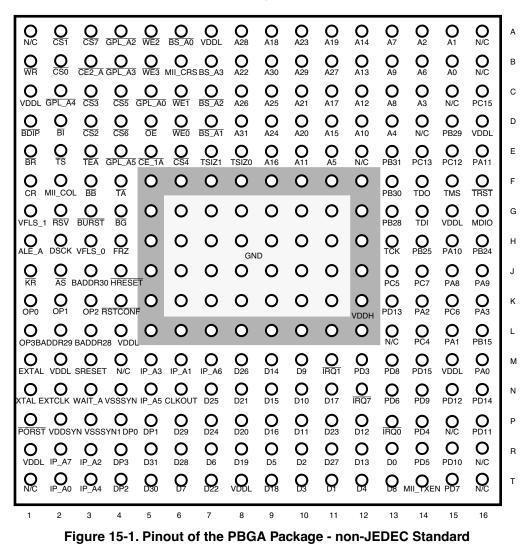

Table 15-1 identifies the packages and operating frequencies orderable for the MPC852T.

Table 15-1. MPC852T Package/Frequency Orderable

Package Type	Temperature (Tj)	Frequency (MHz)	Order Number
Plastic ball grid array (VR and ZT suffix)	0°C to 95°C	50	MPC852TVR50 MPC852TZT50
		66	MPC852TVR66 MPC852TZT66
		80	MPC852TVR80 MPC852TZT80
		100	MPC852TVR100 MPC852TZT100
Plastic ball grid array (CVR suffix)	-40°C to 100°C	66	TBD

15.1 Pin Assignments

Figure 15-1 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface. For additional information, see the *MPC866 PowerQUICC Family User's Manual*.

NOTE: This is the top view of the device.

Table 15-2 contains a list of the MPC852T input and output signals and shows multiplexing and pin assignments.

Table 15-2.	Pin	Assignments - n	on JEDEC Standard
-------------	-----	-----------------	-------------------

Name	Pin Number	Туре
A[0:31]	B15, A15, A14, C14, D13, E11, B14, A13, C13, B13, D12, E10, C12, B12, A12, D11, E9, C11, A9, A11, D10, C10, B8, A10, D9, C9, C8, B11, A8, B10, B9, D8	Bidirectional Three-state (3.3V only)
TSIZ0 REG	E8	Bidirectional Three-state (3.3V only)
TSIZ1	E7	Bidirectional Three-state (3.3V only)
RD/WR	B1	Bidirectional Three-state (3.3V only)

Name	Pin Number	Туре
BURST	G3	Bidirectional Three-state (3.3V only)
BDIP GPL_B5	D1	Output
TS	E2	Bidirectional Active Pull-up (3.3V only)
TĀ	F4	Bidirectional Active Pull-up (3.3V only)
TEA	E3	Open-drain
BI	D2	Bidirectional Active Pull-up (3.3V only)
IRQ2 RSV	G2	Bidirectional Three-state (3.3V only)
IRQ4 KR RETRY SPKROUT	J1	Bidirectional Three-state (3.3V only)
CR IRQ3	F1	Input (3.3V only)
D[0:31]	R13, T11, R10, T10, T12, R9, R7, T6, T13, M10, N10, P10, P12, R12, M9, N9, P9, N11, T9, R8, P8, N8, T7, P11, P7, N7, M8, R11, R6, P6, T5, R5	Bidirectional Three-state (3.3V only)
DP0 IRQ3	P4	Bidirectional Three-state (3.3V only)
DP1 IRQ4	P5	Bidirectional Three-state (3.3V only)
DP2 IRQ5	Τ4	Bidirectional Three-state (3.3V only)
DP3 IRQ6	R4	Bidirectional Three-state (3.3V only)
BR	E1	Bidirectional (3.3V only)
BG	G4	Bidirectional (3.3V only)
BB	F3	Bidirectional Active Pull-up (3.3V only)
FRZ IRQ6	H4	Bidirectional (3.3V only)
IRQ0	P13	Input (3.3V only)
IRQ1	M11	Input (3.3V only)
IRQ7 M_TX_CLK	N12	Input (3.3V only)
<u>CS</u> [0:5]	B2, A2, D3, C3, E6, C4	Output

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

Name	Pin Number	Туре
CS6	D4	Output
CS7	A3	Output
WE0 BS_B0 IORD	D6	Output
WE1 BS_B1 IOWR	C6	Output
WE2 BS_B2 PCOE	A5	Output
WE3 BS_B3 PCWE	B5	Output
BS_A[0:3]	A6, D7, C7, B7	Output
GPL_A0 GPL_B0	C5	Output
OE GPL_A1 GPL_B1	D5	Output
GPL_A[2:3] GPL_B[2:3] CS[2-3]	A4, B4	Output
UPWAITA GPL_A4	C2	Bidirectional (3.3V only)
GPL_A5	E4	Output
PORESET	P1	Input (3.3V only)
RSTCONF	К4	Input (3.3V only)
HRESET	J4	Open-drain
SRESET	МЗ	Open-drain
XTAL	N1	Analog Output
EXTAL	M1	Analog Input (3.3V only)
CLKOUT	N6	Output
EXTCLK	N2	Input (3.3V only)
ALE_A	H1	Output
CE1_A	E5	Output
CE2_A	ВЗ	Output
WAIT_A	N3	Input (3.3V only)
IP_A0	T2	Input (3.3V only)

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

Name	Pin Number	Туре
IP_A1	M6	Input (3.3V only)
IP_A2 IOIS16_A	R3	Input (3.3V only)
IP_A3	M5	Input (3.3V only)
IP_A4	ТЗ	Input (3.3V only)
IP_A5	N5	Input (3.3V only)
IP_A6	M7	Input (3.3V only)
IP_A7	R2	Input (3.3V only)
DSCK	H2	Bidirectional Three-state (3.3V only)
IWP[0:1] VFLS[0:1]	H3, G1	Bidirectional (3.3V only)
OP0	К1	Bidirectional (3.3V only)
OP1	К2	Output
OP2 MODCK1 STS	КЗ	Bidirectional (3.3V only)
OP3 MODCK2 DSDO	L1	Bidirectional (3.3V only)
BADDR[28:29]	L3, L2	Output
BADDR30 REG	J3	Output
ĀS	J2	Input (3.3V only)
PA11 RXD3	E16	Bidirectional (Optional: Open-drain) (5V tolerant)
PA10 TXD3	H15	Bidirectional (Optional: Open-drain) (5V tolerant)
PA9 RXD4	J16	Bidirectional (Optional: Open-drain) (5V tolerant)
PA8 TXD4	J15	Bidirectional (Optional: Open-drain) (5V tolerant)
PA3 CLK5 BRGO3 TIN3	K16	Bidirectional (5V tolerant)

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

Name	Pin Number	Туре
PA2 CLK6 TOUT3	К14	Bidirectional (5V tolerant)
PA1 CLK7 BRGO4 TIN4	L15	Bidirectional (5V tolerant)
PA0 CLK8 TOUT4	M16	Bidirectional (5V tolerant)
PB31 SPISEL	E13	Bidirectional (Optional: Open-drain) (5V tolerant)
PB30 SPICLK	F13	Bidirectional (Optional: Open-drain) (5V tolerant)
PB29 SPIMOSI	D15	Bidirectional (Optional: Open-drain) (5V tolerant)
PB28 SPIMISO BRGO4	G13	Bidirectional (Optional: Open-drain) (5V tolerant)
PB25 SMTXD1	H14	Bidirectional (Optional: Open-drain) (5V tolerant)
PB24 SMRXD1	H16	Bidirectional (Optional: Open-drain) (5V tolerant)
PB15 BRGO3	L16	Bidirectional (5V tolerant)
PC15 DREQ0	C16	Bidirectional (5V tolerant)
PC13 RTS3	E14	Bidirectional (5V tolerant)
PC12 RTS4	E15	Bidirectional (5V tolerant)
PC7 CTS3	J14	Bidirectional (5V tolerant)
PC6 CD3	K15	Bidirectional (5V tolerant)
PC5 CTS4 SDACK1	J13	Bidirectional (5V tolerant)

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

Name	Pin Number	Туре
PC4 CD4	L14	Bidirectional (5V tolerant)
PD15 MII_RXD3	M14	Bidirectional (5V tolerant)
PD14 MII_RXD2	N16	Bidirectional (5V tolerant)
PD13 MII_RXD1	K13	Bidirectional (5V tolerant)
PD12 MII_MDC	N15	Bidirectional (5V tolerant)
PD11 RXD3 MII_TX_ER	P16	Bidirectional (5V tolerant)
PD10 TXD3 MII_RXD0	R15	Bidirectional (5V tolerant)
PD9 RXD4 MII_TXD0	N14	Bidirectional (5V tolerant)
PD8 TXD4 MII_RX_CLK	M13	Bidirectional (5V tolerant)
PD7 RTS3 MII_RX_ER	T15	Bidirectional (5V tolerant)
PD6 RTS4 MII_RX_DV	N13	Bidirectional (5V tolerant)
PD5 MII_TXD3	R14	Bidirectional (5V tolerant)
PD4 REJECT3 MII_TXD2	P14	Bidirectional (5V tolerant)
PD3 REJECT4 MII_TXD1	M12	Bidirectional (5V tolerant)
TMS	F15	Input (5V tolerant)
TDI DSDI	G14	Input (5V tolerant)
TCK DSCK	H13	Input (5V tolerant)
TRST	F16	Input (5V tolerant)

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

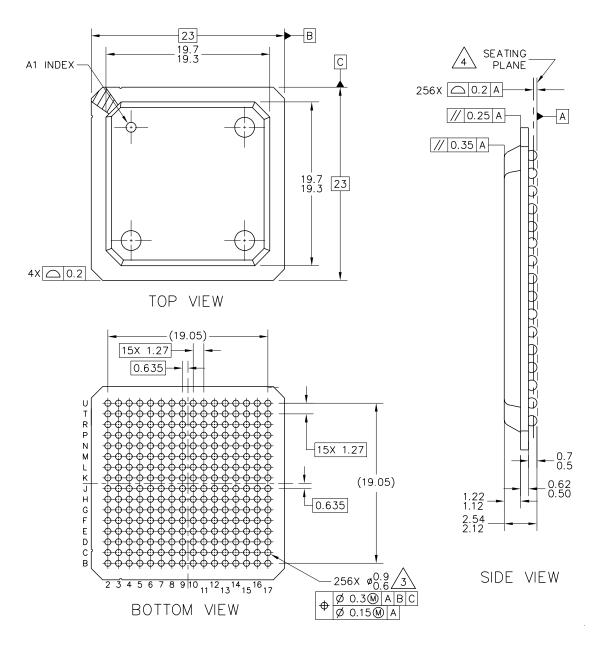

Name	Pin Number	Туре
TDO DSDO	F14	Output (5V tolerant)
MII_CRS	B6	Input
MII_MDIO	G16	Bidirectional (5V tolerant)
MII_TX_EN	T14	Output (5V tolerant)
MII_COL	F2	Input
VSSSYN	N4	PLL analog GND
VSSSYN1	P3	PLL analog GND
VDDSYN	P2	PLL analog VDD
GND	G6, G7, G8, G9, G10, G11, H6, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, J11, K6, K7, K8, K9, K10, K11	Power
VDDL	A7, C1, D16, G15, L4, M2, R1, M15, T8	Power
VDDH	F5, F6, F7, F8, F9, F10, F11, F12, G5, G12, H5, H12, J5, J12, K5, K12, L5, L6, L7, L8, L9, L10, L11, L12	Power
N/C	A1, A16, B16, C15, D14, E12, L13, M4, P15, R16, T1, T16	No-connect

Table 15-2. Pin Assignments - non JEDEC Standard (continued)

15.2 Mechanical Dimensions of the PBGA Package

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number: AN1231/D) available from your local Motorola sales office. Figure 15-2 shows the mechanical dimensions of the PBGA package.

Mechanical Dimensions of the PBGA Package

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

Note: Solder sphere composition is 95.5%Sn 45%Ag 0.5%Cu for MPC852TVRXXX Solder sphere composition is 62%Sn 36%Pb 2%Ag for MPC852TZTXXX

Figure 15-2. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

Part XVI Document Revision History

Table 16-1 lists significant changes between revisions of this document.

Table 16-1	. Document	Revision	History
------------	------------	----------	---------

Revision	Date	Changes
0	10/2002	Initial release
1	11/2002	Added values for 80 and 100 MHz
1.1	12/2002	Added Fast Ethernet Controller to the Features
1.2	1/2003	In Table 15-30, specified EXTCLK as 3.3V.
1.3	1/2003	Added subscripts to timing diagrams for B1-B35, to specify memory controller settings for the specific edges.
1.4	2/2003	Changed Table 15-30 Pin Assignments for the PLL Pins VSSSYN1, VSSSYN, VDDSYN
1.5	4/2003	Changed 5 Port C pins with interrupt capability to 7 Port C pins. Added the Note: Solder sphere composition for MPC852TVR and MPC852TCVR devices is 95.5%Sn 45%Ag 0.5%Cu to Figure 15-63
1.6	4/2003	Changed the package drawing in Figure 15-63
1.7	5/2003	Change the SPI Master Timing Specs. 162 and 164

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-480-768-2130 (800) 521-6274

JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre, 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

MPC852TEC/D