
NXP Semiconductors
Safety Manual

Document Number: MPC5777M_GMSM
Rev. 1.1, 10 Apr 2017

Safety Manual for MPC5777M

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors2

Table of Contents
1 Preface .3
2 General information .4

2.1 Mission profile .4
2.2 Functional safety – ISO 26262 compliance.4
2.3 Safety goals .5

2.3.1 Safe state. .5
2.4 Correct operation .6
2.5 Failure indication signaling .6
2.6 Failure indication time .7

2.6.1 Minimum failure indication time7
2.7 Failure handling. .8

3 Functional safety requirements for application software.9
3.1 Disabled modes of operation .9

3.1.1 Debug mode .9
3.1.2 Test mode .10

3.2 Initial checks and configurations10
3.2.1 I/O ball configuration .10
3.2.2 MCU configuration .11
3.2.3 Mode Entry (MC_ME) .12
3.2.4 Start-up configuration check13
3.2.5 Dual core lockstep mode13
3.2.6 FCCU fault reaction configuration13
3.2.7 Reset Generation Module (MC_RGM) 15
3.2.8 Self-test completion .17
3.2.9 MEMU initial checks .20
3.2.10 Flash memory configuration and tests.20
3.2.11 Voltage monitor configuration 21
3.2.12 Temperature monitoring configuration23
3.2.13 Clock monitoring configuration 24
3.2.14 System clock availability 25
3.2.15 Clock Generation Module (MC_CGM).25
3.2.16 PLL generated clocking26
3.2.17 XBAR configuration .26
3.2.18 Platform flash memory controller.26
3.2.19 Wake-Up Unit (WKPU) / External NMI 27
3.2.20 Cache .27
3.2.21 Software Watchdog Timer (SWT) 27
3.2.22 Analog to Digital Converters 28
3.2.23 Temperature sensor (TSENS)30

3.3 Runtime checks .30
3.3.1 General requirements .30
3.3.2 CRC of configuration registers.31
3.3.3 XBAR usage .32
3.3.4 System Memory Protection Unit (SMPU) 32
3.3.5 Platform flash memory controller.33
3.3.6 Flash memory .33
3.3.7 PRAMC configuration .35
3.3.8 RAM. .36
3.3.9 ECC Bypass using core registers and Indirect

Memory Access (IMA)38
3.3.10 Decorated Storage Memory Controller (DSMC) 39
3.3.11 Interrupt management 39
3.3.12 eDMA usage . 40
3.3.13 Reset Generation Module (MC_RGM). 40
3.3.14 Detection of unwanted resets. 41
3.3.15 Periodic Interrupt Timer (PIT). 47
3.3.16 System Timer Module (STM) usage 47
3.3.17 I/O and Peripheral Bridge. 47
3.3.18 System Integration Unit Lite (SIUL2) 50
3.3.19 GTM Wrapper. 50
3.3.20 External Bus Interface (EBI). 50
3.3.21 Reading analog inputs 51
3.3.22 Software Watchdog Timer (SWT) usage 51
3.3.23 Communication peripherals 51
3.3.24 Temperature sensor (TSENS) 52
3.3.25 Analog to Digital Converters 52
3.3.26 Mode Entry (MC_ME) 55
3.3.27 Semaphores (SEMA42) 55

3.4 Operational interference protection 55
3.4.1 Core Memory Protection Unit (CMPU). 55
3.4.2 System Memory Protection Unit (SMPU). 56
3.4.3 AIPS protection mechanism. 56
3.4.4 Register protection (REG_PROT) 57
3.4.5 Performance (Core_1) and Peripheral (Core_2)

Cores57
4 Functions of external devices for ASIL D applications 58

4.1 External reset output . 58
4.2 High impedance outputs . 58
4.3 External Watchdog (EXWD) . 59
4.4 Power supply . 59
4.5 Error Out Monitor (ERRM). 60

4.5.1 Both FCCU pins connected to external device. 61
4.5.2 Single FCCU pin connected to external device 61

5 Address decoding coverage . 63
5.1 Overview . 63
5.2 Test implementation. 63
5.3 Obtaining the list of locations to be read 69

Memories including block address decoding75
5.4 Test result . 79

Multiple single bit error in the same word-line79
6 Testing All-X in RAM . 81

6.1 Candidate address for testing All-X issue 81
6.2 ECC checkbit/syndrome coding scheme. 86

7 Further information . 91
7.1 Conventions and terminology 91
7.2 Acronyms and abbreviations . 91

8 Document revision history . 93

Preface

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 3

1 Preface
Assumption: This document provides guidelines for the proper use of the MPC5777M Microcontroller
Unit (MCU) in ASIL D applications. It will help guide the user with the steps necessary to integrate the
MPC5777M into their application.

Assumption: The MPC5777M will be used as a component within a safety related application. To allow
an analysis of the MCU's capability to reach the required safety level, assumptions have been made
(following the concept of SEooC described in the ISO26262). These assumptions are on the scope of the
MCU (for example, including external components interacting with the MCU) and on its usage by
application software. The FMEDA provided with the MPC5777M was conducted under inclusion of these
assumptions.

Assumption: [SCG18.098]A typical safety function operates by reading input from the MPC5777M's I/O
facilities (including network connections), processing this input possibly using, generating, and storing
results valid for several calculation cycles, and sending output to other system components (for example,
actuators or other MCUs) again using the MPC5777M's I/O facilities [end].

This document considers:

• The system assembly that contains the MPC5777M MCU

• The “Safety Element out of Context” section in the “Road vehicles - Functional safety - Part 10:
Guideline [ISO 26262-10:2012]” standard

• Certain assumptions about the assembly's functional safety needs based on that standard

and determines whether a measure is an assumption or not based on these factors.

What this means for designers using the MPC5777M is that if they don’t fulfill a specific Safety Manual
(SM) assumption they have to show that their alternative solution is similarly efficient concerning the
safety requirement in question (for example, provides the same coverage, avoids Common Cause Failure
(CCF) as effectively, and so on), show that the particular issue is irrelevant for their application (for
example, the module is not used), or estimate how much the failure rate increases and the failure metrics
(SPFM/LFM) decrease due to the deviation. Otherwise, the FMEDA provided with the MPC5777M is not
valid.

This document also contains guidelines on how to configure and operate the MPC5777M for ASIL D
applications. These guidelines are preceded by one of the following bold text statements:

• Implementation hint

• Recommendation

NOTE
Further information about safety configuration and operation can be found
in the MPC5777M Reference Manual’s “Functional Safety” chapter.

These guidelines are considered to be useful approaches for the specific topics under discussion, but are
not mandatory. The user will need to use discretion in deciding whether these measures are appropriate for
their applications.

This document is only valid under the assumption that:

Safety Manual for MPC5777M, Rev. 1.1

General information

NXP Semiconductors4

• Assumption: [SCG18.170]the MPC5777M is used in automotive applications for use cases
requiring a fail-silent or a fail-indicate MCU. [end]

• the environmental conditions given in the MPC5777M Data Sheet are maintained.

As for all devices, device errata must be taken into account during system design and implementation. For
a safety-related device such as the MPC5777M, this also concerns safety-related activities such as system
safety concept development. The FMEDA and Safety Concept are valid if the listed assumptions in the
text are covered.

Assumption: [SM_FMEDA_131] All relevant hardware safety mechanisms are enabled and configured
correctly when using any of the information in this document. [end]

General failure rate, or even an FMEDA (Failure Modes, Effects & Diagnostic Analysis) report, is
available upon request when covered by a NXP Semiconductors NDA (contact your NXP Semiconductors
representative).

2 General information

2.1 Mission profile
Lifetime for a MPC5777M is 20 years which is equivalent to 20000 hours of active operation for the MCU.
The assumed mission profile is:

• Lifetime: 20 years

• Total operating hours: 20000 hours

• Assumption: [SCG18.002] Trip time (driving cycle): 12 hours [end]

— This is the maximum time of operation of the MPC5777M without a start-up reset.

• Assumption: [SCG18.003] Fault-Tolerant Time Interval (FTTI, also known as Process Safety
Time, PST) = 10 ms[end]

— FTTI is the time the controlled system will not transition to a hazardous state, despite the
MPC5777M failing.

NOTE
This is a conservative estimate since the actual number depends on MCU
application (See Section 2.6, Failure indication time, for exact calculation
instructions).

The MPC5777M was designed to work within a maximum operational temperature profile (see the
Qorivva MPC5777M Microcontroller Data Sheet).

Assumption: [SM_FMEDA_001] The device is to be handled according to JEDEC standards J-STD-020
and J-STD-033. [end]

2.2 Functional safety – ISO 26262 compliance
Assumption: [SCG18.201]The MPC5777M MCU was developed in accordance with ISO 26262 as a
Safety Element out of Context (SEooC). [end]

General information

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 5

The MPC5777M is suitable to be used in safety-relevant applications including systems that are classified
as ISO 26262 ASIL A, ASIL B, ASIL C or ASIL D.

Assumption: [SCG18.202]The development process of the MPC5777M fulfills ASIL D requirements of
ISO 26262. [end]

2.3 Safety goals
The safety goals of the MCU are defined as follows:

• [SCG18.100]The primary safety goal is that the MPC5777M does not leave its safe states for
intervals equal or longer than the FTTI (10 ms) unless configured by the application software to do
so. [end]

• [SCG18.101]The secondary safety goal is that the MPC5777M, or the software running on the
MPC5777M, shall be able to detect the permanent unavailability of any safety mechanism that is
necessary to achieve the primary safety goal, and this shall be done at least once per driving cycle
(12 hours). [end]

The ASIL for the first goal is D, for the second it is B.

2.3.1 Safe state

A Safe state of the system is named Safe statesystem whereas the Safe state of the MPC5777M is named
Safe stateMCU. A Safe statesystem of a system is an operating mode without an unreasonable probability of
occurrence of physical injury or damage to the health of persons.

Assumption: [SCG18.004]The safety goals are achieved by transitioning or holding the MPC5777M in
the following Safe stateMCU:[end]

• Assumption: [SCG18.005]Completely unpowered [end]

• Assumption: [SCG18.006]In reset [end]

• Assumption: [SCG18.007]Operating correctly (See Section 2.4, Correct operation) [end]

• Assumption: [SCG18.008]Explicitly indicating an internal error [end]

If the MPC5777M continuously switches between a standard operating state and the reset state, without
any device shutdown, the MCU is not considered to be in a Safe stateMCU (See Section 3.2.7, Reset
Generation Module (MC_RGM) for details).

Assumption: [SM_FMEDA_002] The application shall identify and signal such switching as a failure
condition. [end]

If the MPC5777M signals an internal failure via its error out signals (FI[0], FI[1]), the surrounding
subsystem should no longer use the MPC5777M outputs for safety functions since these signals are no
longer considered reliable. This means that if an error is indicated, the system must be able to remain in a
Safe statesystem without any additional actions by the MCU. Depending on its configuration, the system
may disable or reset the MCU as a reaction to the error signal.

Assumption: [SCG18.009]It is assumed that the system reacts safely to the MPC5777M being in or
entering all safe states shown in Section 2.3.1, Safe state. [end]

Safety Manual for MPC5777M, Rev. 1.1

General information

NXP Semiconductors6

2.4 Correct operation
Assumption: [SCG18.010]Correct operation of the MPC5777M is defined as: [end]

• Assumption: [SCG18.011]Vital system modules (ViMos) and other supporting modules (SuMos)
are operating according to specification. [end]

• Assumption: [SCG18.012]Peripheral modules (PeMos) are operating according to specification.
[end]

• Assumption: [SCG18.013]Non-safety modules (NoSaMos) are not interfering with the operation
of other modules. [end]

• Other support modules (SuMo) are safety-relevant and in principle potential members of the
ViMos category, and cannot lead to a violation of the safety goal on their own. Typically, these will
only have multiple point faults, but not single point faults.

NOTE
[SCG18.902]See “Module classification” table in the MPC5777M
Reference Manual’s “Functional Safety” chapter for specific module safety
classification. [end]

2.5 Failure indication signaling
The Fault Collection and Control Unit (FCCU) offers a hardware channel to collect errors and to bring the
device to a Safe stateMCU when a failure is present in the device. The FCCU provides two error output pins
(bidirectional FI[0] and FI[1], on PB[11] and PC[2], respectively) as a failure indication to the external
world.

Different protocols for the error output pins are supported:

• Dual rail protocol

• Time switching protocol

• Bi-stable protocol

If bi-stable protocol is selected, it is possible to use only one of the two error output pins on the
MPC5777M. Since the pin multiplexing that is utilized for each of the error output signals works
differently, FI[0] should be the signal used in this configuration.

After start-up reset, the error output signal FI[0] is in high impedance while FI[1] is functionally a GPIO
input with a weak pullup. The error output pins transition to the operational state only on software request.

A functional reset has no influence on FI[0] but sets FI[1] to high impedance with a pullup. To avoid
changing FI[1] during functional reset when time switching or bi-stable protocol is used, it is
recommended to write 0 to FCCU_CFG[PS].

Refer to Section 4.5, Error Out Monitor (ERRM) for details on specific requirements for connecting FI[0]
and FI[1] to an external device.

General information

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 7

2.6 Failure indication time
Failure indication time is the time it takes from the occurrence of a failure to when the indication of that
failure is visible by driving the error out pins or by assertion of reset.

The failure indication time of the MPC5777M is finite. It must be taken into account when determining
application safety strategies since failure indication time plus reaction time on this indication by the system
must be less than the FTTI.

[SCG18.128]Failure indication time has three components, two of which are influenced by certain
configuration choices:
Failure indication time = recognition time + internal processing time + indication time.

Each component of failure indication time is briefly described as follows:

• Recognition time is the maximum of the recognition time of all involved safety mechanisms. The
two mechanisms with the longest times are:

— Recognition time related to the FMPLL loss of clock: This time depends on the FMPLL
configuration. This time is approximately 20 µs.

— Diagnostic cycle time of software self-tests. This time depends closely on the software
implemented.

• Internal processing time lasts a maximum 10 IRCOSC clock cycles (nominal frequency of
IRCOSC is 16 MHz).

• Indication time is the time to notify an observer about the failure. This time depends on the
indication protocol in the FCCU:

— Dual Rail protocol and time switching protocol –

— FCCU configured as “fast switching mode”: indication delay is
maximum 64 µs. As soon as the FCCU receives a fault signal, it
reports the failure to the outside world via an output pin (if properly
configured).

— FCCU configured as “slow switching mode”: an indication delay
could occur. The maximum delay is equal to the period of the error
out signal, which toggles at a frequency of 61 Hz.

— Bi-stable protocol: indication delay is maximum 64 µs. As soon as the FCCU receives a fault
signal, the FCCU reports the failure via an output pin (if properly configured).

If the configured reaction to a fault is an interrupt, an additional delay (interrupt latency) can occur until
the interrupt handler is able to start executing (for example, higher priority IRQs, XBAR contention,
register saving, and so on). [end]

Assumption: [SCG18.022]The overall failure indication time shall be less than the FTTI of the
application (assumed FTTI shown in Section 2.1, Mission profile). [end]

2.6.1 Minimum failure indication time

When a failure event occurs, one or both error output signals (Fn) are set to show an error condition for a
minimum time (T_min), even if software attempts to reset the state of the error out signals. The external

Safety Manual for MPC5777M, Rev. 1.1

General information

NXP Semiconductors8

failure indication stays in failure mode for a configurable minimum time as shown in Equation 1. For
bi-stable protocol the time DELTA_T is configurable by software up to a maximum of 10 ms by
configuring FCCU_DELTA_T[DELTA_T].

T_min = 250 μs + FCCU_DELTA_T[DELTA_T] μs Eqn. 1

In case another failure event happens within T_min after the first failure event, the timer measuring T_min
is restarted.

2.7 Failure handling
The FCCU is responsible for reacting to internal failures. A different reaction can be configured for each
failure source.

Failure sources include:

• All failure indication signals from the modules within the MCU

• Control logic and signals monitored by the FCCU itself

• Software-initiated failure indications

• External failure input (via FI[0] pin)

The different failure sources, as represented by the FCCU failure inputs, are shown in “FCCU failure
inputs” table in the “Functional Safety” chapter of the MPC5777M Reference Manual.

Available failure reactions include:

• Maskable interrupt

• Non-maskable interrupt

• Reset

• Change the state of the failure indication pin(s)

• No reaction

Additionally, the transmission capabilities of the communication controllers can be disabled when the
FCCU transitions to the error state (see “Disabling of communication controllers” in the “Functional
Safety” chapter of the MPC5777M Reference Manual).

Software can read the failure source that caused a fault from the FCCU_RF_S[0:3] registers and can do so
either before or after a functional reset. Software can also reset the failure by resetting the respective status
bit, but the external failure indication will stay in failure mode for a configurable amount of time (see
Equation 1).

Error handling can be split into two categories:

• Handling of errors during runtime

• Handling of errors during boot-time (for example, LBIST, MBIST)

Assumption: [SM_FMEDA_003] Runtime errors shall be handled in a time shorter than the FTTI. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 9

Assumption: [SM_FMEDA_004] Boot-time failure handling shall be handled before the safety function
starts execution. Typically, the reaction is to not let the safety function start and give a failure indication to
the user. [end]

3 Functional safety requirements for application
software

This section gives an overview of the necessary or recommended measures when using the individual
components of the MPC5777M. If a module in the MPC5777M is used without following the required
actions, there is a risk that the safety certificate for the entire MCU, or other modules if the failure
interferes with their operation, may be invalidated.

It is possible to ignore the required measures if equivalent measures to manage the same failures are
alternatively included.

Modules not explicitly covered by this document do not require any safety specific software measures.

To assist continuous product improvement, it is recommended to report field failures which occur despite
following these measures to NXP Semiconductors in accordance with ISO 26262-7 Chapter 6.4.2.1.

3.1 Disabled modes of operation
The system and application software must ensure that the functions described in this section are not
activated while running safety-relevant operations.

3.1.1 Debug mode

The debugging facilities of the MPC5777M are a potential source of failure when activated during the
operation of safety-relevant applications. They can halt the cores, cause breakpoint hits, write to core
registers and the address space, and activate boundary scan. The MCU must therefore not enter debug
mode to avoid interference with the normal operation of the application software.

The state of the JCOMP pin determines whether the system is being debugged or whether the system
operates in normal operating mode. When the JCOMP pin is logic low, the JTAGC TAP controller is kept
in reset for normal operating mode. When it is logic high, the JTAGC TAP controller is enabled and the
system can enter debug mode if requested. The system must ensure that it does not attempt to enable debug
mode by externally asserting the JCOMP pin during boot up. Otherwise, a fault condition signal will be
sent to the FCCU.

Assumption: [SCG18.023]Debugging will be disabled in the field while the device is being used for
safety-relevant functions. [end]

Assumption: [SCG18.024]For normal operation, software needs to configure any module that is safety
relevant (such as SWT) to continue execution during debug mode and to not freeze the module operation
if debug mode is entered. [end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors10

3.1.2 Test mode

Several mechanisms of the MPC5777M can be circumvented in test mode, undermining the safety
concept. Test mode is used for comprehensive factory testing and should not be used in normal operating
mode.

The TEST pin is for testing purposes only and should be allowed to float in the user application. The
system must ensure the TEST pin is not asserted during boot to enable test mode. (The TESTMODE pad
has an internal pull-down that is always active to keep it from asserting during normal operation.) The
activation of test mode is supervised by the FCCU and will signal a fault condition when test mode is
entered.

Assumption: [SCG18.025]Test mode will be disabled in the field while the device is being used for
safety-relevant functions. [end]

To avoid unwanted activation of the testing circuitry the Design For Testability (DFTn) FCCU error inputs
must be enabled even if they are not needed by the application. The FCCU channels for DFT[1:4] are 46
to 49, respectively. These error inputs are enabled by setting the appropriate bits in the following registers:

• FCCU_RF_CFG

• FCCU_RFS_CFG

• FCCU_RF_TOE

• FCCU_RF_E

• FCCU_IRQ_ALARM_EN

• FCCU_NMI_EN

• FCCU_EOUT_SIG_EN

3.2 Initial checks and configurations
After start-up, the application software must ensure the conditions described in this section are satisfied
before safety-relevant functions are enabled. Additional configuration is needed to ensure freedom from
interference between cores and between concurrent software (see Section 3.4, Operational interference
protection).

3.2.1 I/O ball configuration

Assumption: [SCG18.120]The user shall avoid configurations that place redundant signals on
neighboring pads or pins. [end]

[SCG18.121]To determine whether two functions on two package balls are adjacent to each other, refer to
the mechanical drawings of the packages (see the MPC5777M Data Sheet) together with the spheres
(balls) number information of the packages as seen in the MPC5777M Reference Manual’s “System
Integration Unit Lite2 (SIUL2)” section together with the ball information provided in the document
"MPC5777M_System_IO_Description_and_Input_multiplexing_tables" that is attached to the
MPC5777M Reference Manual. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 11

3.2.2 MCU configuration

Assumption: [SCG18.051]Safety software running on the Safety Core shall check correct initialization of
the MPC5777M before activating the safety-relevant functionality. [end]

NOTE
See the “DCF Client List” table in the “Device Configuration Format (DCF)
Records” chapter of the MPC5777M Reference Manual for details.

See the “IOP applies device settings” section in the “Reset and Boot”
chapter of the MPC5777M Reference Manual for details on the IOP phase
of the boot

The MCU memory configuration and the JTAG Part ID number can be read in the SSCM_MEMCONFIG
register (JTAG Part ID = SSCM_MEMCONFIG[JPIN]).

This information is normally used for debugging purposes, and is not necessary for the safety function.

Assumption: [SM_FMEDA_006]Application software does not use the JTAG Part ID, nor does it affect
safety critical operations. [end]

With the System Status and Configuration Module (SSCM) it is possible to configure different MCU
behaviors (for example, determine primary and HSM boot vector, abort disable/enable).

Assumption: [SM_FMEDA_008]SSCM shall be configured to trigger an exception in case of any access
to a peripheral slot not used on the device (SSCM_ERROR register). [end]

Assumption: [SM_FMEDA_009]After boot has completed, the application should perform an access to
unimplemented memory space and check for the expected abort to occur. [end]

The FCCU can be configured to trigger a NMI to the Safety Core if a fault is detected. In the case of a
functional reset, this NMI is masked by hardware and is unmasked during BAF execution. The NMI
service routine is executed as soon as the Safety Core is activated.

In the worst case, this flow can cause an unwanted functional reset loop. For example, assume a situation
which can not be recovered by software, and the NMI service routine can only trigger a functional reset.
After the reset, the BAF unmasks the NMI which triggers the Safety Core. Which cause the NMI to
execute again.

Assumption: Pending FCCU faults shall be cleared before enabling the Safety Core after a functional
reset.

Assumption: [SM_FMEDA_005]FMEDA assumes that the device is properly configured by the DCF
records in the UTEST sector of the flash memory to enable the Hardware Security Module (HSM)
I/O Processor (Core 2) handshaking during the boot phase. [end]

NOTE
See the “Reset sequence flow based on initial device condition” section of
the “Reset and boot” chapter of the MPC5777M Reference Manual for
details.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors12

From an application standpoint this means:

1. Do not activate the Safety Core automatically during or after the BAF.

2. Initialize the FCCU (may be preceded by a software reset of the FCCU).

3. Activate the Safety Core.

3.2.3 Mode Entry (MC_ME)

To overcome faults in the wakeup and interrupt inputs to the MC_ME, the following is assumed if the
application uses Low Power mode (LP):

• Assumption: [SM_FMEDA_010] The duration in LP mode is monitored. If the system does not
wake up within a specified time frame, the system will be reset by the monitor (for example, SWT
can provide the time monitoring). [end]

• Assumption: [SM_FMEDA_011]Software will perform a test of entry and exit to and from LP
mode at startup. [end]

An incorrect clock source as the system clock could be selected due to faults, resulting in multiple faults.
In order to improve detection of such faults, and the effect by the clock monitors:

• Assumption: [SM_FMEDA_012]It is assumed that the nominal frequency of different clock
sources that are available as the system clock have different frequencies. [end]

The mode configuration registers of MC_ME take effect only when the mode transition request is initiated.
Thus, instead of the configuration registers the global status register should be CRCed (if configuration
register CRCing is done) as that represents the current state.

Assumption: [SM_FMEDA_013] Application software shall check the target mode configuration
immediately before issuing a mode transition request. [end]

Assumption: [SM_FMEDA_014] In order to check that a mode transition has been correctly executed,
after initiating a mode transition request, software shall verify the mode transition status within the
expected completion delay. Also, the new configuration is compared with the intended configuration. This
does not apply if the target mode transition is to LP mode. [end]

NOTE
The MC_ME implements a register to request a mode transition and
registers that report the status of the transition (for example,
MC_ME_MCTL to request mode transitions, MC_ME_IMTS to provide
the cause of an invalid mode interrupt, and MC_ME_DMTS to show the
status of the mode transition).

The monitoring and types of reactions can be enabled in the FCCU for the following fault inputs1:

• [SM_FMEDA_015]Compensation disable (FCCU ch 53)[end]

• [SM_FMEDA_016]SAFE mode (FCCU ch 52)[end]

1.See the “Module classification” table in the MPC5777M Reference Manual’s “Functional Safety” chapter for spe-
cific module safety classification.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 13

3.2.4 Start-up configuration check

During boot, start-up software is not executed on the Safety Core.

Assumption: [SM_FMEDA_017]Safety software running on the Safety Core shall check correct
initialization of the MPC5777M before activating the safety-relevant functionality. This check shall not be
executed on the core executing the start-up software. [end]

3.2.5 Dual core lockstep mode

The MPC5777M device operates in delayed lockstep mode (LSM) to allow the highest safety level to be
reached. The Checker Core will receive all inputs delayed by two clock cycles. Outputs of the
Checker Core will be compared with outputs of the Master Core. Any differences will be flagged as an
error which will be processed by the FCCU.

For safety operation, the LOCKSTEP_EN bit in the flash memory UTEST miscellaneous DCF client must
not be set to disabled. If the LSM is disabled, the Checker Core and the Redundancy Checker Control
Units (RCCUs) are disabled. This triggers a fault indication to the FCCU. The Checker Core will not work
independently from the Master Core. No dynamic switching is possible between LSM on and LSM off
(any change to the LOCKSTEP_EN bit will only take effect after the next reset).

Before starting safety-relevant operations, the application software shall check that lockstep mode is
enabled (confirm MC_ME_CS[S_CORE1] = 1 (master) and MC_ME_CS[S_CORE2] = 1 (checker),
confirm that no failure is signalled on alarm #51, for example) and configure the FCCU to react to lockstep
disablement.

Assumption: [SCG18.027]Before starting safety-relevant operations, the application software shall check
that lockstep mode is enabled (for example, confirm MC_ME_CS[S_CORE1] = 1 (core_0, master) and
MC_ME_CS[S_CORE2] = 1 (core_0s, checker), and no failure is signalled on FCCU fault 51 (Lockstep
mode)), then configure the FCCU to react to lockstep disablement. [end]

3.2.6 FCCU fault reaction configuration

The Fault Collection and Control Unit (FCCU) collects faults and manages the reaction to these faults. A
mechanism is usually provided to allow software to check the integrity of the different error paths. Most
reactions are disabled at boot time so software configuration is required. Refer to Section 2.7, Failure
handling for the valid FCCU fault reactions.

Assumption: [SM_FMEDA_018]Application software shall check the FCCU configuration once after
programming. [end]

The FCCU is checked by the FCCU Output Supervision Unit (FOSU) which provides a secondary path
for the failure indication and reports to the Reset Generation Module (MC_RGM). The FOSU only causes
a reset if the FCCU fails to react to an enabled incoming enabled fault within a fixed time interval
(8000 IRCOSC cycles). The FOSU does not require software configuration. While the FCCU is in its
CONFIG state, the FOSU does not monitor the FCCU for faults or the resulting reaction.

Assumption: Application software shall check and clear any pending faults when it moves the FCCU out
of the CONFIG state.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors14

Assumption: [SM_FMEDA_019] Before starting safety-relevant operations, software must configure the
fault reactions to each fault that is safety-relevant for the application. [end]

To configure the fault reaction to each fault, the FCCU state machine is placed in the CONFIG state. Safety
analysis assumes that the CONFIG state of the FCCU is not a Safe stateMCU.

To avoid a stuck condition in the CONFIG state due to a failure, the FCCU implements an internal
watchdog which, in case of a timeout condition, automatically transitions the FCCU state machine from
CONFIG to NORMAL state and restores default values of the configuration registers (see section “FCCU
CFG Timeout Register (FCCU_CFG_TO)” in the MPC5777M Reference Manual).

NOTE
Implementation hint: Software must program the FCCU configuration
registers (for example, FCCU_RFS_CFGn, FCCU_NMI_ENn,
FCCU_EOUT_SIG_ENn) to configure the fault reaction of each fault.
These registers are writable only if the FCCU is in the CONFIG state.

Assumption: [SM_FMEDA_020] The integrity of the entire error reaction path shall be verified at least
once after the boot. [end]

NOTE
Different approaches to verify the functionality of the error reaction paths
can be used. Some error reaction paths are checked during LBIST and don’t
require the development of additional software, whereas others require
application software.

The table “FCCU failure inputs” from in the “Functional Safety” chapter of
the MPC5777M Reference Manual shows the suggested approach for each
FCCU failure input.

The FCCU will come out of reset with most of the failure inputs disabled. Failures which occur during
boot will, for the most part, not be acknowledged by the FCCU as a failure. To check whether such errors
have occurred, SW can read the FCCU failure status registers for any latched error and act on the status of
those bits accordingly (FCCU_RF_S[0:3]).

NOTE
The MPC5777M Reference Manual’s “FCCU failure inputs” table in the
“Functional Safety” chapter lists failure sources, associated FCCU channels
and how they can be tested.

The error indication on pins, FI[0] and FI[1], are controlled by the SIUL2 and FCCU. The field
SIUL2_MSCR[SMC] can be configured to have the output buffer disabled when the MPC5777M enters
Safe mode (for example, for FI[0], SIUL2_MSCR27[SMC] = 0, and for FI[1],
SIUL2_MSCR34[SMC] = 0). The FCCU_CFG register is used to configure other FI[n] options like signal
polarity, switching mode, software control, and so on.

Assumption: [SM_FMEDA_124] It is assumed that whenever error indication is enabled on FI[n], the
SMC bit in associated MSCR register are always programmed to 1 with register access protection enabled.
[end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 15

The FCCU together with the INTC, can lead to cyclic reset. For example consider the following situation:

1. Error indication arrives at FCCU

2. FCCU triggers IRQ

3. SW analyzes fault and causes a reset

4. MCU comes out of reset and hands over to SW

5. SW configures INTC

6. SW gets the same IRQ again (because FCCU still holds the IRQ line), analyzes fault and causes a
reset ad infinitum (or rather till the reset escalator engages and causes a destructive reset).

To avoid this situation the following assumption is considered.

Assumption: [SCG18.500]It is assumed that FCCU pending fault status should be cleared before the
INTC is configured. [end]

Since the NMI is edge triggered, even if it is kept active during a functional reset until the fault status is
cleared, it will not interrupt the Safety Core and the described cyclic reset can't be seen.

Assumption: [SCG18.900]If the clock driving the FCCU (IRCOSC) fails, software must find other ways
to signal an error other than using the FCCU control of the error output pin(s) (FI[n]). [end]

NOTE
There are different methodologies that could be used to satisfy this
assumption. For example, issuing a reset, or switching FI[n] pin control to a
GPIO and using it to drive an error signal instead of using FI[n].

Assumption: [SCG18.901] If the FCCU uses NMI as a failure reaction, the Safety Core will not be
enabled after a reset during the first mode transition of the MC_ME module but earliest at the second
transition which will initiated earliest several IRCOSC cycles after the first. [end]

Unwanted activation of LBIST/MBIST causes a violation of the safety goal.

Assumption: [SM_FMEDA_028] Software shall always enable FCCU reactions to error events indicating
unexpected STCU2 activations. [end]

3.2.7 Reset Generation Module (MC_RGM)

The MC_RGM is the central point for resetting the MCU. One of its tasks is to prevent reset cycling caused
by reset escalation. It also can transition to SAFE mode. The SAFE mode has not been considered a Safe
stateMCU during safety analysis.

Permanent cycling through otherwise safe states or permanent cycling between a safe state and an unsafe
state is considered a violation of the safety goal. Specifically, this scenario relates to a continuous
Reset – Start, Operation – Reset or Reset – Self-test – Reset sequence. Allowing such cycles would be
problematic as it would allow an unlimited number of attempts of the test that is causing the cycle which
could possibly endanger its ability to detect device failures.

To detect a loop of continuous functional resets, the MPC5777M supports functional reset escalation
which can be used to generate a destructive reset if the number of functional resets reaches the
programmed value. Once the functional reset escalation is enabled, the Reset Generation Module

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors16

(MC_RGM) increments a counter for each functional reset that occurs. When the number of functional
resets reaches the programmed value in the MC_RGM_FRET, the MC_RGM initiates a destructive reset.
The counter can be cleared by software, destructive reset or start-up reset.

A similar mechanism to detect a loop of continuous destructive resets is implemented in the MC_RGM.
When the destructive reset counter reaches the programmed value, the MCU will be held in reset until the
next power-on reset. The destructive reset counter can be cleared by software or by a power-on reset.

Assumption: [SCG18.028]Safety software will reset the functional and destructive reset counters every
time it has finished checking its environment (for example, before making the Fn pin active). [end] The
MC_RGM_FRET (functional reset counter) and MC_RGM_DRET (destructive reset counter) registers
allow the user to select the number of functional and destructive resets that can occur before action is taken
(see “Reset Generation Module (MC_RGM)” in the MPC5777M Reference Manual for details).

Assumption: [SM_FMEDA_022] Software shall enable functional reset escalation for the condition when
multiple functional resets occur consecutively. [end]

NOTE
Functional reset escalation is enabled by writing a non-zero value to the
MC_RGM_FRET register (see the MPC5777M Reference Manual’s ‘Reset
Generation Module (MC_RGM)).

Reset escalation is a hardware mechanism that provides protection against a loop of continuous resets. The
time between these loops can be so short that the application software doesn’t have time to take any action
to manage them. Longer reset cycles must be managed by application software.

Assumption: [SCG18.029]Before clearing the reset counters of the escalation mechanism, the safety
software shall ensure that longer reset cycles can be detected by the software. [end]

NOTE
There are various methods to implement this requirement. For example,
safety software, before clearing the reset counters, reads (and saves) the
FCCU error status indication (if any faults were found) and compares the
status with previous saved versions. If too many resets due to faults are
observed, software can react by triggering a destructive reset.

For some events, the MC_RGM can be configured to react not with a functional reset, but with a transition
to the SAFE mode (see the description of the MC_RGM_FEAR in the MPC5777M Reference Manual).
In such a case, one watchdog shall be kept enabled. If this watchdog times out, the FCCU shall move the
MCU into one of its safe states.

Assumption: [SCG18.030] If the MC_RGM is configured to react with a transition into SAFE mode, at
least one watchdog timer shall remain enabled. The FCCU shall be configured to react to a timeout of this
watchdog with a long functional reset or driving the error out signals to a fault condition. [end]

Assumption: [SM_FMEDA_023]Software will read the reset status after boot ensuring that the reset
cause is indicated. Then software will clear the register, and read back the value verifying that it is actually
cleared. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 17

Assumption: [SM_FMEDA_024]Resets during normal operation will be executed only as a reaction to
an error, not as a functional measure. This avoids undetected faults due to interrupts that are not being
generated. [end]

3.2.8 Self-test completion

To ensure absence of latent faults, the self-test executes both a Logic Built-In Self-Test (LBIST) and a
Memory Built-In Self-Test (MBIST) during boot while the device is still under reset (offline). The boot
time BIST includes the scan-based LBIST to test the digital logic and the MBIST to test all RAMs and
ROMs1.

NOTE
The overall control of LBISTs and MBISTs is provided by the Self-Test
Control Unit (STCU2). The STCU2 will execute automatically after a
power-on reset2 (POR), external reset and destructive reset, and will also
execute when initiated by software (online self-test). The MPC5777M logic
is grouped into ten LBIST partitions used for both production testing and
self-test.

The MPC5777M Reference Manual’s “Self-Test Control Unit (STCU2)”
chapter and “Use cases and limitations” section discusses details on how to
correctly execute offline and online self-tests.

The section “Online Logical BIST (LBIST)” of the MPC5777M Reference
Manual’s “Functional safety chapter” shows tables of the module groupings
of each LBIST partition.

Assumption: [SCG18.125]If there is an LBIST failure, or MBIST detects uncorrectable failures, the
STCU2 will cause a destructive reset, causing execution of the self-test again. This is to ensure that a
self-test, which fails only due to a transient error, will not block device usage. If several self-tests fail in a
row, the desctructive reset escalation will activate and hold the MCU in reset. [end]

On the other hand, if MBIST detects correctable failures, software must decide whether to continue or halt
execution. In fact, the MBIST may detect and report two (or more) Single Bit Errors (SBEs) occurring in
multiple test passes instead of one Multiple Bit Error (MBE).

Assumption: [SM_FMEDA_025] Software will determine if two or more errors reported by the MBIST
as SBEs combine to create an uncorrectable error by examining the entries in the System RAM Memory
Management Unit (MEMU) instance. If several entries exist for the same address with different bit num-
bers, this data word actually has an MBE instead of the several SBEs discovered by the MBIST. [end]

Assumption: [SM_FMEDA_026] After start up (and more in general, always after the execution of
MBISTs), software will cross check MBIST status in the STCU2 (pass or fail) with the content of MEMU
MBIST buffer (same as system RAM) to detect failures affecting the reporting of MBIST errors. This can

1.This does not include flash memory.
2.The customer must enable the self-test in the shadow sector of the flash memory since the factory default configu-
ration will be to not run the self-test).

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors18

be due to faults affecting the reporting path for MEMU or STCU2 logic. (notice that STCU2 is not part of
any LBIST partition and only a pass/fail flag is available). [end]

Assumption: [SCG18.031]After start-up and before the safety application starts, application software
shall confirm that all LBISTs and MBISTs finished successfully, MISRs contain the expected values, and
no critical failure is flagged. The critical failures may include LBIST failures, MBIST MBEs, MBIST
SBEs exceeding the maximum tolerated number (<= 8 due to MEMU buffer size) and self-test failures.
[end]

NOTE
See the “Off-Line Self-Test Sequence” section in the MPC5777M Reference
Manual for details about test sequencing and completion validation.

The STCU2, as well as LBIST and MBIST controllers, are themselves subject to failures, which may
prevent self-tests from executing correctly (for example, no self-test execution, or execution of the wrong
algorithm). For latent faults affecting LBIST execution, checking the MISR register upon LBIST
completion is considered sufficient. For MBIST only a pass/fail flag is provided (besides the collection of
detected MBIST errors in the MEMU).

The following must be followed to improve the detection of latent faults, particularly those affecting
correct MBIST execution:

• Recommendation: LBIST should be scheduled before MBIST since LBISTs also cover the logic
running memory self-tests and the MEMU BIST error collection logic/buffers; this will help to
detect latent faults responsible for the wrong or incomplete execution of memory self tests or
wrong reporting of their results.

• Recommendation: The STCU2 CRC feature should be enabled to check that the signals
exchanged between the STCU2 and MBIST/LBIST controllers are correct (for example, STCU2
commands and LBIST/MBIST responses).

NOTE
The expected signature depends on the sequence of tests. Customers can
determine the expected signature by running the desired sequence of tests
and reading the resulting CRC upon test completion. One signature must be
computed for each test sequence (for example, one for the start-up test
sequence and one for each on-line test performed).

As far as the STCU2 error reaction path is concerned, the following are given:

• Assumption: [SM_FMEDA_027] SW will check the integrity of the STCU2 Unrecoverable
Fault/Recoverable Fault (UF/RF) error lines that signal the FCCU and the MC_RGM (UF only)
via the fake error injection register interface provided by STCU2. Before running the test, FCCU
and MC_RGM shall be configured in order not to cause undesired reaction. [end]

• Recommendation: During the execution of the safety function, and when no on-line self-test is
requested, software should disable the FCCU and MC_RGM reactions to STCU2 UF/RF error
indications to avoid false trip to the safe state or interference in case of unexpected error
indications.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 19

The STCU2 provides a key-based mechanism to prevent unauthorized write accesses to its register
interface. The integrity of such protection mechanism can be checked by running the following test: [end]

• Assumption: [SM_FMEDA_029] SW shall perform a write access to one of the STCU2 registers
without providing the requested key pair and check for the generation of the expected transfer error.
[end]

The STCU2 allows execution of logic and memory BIST also during runtime upon a SW request. If the
I/O (including FI[n]) pins need a defined state during on-line LBIST, the following is recommended:

• Reset SIUL prior to on-line LBIST (using the MC_RGM_PRST0[SIUL_RST] field).

• Set pins to a desired state (if the reset-state does not meet requirements).

The following Assumptions have to be satisfied when the on-line BIST feature is used:

• [SM_FMEDA_030] SW shall verify that STCU2 configuration is correct before triggering the
execution of on-line BISTs. [end]

• [SM_FMEDA_031] STCU2 status has to be checked after the execution of on-line LBIST/MBIST
to verify that all scheduled tests have been executed and completed successfully. [end]

• [SM_FMEDA_032] Software shall supervise the execution time of on-line self tests using the
SWT or any other available timer. The internal STCU2 WDT might suffer from CCFs causing
either no, or slower, test execution. This may mean that no WDT timeout occurs (as internal WDT
and STCU2 core logic share the same clock). [end]

NOTE
During start-up, no safety function is executed and the start up time is
supervised by the external WDT. The internal prescaler feeding both the
STCU2 WDT and core logic can be checked by running an on-line test and
checking its execution time.

• [SM_FMEDA_033] On completion of the on-line LBIST software shall check whether reset was
correctly applied to the partition(s) under test. This can be done by checking one or more registers
(at least 2 recommended) for their expected reset value. Testing is not necessary if a global system
reset is applied at the end of the test. [end]

• [SM_FMEDA_034] On exiting from a functional reset, software will check the status of the
STCU2 to verify there are no running BISTs nor any hardware aborted tests. [end]

NOTE
BISTs still running after a functional reset are the result of incorrectly
handled hardware abort requests by the STCU2 that occurred while on-line
BISTs were executing.

• [SM_FMEDA_035] If STCU2 interrupt capabilities are used to notify end of test session
execution, application will handle the case of missing interrupt(s) (for example, by supervising test
execution time or periodically polling STCU2 status (checking STCU2_RUNSW[RUNSW], or
STCU2_INT_FLG[MBIFLG] (for MBIST) and STCU2_INT_FLG[LBIFLG] (for LBIST)). [end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors20

3.2.9 MEMU initial checks

MBISTs report detected faults to the same MEMU reporting block used for System RAM ECC failures.
Errors are in general distinguished between single-bit and multi-bit. However, it is not guaranteed that
single-bit errors found in different steps on the same address are reported as multi-bit errors

Recommendation: The application software can write known error addresses into the MEMU reporting
table to prevent reporting of those errors to the FCCU in case the addresses are accessed again.

3.2.10 Flash memory configuration and tests

MPC5777M provides 8.7 MB of programmable non-volatile (NVM) flash memory with ECC which can
be used for instruction and/or data storage.

Assumption: [SM_FMEDA_036]To detect failures where a wrong or multiple selection targets a different
block while programming, application SW shall configure flash memory blocks as read only when not the
target of a write operation. [end]

NOTE
See the “Program software locking” section in the “Embedded Flash
Memory” chapter of the MPC5777M Reference Manual for details.

The flash memory array integrity self check detects possible latent faults affecting the flash memory array,
including potential data integrity issues, or the logic involved in read operations (for example, sense
amplifiers, column mux’s, address decoder, voltage/timing references). It calculates a MISR signature
over the array content and thus validates the content of the array as well as the decoder logic. The
calculated MISR value is dependent on the array content and must be validated by software.

The array integrity MISR value is calculated after ECC detection and correction. Flash memory ECC logic
accounts for single-bit correction (SBC) opportunities, and will output corrected data into the MISR
calculation.

Single bit correction reporting still occurs in the FLASH_MCR[SBC] bit and the FLASH_ADR during AI
if FLASH_UT0[SBCE] = 1.

The AI breakpoint feature allows to break the Array Integrity Check execution if an event is a single bit
correction or a double bit detection. Array Integrity Check can be resumed by the application after
verifying the source of the correction/error and clearing the respective status bit (for example, MCR[SBC]
or MCR[EER]).

Assumption: [SCG18.032]The application software shall run the flash memory AI at start-up to detect
possible latent faults. [end]

NOTE
See the “Array Integrity Self Check” section in the MPC5777M Reference
Manual for details.

In the event of a user detected single-bit correction through user reads or an array integrity check, a margin
read may be done to check for a possible second bit failing within the selected margin levels.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 21

Assumption: [SCG18.151] A margin read test should be executed after a new single-bit error correction
has occurred in flash memory. The margin read test does not need immediate execution, but it needs to be
run within the next few trip cycles. Multiple single-bit errors can be the first indications of a data retention
problem that could have the potential of causing multi-bit errors. [end] The MEMU can be used to store
the address of the location reporting the error event.

NOTE
Implementation hint: Refer to the MPC5777M Reference Manual’s “User
margin read” section of the “Embedded Flash Memory (c55fmc)” chapter
for details.

3.2.11 Voltage monitor configuration

To assist in maintaining functional safety, the Power Management Controller (PMC) monitors various
supply voltages of the MPC5777M device. The “POR and voltage monitors description” table in the
“Power management” chapter of the MPC5777M Reference Manual shows a detailed list of the LVDs and
HVDs embedded in the MPC5777M.

Apart from the self-test, the use of the PMC for ASIL D applications is transparent to the user because the
operation of the PMC is automatic (see SM_FMEDA_037 below, on page 21).

PMC failures primarily report to the MC_RGM. Since safety-relevant voltages have the potential to
disable the failure indication mechanisms of the MPC5777M (the FCCU and its error out signals), their
error indication directly causes a transition into a Safe stateMCU by reset. Additionally, LVDs and HVDs
also report errors to the FCCU, but under the recommended configuration (MCU reset by MC_RGM
enabled) this is irrelevant.

Assumption: Software shall not disable the direct transition into a safe state due to an overvoltage or
undervoltage indication.

The customer can, at their own risk, disable the direct triggering of resets by the MC_RGM and rely on
the FCCU reactions to overvoltage and undervoltage, even when FCCU is configured for IRQs as the
reaction. In general, the FCCU reaction (clocked by the IRCOSC) will take more time than the MC_RGM
reaction (asynchronous). So, if the FCCU is to trigger an IRQ reaction, there is an increased probability
that a fast voltage drop could cause a brownout condition on the device before a reaction occurs. If IRQs
are selected as the FCCU reaction, there will be no guarantee that Diagnostic Coverage of overvoltage or
undervoltage will be properly detected, and the safety analysis (FMEDA) of the MCU, will not be valid
with respect to this failure mode.

To check the LVDs and HVDs for latent faults, which could impact their ability to correctly trigger when
an undervoltage or overvoltage situation occurs, it is assumed there will be two software self-tests that will
be executed by during startup.

Assumption: [SM_FMEDA_037]Reference voltages, and input voltages of LVDs/HVDs, shall be
acquired using the ADC. The conversion values shall be compared with the expected ADC values. The
application software shall initiate the hardware assisted self-test to detect LVD/HVD failures after start-up.
[end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors22

NOTE
This is to check that the voltage supervised by the LVD/HVD is actually the
correct one and not influenced by opens or shorts in such a way that it never
could cross the LVD/HVD threshold. The LVDs/HVDs are monitored by
SARADC_B input channels 96 to 101 and 112 to 119(see the MPC5777M
Reference Manual’s “Analog-to-Digital Converters (ADC) Configuration”
chapter and the “SARADC_B analog test channel assignment” table for
details).

Assumption: [SM_FMEDA_150] Software shall initiate a self-test of LVD/HVD comparator. [end]

NOTE
This is to check that a LVD/HVD will trigger at approximately correct value
(see the MPC5777M Reference Manual’s “Power Management Controller
digital interface (PMC_dig)” chapter, section “Voltage Detect User Mode
Test Register (VD_UTST)”, and the “Device Configuration” chapter, “LVD
/ HVD self test” section, “LVD /HVD self test decoding” table).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 23

To run the LVD/HVD self-test, application software shall execute the following steps:

These steps shall be repeated for each LVD (or HVD) to be tested. See the following sections of the
MPC5777M Reference Manual:

• “Power Management Controller digital interface (PMC_dig)” chapter, “Voltage Detect User Mode
Test Register (VD_UTST)” section

• “Device Configuration” chapter, “LVD / HVD self test” section

3.2.12 Temperature monitoring configuration

The MPC5777M supports a temperature sensor to detect over-temperature conditions. The temperature
sensor can be configured to provide an analog measurement of the temperature using SARB input channel
120.

To set a proper threshold the customer must consider the maximum operating junction temperature (see
the MPC5777M Data Sheet for the temperature sensor accuracy and maximum junction temperatures).

1. Mask LVD/HVD by clearing the Reset Event Enable Register (PMC_REE_TD, PMC_REE_VDn
registers) of the PMC (see the "Power Management Controller digital interface (PMC_dig)"
chapter in the MPC5777M Reference Manual).

2. Clear LVD/HVD in Event Pending Register (PMC_REE_TD, PMC_REE_VDn).

3. Write the PMC_VD_UTST register to the desired LVD/HVD to test.

4. Enable VD_UTST bits in MCR (PMC_MCR) by setting USER_SELF_TEST_EN to start testing.

5. Verify test results by polling the Event Pending Registers (PMC_EPR_VDn or PMC_EPR_TD)
flag:

a) If the flag is set, the LVD (or HVD) test passed as expected.

b) If the flag is not set, self-test failed.

NOTE
Software may configure a timeout period to be sure the flag asserts within a
specified time (this time shall be greater than 20 μs).

6. Disable the VD_UTST bits in MCR (PMC_MCR) by clearing the USER_SELF_TEST_EN to end
the test.

7. Clear PMC_VD_UTST.

8. Clear the LVD (or HVD) flag in the Event Pending Register (PMC_EPR_TD or PMC_EPR_VDn).

9. Wait for the PMC_GR_S bit to be de-asserted.

NOTE
Software may configure a timeout period to be sure the flag or flags clear
within a specified time.

10. Enable the LVD (or HVD) by setting the appropriate field in the Reset Event Enable Register
(PMC_REE_TD or PMC_REE_VDn).

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors24

3.2.13 Clock monitoring configuration

Clocks are supervised by the Clock Monitoring Units (CMUs). The CMUs are driven by the 16 MHz
internal reference clock oscillator (IRCOSC) to ensure independence from the monitored clocks. The
CMUs flag errors associated with conditions due to clocks being out of programmable bounds, and loss of
reference clock. If a supervised clock leaves the specified range for the device, an error signal is sent to
the FCCU. MPC5777M includes the CMUs as shown in the “Clocking” chapter of the MPC5777M
Reference Manual. It is the responsibility of the software to verify that the IRCOSC and XOSC are valid
before starting the CMUs.

Assumption: [SM_FMEDA_040]The CMU frequency thresholds shall be configured for high and low
limits which are used to compare with the MCU operating frequency. [end]

Assumption: [SCG18.035]The potential exactness (or the required inexactness) of the CMU thresholds
shall be taken into account for both the IRCOSC and clock, or clocks, being monitored. [end]

NOTE
Implementation hint: For example, for the upper threshold customer
should target CLKnominal_freq + CLKacc% and convert it into the number
of IRC cycles in the worst case (slowest possible IRCOSC), for example
IRC_freq = IRCnominal_freq – IRCacc%. The opposite applies to the
lower threshold.

Assumption: [SM_FMEDA_041] For ASIL D applications, the use of the CMUs is mandatory. If the
related modules are used by the application safety function, the user shall verify that the CMUs are not
disabled and their faults are managed by the FCCU. The FCCU’s default configuration does not manage
the CMU faults, so it shall be configured accordingly. [end]

Assumption: [SM_FMEDA_042]Application software shall check the configuration of the CMU once
after programming. [end]

Assumption: [SM_FMEDA_043]Once after the boot the application shall measure the CLKMT0_RMN
frequency (IRCOSC) with CLKMN0_RMT (XOSC) as reference clock exploiting the CMU frequency
measurement feature. To detect failure of the IRCOSC, the application software shall utilize the CMU’s
frequency meter to read the IRCOSC frequency and compare it against the expected value of 16
MHz1[end]

Assumption: [SM_FMEDA_044]After start-up, the CMU reaction path shall be tested by modifying the
CMU threshold. [end]

Assumption: [SM_FMEDA_045]To detect delays in clock mode switching and lost clock switching, the
software shall ensure the CMU is reprogrammed with the new expected clock frequency minimum and
maximum values within the FTTI. [end]

1. Nominal frequency of the IRCOSC is 16 MHz, but a post trim accuracy over voltage and temperature must be taken into
account (see the ‘Internal RC Oscillator electrical specifications’ in the MPC5777M Data Sheet).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 25

NOTE
The frequency range of the CMU must be increased before switching clock
modes. The requirement is to program the CMU with the correct minimum
and maximum values for the new frequency soon after the switch.

Recommendation: The application may run the IOSC_A001_SW (on page 24) once per FTTI to verify
proper IRCOSC operation.

3.2.14 System clock availability

At start-up, the CMUs are not initialized and the IRCOSC is the default system clock. Stuck-at faults on
the external oscillator (XOSC) are not detected by the CMUs at start-up since the monitoring units are not
initialized and the MPC5777M is still running on the IRCOSC.

Assumption: [SM_FMEDA_047]The software shall verify that the clocks are valid by checking the state
of the following:[end]

1. MC_ME_GS[S_XOSC] = 1, verifies valid XOSC

2. MC_ME_GS[S_IRC] = 1, verifies valid IRCOSC

3. The quality of the IRCOSC frequency is determined by clock metering and measuring the IRCOSC
against the XOSC (see the MPC5777M Reference Manual’s “Clock Monitoring Unit (CMU)”
chapter for details)

4. Based on measurement from 3, software shall update the user trim bits of the internal oscillator
(IRCOSC_CTL[USER_TRIM]).

5. Enable CMUs since we have valid XOSC and IRCOSC

6. MC_ME_GS[S_PLL0] = 1 and MC_ME_GS[S_PLL1] = 1, verifies valid PLL0 and PLL1 outputs

Assumption: [SM_FMEDA_048] Software shall check that the system clock is available, and sourced by
the FMPLL (PLL1), before running any safety element function or setting the FCCU into the operational
state. [end]

3.2.15 Clock Generation Module (MC_CGM)

The CMUs are the main mechanism used to check the integrity of MCU clocks, but other indirect measures
like delayed lockstep, fault tolerant communication protocols and replicated usage of peripherals may also
be used. The following assumptions are necessary to cover the clock failures that escape these safety
mechanisms which can potentially lead to the failure of specific modules.

Assumption: [SM_FMEDA_049]The sample time for the SARADC will be at least one clock cycle
longer than the minimum time required. This avoids clock glitches on the SAR clock from affecting
sampling. [end]

Assumption: [SM_FMEDA_050]Detecting failures of either CLKOUT0 or CLKOUT1 is the sole
responsibility of user application software. [end]

Assumption: [SM_FMEDA_051]To detect PSI5 reception failures due to a clock glitch, PSI5 will use the
three bit CRC included in the protocol. [end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors26

3.2.16 PLL generated clocking

MPC5777M provides dual PLLs (PLL0 and PLL1) for separate system and peripheral clocks.
[SCG18.145]Each PLL provides a glitch-free and fast clock to the MPC5777M and provides a loss of lock
signal that is routed to the FCCU. [end]

To reduce the impact of glitches stemming from the XOSC, the FMPLL (PLL1) should be used as the
system clock.

Assumption: [SM_FMEDA_052] Application software shall ensure that the system is using the FMPLL
(PLL1) clock as the system clock before running any safety functions, or before the FCCU indicates a
system that is functioning correctly (for example, on FI[n]). [end]

Assumption: [SM_FMEDA_053] Application shall configure the FCCU to react to both PLL loss of
locks. [end]

Both FlexRay and CAN feature modes in which they are directly clocked from the XOSC. For applications
targeting ASIL D, using these clocking modes increases the risk of a communication failures.

Assumption: [SM_FMEDA_054] Application software will not use FlexRay or CAN modules directly
clocked by the XOSC, or the used fault-tolerant communication layer will be capable of handling failures
induced by clock glitches (for example, timing errors, sampling errors and complete failure of logic due
to setup/hold time violations). [end]

3.2.17 XBAR configuration

The multi-port XBAR switch allows for concurrent transactions from any master (cores, DMA, FlexRay)
to any slave (memories, peripheral bridge). The XBAR module includes a set of configuration registers
for arbitration parameters, including priority, parking and arbitration algorithm. Faults in the configuration
registers affect slave arbitration so software countermeasures must detect these faults.

Assumption: [SCG18.042]Masters of the XBAR which are not ViMos or SuMos shall have a lower
arbitration priority on the XBAR than safety-relevant masters. [end]

Assumption: [SM_FMEDA_055] In cases where it is not possible to set the XBAR arbitration
appropriately, a failure probability shall be estimated for such cases. An example case is when FlexRay,
which is a PeMo, needs highest priority. [end]

XBAR data and address lines are covered by E2E ECC. Some failures, particularly those affecting muxing
logic, might introduce multi-bit errors on data and addresses. Though ECC coverage is limited on a single
transaction the probability of detecting the fault is higher when multiple transactions are affected.

3.2.18 Platform flash memory controller

PFLASH controller configuration controls aspects related to flash memory remapping. It can remap
logical flash accesses to on-chip calibration RAM, extended off-chip calibration RAM or on-chip system
RAM.

Assumption: [SM_FMEDA_056] To prevent spurious XBAR accesses by the HSM to stall or delay the
safety function, the XBAR will be configured assigning low priority to the HSM. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 27

Assumption: [SM_FMEDA_059]To avoid incorrect remapping due to non-initialized remap descriptors,
unused PFLASH remap descriptors shall be initialized to an unused logical address[end].

NOTE
Remapped PFLASH regions are initialized by configuring
PFLASHC_PFCRDE and PFLASHC_PFCRDn registers.

If flash memory remapping is used during safety-relevant application execution, safe calibration needs to
be enabled via PFCRCR[SAFE_CAL]. After reset, calibration overlay regions are considered to be
safety-relevant (PFCRCR[SAFE_CAL] = 0, see section “e2eECC and Calibration Accesses” of chapter
“e2eECC and Calibration Accesses” in the MPC5777M Reference Manual for details).

3.2.19 Wake-Up Unit (WKPU) / External NMI

Assumption: [SM_FMEDA_167] NMI will only be used for error notifications or other uses where all
dangerous failures are latent failures.

Assumption: [SM_FMEDA_168] Application shall check the WKPU configuration and its functionality
at once after the boot. [end]

NOTE
The configuration can be verified by reading the configuration registers and
comparing them with the expected values.

Functionality can be tested by triggering the external NMI and check for the
expected reaction. Reset request to the MC_RGM can be reconfigured to
generate a SAFE mode or interrupt request.

3.2.20 Cache

Assumption: [SM_FMEDA_130] ECC/EDC protection of caches is assumed to be enabled (setting of the
Data Cache Error Checking Enable field in the L1 Cache Control and Status Register 0,
L1CSR0[DCECE] = 1). It is also assumed that ECC/EDC errors are handled by correction and
invalidation.

Handling ECC/EDC errors by a machine check is also possible if the machine check handler initiates
appropriate SW countermeasures (to achieve the former, L1CSR0[DCEA] = 01b). The handling of the
errors is assumed to occur as soon as the caches are enabled (see “Core Complex Overview” and
“e200z425Bn3 Core Description” chapters in the MPC5777M Reference Manual). [end]

3.2.21 Software Watchdog Timer (SWT)

Assumption: [SM_FMEDA_104] These requirements apply to the SWT for ASIL D applications: [end]

• The SWT shall be enabled and configuration registers have to be protected against undesired
accesses using one or more hardware mechanism implemented (for example, SMPU,
REG_PROT).

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors28

• The SWT time window settings shall be set to a value less than the FTTI. Detection latency shall
be smaller than the FTTI.

• Before the safety function is executed, the software shall verify that the SWT is enabled by reading
the SWT control register (SWT_CR).

3.2.22 Analog to Digital Converters

MPC5777M includes both SD and SAR ADCs. One of the SAR ADCs is considered the supervisor, or
monitor, ADC (for example, SAR ADCB). The others ADCs have normal functionality.

The basic idea to verify the integrity of the functional ADCs is to implement software redundancy. This
redundancy is supported by hardware allowing acquisition of analog inputs using independent ADC
modules1.

Figure 1 shows the block scheme of connection of the SAR ADCs, including the supervisor. Through a
second level of multiplexing, all analog inputs connected to the functional ADCs (both SD and SAR), are
connected to the supervisor ADC.

1.Simultaneous sampling of two ADCs on the same analog input is not allowed (see the MPC5777M Reference Man-
ual for details).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 29

Figure 1. Block scheme of the SAR ADCs, including the supervisor ADC

The supervisor ADC can be a source of latent failures. To detect these latent failures, before it can be used
to verify the behavior of functional ADCs, a test shall be executed once after the boot.

Assumption: [SM_FMEDA_153]To detect latent failures, the supervisor ADC shall acquire some known
internal analog voltages and compare them with the expected values before the supervisor ADC can be
used for monitoring the functional ADCs. [end]

Values which must be acquired are:

• [SM_FMEDA_154]Bandgap ADC measurement. [end]

• Internal analog voltages listed in section “Internal reference” of the “Analog-to-Digital Converters
(ADC) Configuration” chapter of the MPC5777M Reference Manual.

A similar procedure shall be applied on the functional ADCs that will be used for acquiring safety relevant
data as described hereafter.

Input mux
analog switch

pad cells

ADC Bandgap

Temp Sensor

IRC Reference

PMC Signals

Sigma-Delta
ADC inputs

2nd
Level
SoC
Mux

SAR ADCB

SAR ADC3

SAR ADC2

SAR ADC1

SAR ADC0

Bias
Generator

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors30

Assumption: [SM_FMEDA_155] Before the safety application starts, functional ADCs shall run a
conversion cycle of known signals together with the supervisor ADC. The acquired values shall be
compared by software. [end]

NOTE
During the self-test conversion cycle, the configuration of both functional
and monitor (supervisor) ADCs shall be the same. After the self-test and
during normal acquisitions, the configurations may be modified.

3.2.23 Temperature sensor (TSENS)

The MPC5777M includes a temperature sensor that monitors device temperature. The temperature sensor
only has an analog output that can be used.

Assumption: [SM_FMEDA_156]Before the safety application starts, software shall configure the ADC
measurement of the analog output of the temperature sensor to trigger an event if the temperature is outside
of the permitted range. [end]

3.3 Runtime checks
During the execution of the safety function, application software is assumed to perform a set of tasks to
support the detection of random hardware failures and transition the device to a Safe stateMCU in case of
a failure. This section collects the assumptions software has to fulfill during runtime.

3.3.1 General requirements

The safety concept does not protect against spurious subtle timing changes (for example, due to the XBAR
not parking on the safety relevant master due to other accesses). Thus, such subtle timing must not be relied
on.

Assumption: [SCG18.079]During the development of safety-relevant software, counting clock cycles
will not be used (for example, relying on the execution time of core assembler instructions to measure
time). [end]

Assumption: [SCG18.080]If independent data paths to or from any ViMos classified module exists,
software shall use them redundantly to read or write safety related data. [end]

An independent data path exists to access the two PBRIDGEs and application software should use the
peripheral set redundantly. In this case, failures in one of the data paths will be detected by application
level checks (for example, by comparing data provided by two redundantly used peripherals when each is
attached to a different PBRIDGE).

NOTE
The “Periphery allocation” figure in the MPC5777M Reference Manual
shows the peripheral split between the two peripheral bridges (PBRIDGEA,
PBRIDGEB). Section 3.3.17, I/O and Peripheral Bridge gives additional
detail about using safety relevant I/Os.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 31

Assumption: [SCG18.081]A safety mechanism will be implemented at application level to detect critical
timing failures leading to violation of application timeouts. [end]

NOTE
Implementation Hint: The SWT module can be used to satisfy the above
requirement.

Machine check exceptions of the Safety Core are directly forwarded to the FCCU’s “Safety Core
Exception” input.

Recommendation: Due to the more comprehensive information available in the exception handler it is
recommended to handle machine check exceptions in the exception handler and not use the FCCU
mechanism.

Assumption: [SM_FMEDA_061]Other exceptions, which are not directly forwarded to the FCCU (for
example, Data Storage, Alignment), must be handled by the core itself. [end] This assumption shall be
considered only for exception considered safety relevant by the application.

NOTE
MPC5777M Reference Manual’s “Core e200z425n3Description” and “Core
e200z420n3 Description” chapters and the “Exceptions” sections of each
chapter for details on core exceptions.

3.3.2 CRC of configuration registers

The CRC unit offloads the core in computing a CRC checksum. There are three sets of CRC registers to
allow concurrent CRC computations in the MPC5777M device. The CRC unit should be used to detect
accidental modifications of data in configuration registers by calculating its CRC signature and comparing
it against a pre-calculated CRC.

NOTE
Some configuration registers, as those for clock and MCU mode
configuration, are copied to the corresponding internal registers only when
an event (for example, mode change) is triggered. The values of those
configuration registers themselves have no effect. Additional measures are
needed, along with CRCing, to ensure correct operation of the MCU.

Assumption: [SM_FMEDA_062]A periodic scan of the safety relevant configuration registers, which are
not covered by other safety mechanisms, shall be executed once per FTTI to ensure that the configuration
has not changed due to a bit flip. [end]

NOTE
Implementation hint: The CRC checksum of the configuration registers of
the modules involved with the safety function should be calculated offline.

At run time, the same CRC value must be calculated by the CRC module
within the FTTI. To avoid overloading a core, the DMA module can be used
to support the data transfer from the registers under check to the CRC
module.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors32

The result of the runtime computation is then compared to the offline one.

CMU registers are sources of latent failures which cannot lead directly to the violation of the safety goal.
The assumption below shall be considered.

Assumption: [SCG18.099]To reduce number of possible CCFs, the configuration registers of the
CMU_1, used to monitor the clock source of the Safety Core, shall be included into the periodic register
CRCing scheme. [end]

Assumption: [SCG18.040]The two CRC units are not specifically designed to be used redundantly (for
example, to check each other). In fact, there is no dependency constraint imposed on the design. [end]

3.3.3 XBAR usage

The application software must check the XBAR configuration once after programming but it must also
detect failures of the XBAR when safety-relevant functions are running.

Assumption: [SCG18.055] Application software shall check the configuration of XBAR every FTTI to
detect failures affecting the register interface. [end]

Assumption: [SCG18.056]Within the FTTI, application software will detect failures of the XBAR con-
figuration affecting system performance. [end]

The detection of failures of the XBAR configuration can be achieved as a combination of periodic
read-back of the configuration registers and control flow monitoring using the SWT. The SWT is needed
to cover those failure conditions leading to a complete lock-out of XBAR masters. The need for periodic
configuration read-back depends on how stringent the control flow monitoring is implemented.

XBAR data and address lines are covered by E2E ECC. Some failures, particularly those affecting muxing
logic, might introduce multi-bit errors on data and addresses. Though ECC coverage is limited on a single
transaction the probability of detecting the fault is higher when multiple transactions are affected.

Assumption: [SM_FMEDA_063]Safety analysis assumes that at least two transactions are affected (for
example, at least two accesses are made by or to the safety relevant XBAR master(s) or slave(s) within
each FTTI). [end]

3.3.4 System Memory Protection Unit (SMPU)

The SMPU provides memory protection at the XBAR. A failure in the SMPU can change the behavior of
the SMPU (for example, enabling or disabling the protection), resulting in unauthorized access to the
protected data, or leading to unexpected access violations and data storage exceptions.

The protection against such failures is given by the read-back of the configuration registers, together with
the exception handler and the SWT if the exception handler cannot execute. SWT and exception handlers
are assumed to cover cases when accesses to system resources are unexpectedly prevented to authorized
masters. On the other hand, SMPU failures resulting in missing memory protection are considered critical
only if coupled with other failures causing the undesired access to protected data (notice that systematic
failures, besides random HW failures, can lead to this scenario).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 33

Assumption: [SM_FMEDA_064]Application SW checks the configuration of the SMPU every FTTI. In
particular, it has to check the cacheability attribute of each region descriptor as transactions erroneously
marked as cacheable may cause shared data to be cached, potentially leading to stale data in the cache.
[end]

Safety analyses are performed under the following assumptions:

• Assumption: [SM_FMEDA_065]FMEDA assumes that 90% of region descriptors are usually
used during the execution of safety tasks. [end]

• Assumption: [SM_FMEDA_066]SMPU is enabled approximately 99% of the time during the
execution of safety tasks. [end]

3.3.5 Platform flash memory controller

The PFLASH controller configuration controls aspects of read wait states, port arbitration, prefetching
policy, master access and flash memory remapping.

Some of these failures only cause performance reductions, so they can be covered by the SWT.

Assumption: [SM_FMEDA_067]Safety analysis assumes that at least four reads through the PFLASH
controller are executed within the FTTI. [end]

Other configuration failures, such as master access and safe remapping, only cause MultiPoint Failures
(MPF), so one time readback is sufficient.

Assumption: [SM_FMEDA_068]After configuring the PFLASH controller, the application shall read
back the PFLASH controller registers and compare them with the expected values every FTTI. [end]

3.3.6 Flash memory

3.3.6.1 Overlay operations

Overlay SRAM is included in the MPC5777M family of devices as part of a comprehensive set of
calibration and debug features. It is recommended that overlay SRAM be used only for these tasks and not
for wide scale general functionality in production since the safety mechanisms have only limited CCF
protection.

Assumption: [SM_FMEDA_069]Overlay RAM is used to remap data only. No instruction fetch
remapping occurs during normal operation, but this can be done during debug mode. [end]

Writes to incorrect addresses are covered by reading back the data that was written. Reads from an
incorrect source have different effects according to the selected source versus the targeted one:

• Overlay RAM, instead of flash memory, read errors can be detected by E2E ECC as the overlay
read data buffer contains data fetched from a different address (with its specific addr/data ECC).

• Prefetch buffers, instead of overlay RAM, read errors can be detected by E2E ECC as the word has
been prefetched from a different address.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors34

• Flash memory, instead of overlay RAM, read errors are not detected by E2E ECC as the access is
done with the correct (logical) address but can be detected by writing and reading back a few
patterns from the overlay RAM.

Assumption: [SM_FMEDA_070]Software shall run write and read-back patterns from overlay RAM to
check integrity of overlay read/write/selection path, and this test shall be executed every FTTI. [end]

When overlay, or flash memory, regions are programmed, data in the minicache can be stale (a missed hit
during write operations could lead to erroneously valid prefetched data). Reading back the data after each
programming operation ensures that prefetched data are invalidated.

Assumption: [SCG18.050]After write operations to overlay RAM, or flash, software shall read back the
data that was written and compare it with the expected data to check the integrity of the programmed data.
[end]

NOTE
These countermeasures apply only if the overlay RAM is used by the safety
function.

When software reads data that was programmed in the flash memory, or written to overlay RAM (to verify
contents), the minicache will be automatically refreshed.

Assumption: [SM_FMEDA_071]Overlay RAM is used only for a fraction of the time on a small number
of devices (assumed 5%, averaged considering all MCUs). [end]

3.3.6.2 Flash memory program and erase

Flash memory program/erase operations are stopped in the event of a fault event (for example, no flash
sector selected, or elevated current draw).

Assumption: [SM_FMEDA_072]For program operations, only the address specified by an interlock write
determines the partition being written. An interlock sequence is used to prevent accidental programming
of flash memory. [end]

Assumption: [SCG18.058]A software safety mechanism shall be implemented to ensure the correct
termination of any program/write operation of the flash memory. [end]

Even when flash memory signals the correct termination of programming operations, there is still the
chance that flash memory content is incorrect due to failures of the flash memory write path and
programming logic.

Assumption: [SCG18.061]To ensure that the content of a write operation to flash memory is correct,
software shall read back the data that was written and compare it with the expected data. This checks the
integrity of the programmed data. This test should execute after every program or erase operation. [end]

NOTE
In addition, this test prevents the return of stale data from the PFLASH
controller minicache.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 35

3.3.6.3 Flash memory multibit error

Nonvolatile flash memory is protected with a single-bit correction/double-bit error detection (SEC/DED)
ECC scheme.

Multibit errors can be caused by failures affecting common pieces of the flash memory (for example,
sensing amplifier, read logic). These type of failures lead to random data reads (for example, white noise
on read word). Reading random data is detected as single-bit correction (SBC) and corrected by the ECC
logic1. A software mechanism is needed to distinguish between a real SBC and a MBE.

This test consists of executing multiple reads to be run if an SBC event occurs (for example, 4 reads is
sufficient). If the multiple reads trigger additional correctable/noncorrectable errors, the flash memory
contains permanent multibit errors.

Assumption: [SM_FMEDA_073]If an ECC correction occurs, the application shall force the read of a
number of patterns sufficient to trigger other ECC error corrections/detections revealing the actual nature
of the fault (in fact, permanent flash memory control failures typically affects multiple read operations).
[end]

NOTE
The piece of the flash memory which can cause multibit errors are shared by
the Read-While-Write (RWW) partitions of each flash memory. The
multiple read shall be executed out of the affected RWW flash partition (list
of flash memory RWW partitions are shown in the “Memory Map”
chapter’s “Flash memory and overlay RAM map” table of the MPC5777M
Reference Manual’s).

[SCG18.134] Reading 4 patterns is sufficient to reach a DC of about 99% of
coverage. [end]

3.3.6.4 EEPROM emulation

The MPC5777M provides eight blocks (8 × 64 KB) of the flash memory for EEPROM emulation. ECC
events detected on accesses to the EEPROM flash memory blocks are not reported to the MEMU.
Single-bit corrections (SBCs) are performed, but not signaled to the MEMU. MBEs are replaced by a fixed
word (for example, an illegal instruction) and are also not forwarded to the MEMU.

Assumption: [SCG18.063]Software using EEPROM for storage of information will use its own
information redundancy (for example, CRCs) to detect incorrect data returned from the EEPROM
emulation. [end]

3.3.7 PRAMC configuration

PRAMC provides a certain level of configurability on accessing the RAM. Faults in the PRAMC
configuration registers may change PRAMC port priority and, most important, read wait states. Changes
in port priorities, or more wait states, can have an impact on the overall performance, which is typically

1.With a DC of about 70%.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors36

covered by using the SWT. However, fewer wait states can lead to multi-bit errors that are detected by
E2E ECC with only low to medium effectiveness.

Assumption: [SM_FMEDA_074]Application software shall check the configuration of the PRAMC
every FTTI. [end]

The periodic check of PRAMC configuration can be avoided if the following assumption is satisfied:

• Assumption: [SM_FMEDA_075]Application software performs at least two accesses to the
SRAM within the FTTI, or a simple test could be performed (for example, a test based on write
and read-back performed every FTTI). [end]

3.3.8 RAM

RAM is protected from failures by ECC logic with various implementations discussed in the following
sections. To increase the coverage against MBE certain SW measures have been assumed.

3.3.8.1 Error Correcting Code (ECC)

Some failure modes of the RAM, for example failures affecting common part of the RAM structure, cause
data to be read from all location as All-0 or All-11.

In such a case if a data is read out of the RAM, an event should be detected by the ECC which perceives
All-X code-word as invalid code. But in the MPC5777M there are some RAMs whose address is included
in the ECC checksum calculation to increase the diagnostic coverage in case of addressing failures.

List of memories where ECC bits are computed including address contribution can be found in the
Reference Manual (please see the MPC5777M Reference Manual’s “ECC RAM implementation” table in
the “Functional Safety” chapter).

Due to this hardware architecture there are address locations out of which reading All-X word is valid and
no ECC event is triggered2. Approximately there is one of these addresses out of 256 ones.

Assumption: [SCG18.122] There is no special handling of All-X words for ECC that includes addresses
in the ECC code-bit calculation. They can be valid, correctable or uncorrectable words depending on the
address. [end]

Consider a permanent All-X failure mode:

• If there is a transaction to a “normal address”, this failure mode is detected by the ECC which
perceives the All-X code-word as invalid (either single bit error or correction is triggered).

• If there is a transaction to an “All-X address”, this failures mode is not detected by the ECC or other
means (All-X code-word is valid for “All-X address”).

The permanent All-X failure mode is not detected by the ECC if an application reads only All-X addresses
of the RAM. This is a pure theoretical case because a real application doesn't read only such All-X
addresses, but reads different parts of the RAM including (and mainly) normal addresses.

1.All-0 and All-1 will be referenced generically as All-X.
2.For the sake of simplicity, let us call “All-X addresses” the ones which perceive All-X as valid and “Normal address-
es” the remaining ones.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 37

[SCG18.140]Within the FTTI, application software shall read in each RAM block two addresses that are
known to cause an uncorrectable error in case the memory globally shows an All-0 or an All-1 state. [end]

NOTE
Real application continuously reads several RAM locations (both normal
and All-X addresses) in different RAM blocks. Some of these transactions
are directed to addresses which trigger uncorrectable error in case of All-X
events.

As result in most of cases the assumption above is satisfied by the
application accessing RAM during the normal code execution without any
additional overhead in terms of both coding and timing.

The program in Section 6, Testing All-X in RAM, calculates the list of addresses, which trigger
uncorrectable errors if an All-0 (or an All-1) failure occurs, by a linear search from a start address. These
locations shall be used to verify the presence of a global All-0 (or All-1) error.

The user can verify that the application software reads, once per FTTI, at least one location to detect a
global All-0 errors and one location to detect for All-1. In that case additional readings of previous
assumption are not necessary.

Assumption: [FMEDA_SM_169] SW shall ensure that data in Standby RAM is additionally protected
(for example, with an application-level checksum) against effects occurring during standby, especially the
aggregation of several Single Bit Upsets (SBUs) and the possibility of power failures. [end]

3.3.8.2 Repair logic

Memory repair faults can cause a partial shift of the word. This failure mode can affect one word or an
entire column depending on the type of failure in the repaired column (single bit in array or column
periphery). If a read operation is performed first, this will result in a MBE (white noise model). In the event
a write operation to a specific address was executed first after this error resulted, any subsequent read of
that same address will be either correct or result in a SBE.

Assumption: [SCG18.350]To guarantee coverage for MBEs it is assumed at least four reads on different
addresses per RAM block and FTTI will occur. This provides sufficient Diagnostic Coverage for column
repair with ECC. [end]

3.3.8.3 Error reporting

The MEMU collects and reports error events associated with ECC logic used on system RAM, peripheral
RAM and flash memory. The MEMU stores the addresses where ECC errors occurred. The MEMU also
reports whether the error is correctable vs. uncorrectable. Uncorrectable errors will cause a report to the
FCCU.

Correctable errors include:

• Single-bit error in the data part that is detected via ECC for a system RAM, peripheral RAM or
flash memory

• Single-bit error in the data part that is detected via MBIST on any RAM

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors38

Uncorrectable errors include:

• Multi-bit error that is detected via ECC for a system RAM, peripheral RAM or flash memory

• Multi-bit error that is detected via MBIST on any SRAM

• Addressing errors and unused data bit errors detected by ECC logic

Failures in RAM logic (for example, decoding, control, and so on) might lead to MBEs (white noise
model). Faults can have two kinds of effects:

• Always result in a random data pattern when the content of the faulty address is read (for example,
no word lines selection, clocking failure)

• Cause MBEs only on transactions targeting a subset of RAM addresses (for example, multiple
word lines selection)

In both cases above, ECC logic can lead to a wrong correction. It is necessary to implement a software test
to detect permanent MBE sources leading to erroneous ECC corrections, so the overall coverage
(ECC + software test) is the same as that provided by a 64 / 8 EDC scheme (for example
(1 - 1 / 256 × 100.0%) = 99.6%).

Assumption: [SCG18.066]In the first case (on page 38) a software test shall be implemented to detect
permanent MBE sources. It will fetch the error address of corrected errors from the MEMU and assess the
nature of the fault by writing and reading back a few patterns (for example, two's-complemented patterns)
to the faulty location. The software test shall be executed within the FTTI after a new ECC error correction
in RAM is reported. [end]

Assumption: [SM_FMEDA_077]For the second case (on page 38) a software test shall be implemented
to detect permanent MBE sources caused by multiple address selections. It will fetch the error address of
corrected errors from the MEMU and assess the nature of the fault by writing and reading back a (small)
set of patterns to multiple locations depending on the faulty address. [end]

NOTE
This test is described in Section 5, Address decoding coverage.

Assumption: [SCG18.068]These software tests will be executed within the FTTI after a new ECC error
correction in RAM is reported. [end]

Assumption: [SCG18.950] During operation, if the MEMU contains two entries for the same address of
an address which is part of a memory for which ECC syndromes are reported, SW will check whether one
of the two syndromes is FFh. If so, this entry should be deleted. This entry came from another ECC unit
which does not report syndromes. As long as the entry with the correct syndrome is stored in the MEMU,
entries for the same address without syndrome will not be stored. [end]

3.3.9 ECC Bypass using core registers and Indirect Memory Access (IMA)

During test, or development, the need for direct access to all RAM bits that is not filtered through the ECC
logic may arise. Memory locations can be accessed directly either via processor core access or the IMA
module (see the MPC5777M Reference Manual’s “Indirect Memory Access (IMA)” chapter).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 39

This mechanism provides access to all bits in the RAM arrays, therefore allows reading and manipulating
of ECC check bits. In general, the core mechanism needs to be used for core accessible RAM, whereas the
IMA module is responsible for granting direct access to other RAMs (typical peripheral).

Accesses via the IMA module are not controlled by the MPU, but the MPU controls access to this module.
Direct accesses using the core mechanism are normally controlled by the MPU.

Assumption: [SCG18.064]Software shall ensure that no other RAM access occurs to a certain array while
the IMA module is used to access the contained RAM cells directly. [end]

Assumption: [SCG18.065]Software shall check that ECC bypassing mechanisms are executed only when
the ECC manipulation is really expected and not due to some software control flow problem. [end]

3.3.10 Decorated Storage Memory Controller (DSMC)

DSMC gives the hardware support to have atomic read-modify-write memory operations in the
MPC5777M microcontroller. These capabilities are called decorated storage.

FMEDA assumes some limitations on the usage of the DSMC.

Assumption: [SM_FMEDA_079]Safety analysis assumes the following usage of the DSMC:

1. Safety Application (running on Safety core) can access the DSMC_SysRam and
DSMC_SafetyCore for both read and write operations.

2. Safety Application (running on Safety core) can only write to Non ViMos DSMCs. It should not
read decorated data unless application level safety measures are put in place to ensure accuracy of
read data at the destination (point of usage).

3. NoSaMos Cores should not write to DSMC_SafetyCore and DSMC_SysRAM. They are allowed
to read. The read/write restriction should be managed inside the SMPU. [end]

3.3.11 Interrupt management

No specific hardware protection is provided against spurious or missing interrupt requests (for example,
caused by EMI on the interrupt lines or bit flips in the interrupt registers of the peripherals). The Interrupt
Controller (INTC) can drop, delay or create interrupts.

[SCG18.951]To detect these unwanted events different software measure need to be considered: [end]

• Assumption: [SM_FMEDA_080]Periodically check for effects of lost interrupts (for example,
buffer overflow or underflow). [end]

• Assumption: [SM_FMEDA_081]Periodically check that interrupt flags in peripherals are cleared.
[end]

— This works specifically well if done outside an IRQ routine or with very low IRQ priority. If a
flag for an interrupt (with higher priority) is set, this is an error. No IRQs shall be blocked while
this test is executed.

• Assumption: [SM_FMEDA_083]The ISR will check that the triggering module actually shows a
requested interrupt (for example, reading the interrupt request or status register in the peripheral).
[end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors40

• Assumption: [SM_FMEDA_084]The ISR shall check that it was called with the correct priority.
[end]

• Assumption: [SM_FMEDA_085]Interrupts where a short latency is safety-relevant are assigned
to two (or more) cores and one of those cores checks (for example, using a shared variable) that the
other core actually executes the ISR within the expected latency after the IRQ occurred. [end]

• Assumption: [SM_FMEDA_086]The ISR checks that it is executed on the expected core using
the relevant core register. [end]

NOTE
The application software can determine the core that is presently running
software by reading the Processor ID Register (PIR) (see e200z7xx Core
Reference Manual for details).

• Assumption: [SM_FMEDA_087]Unused interrupt vectors shall point, or jump, to an address
which is illegal to execute, contains an illegal instruction, or in some other way causes detection of
their execution. [end]

NOTE
Example implementations of this software and further information on it can
be found in Application Note AN4527 “Software Routines for Functional
Safety Usage of the Qorivva Interrupt Controllers”.

3.3.12 eDMA usage

The DMA provides the capability to perform data transfers with minimal intervention from the core. It
supports programmable source and destination addresses and transfer size.

Since DMA is NoSaMo, no safety measure has been implemented in HW. It is the task of the application
software to provide any necessary safety measures due to safety-relevant usage of the eDMA.

3.3.13 Reset Generation Module (MC_RGM)

MC_RGM can trigger interrupts or request a transition to SAFE mode, if the MC_RGM is configured to
do so.

Assumption: [SM_FMEDA_089]To detect spurious interrupts or transition requests to SAFE mode, the
interrupt handler, for IRQs coming from the MC_RGM, will check that the shown source is one which was
configured to cause such a request from the MC_RGM (for example, compare the MC_RGM_FES register
to the expected MC_RGM_FERD and MC_RGM_FEAR register contents). [end]

NOTE
If the MC_RGM triggers a transition request to SAFE mode, no interrupt is
triggered by the MC_RGM. An interrupt will be triggered by the MC_ME.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 41

3.3.14 Detection of unwanted resets

MC_RGM allows triggering individual resets for MCU modules (for example, using the Peripheral Reset
Registers (RGM_PRST[n]). This can be prohibited by using the access control mechanisms of the
MPC5777M such as the MPU or PAC. In case those are not used, and also to detect spurious resets caused
by SEE, the following describes how such spurious resets can be detected.

Assumption: [SCG18.150]To detect unwanted reset of these modules, software and hardware counter
measures can be applied. Table 1 summarizes these counter measures. [end]

This is a brief description of each of the column headings in Table 1:

• Receiving module – This module is reset.

• Software Control – The register (or registers) which can reset the specified “Receiving Module”.

• Detection – The effect of the unwanted reset of the specified “Receiving Module” and shows some
mechanisms that can detect the module where the event occurred. If multiple mechanisms are
listed, the software can choose the mechanism that better fits its need (unless explicitly specified).

• Software action required – Additional software mechanism, with respect to the application
software, required to detect an unwanted reset of the specified “Receiving Module” (for example,
polling coming from configuration registers).

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

F
u

n
ctio

n
al safety req

u
irem

en
ts fo

r ap
p

licatio
n

 so
ftw

are

N
X

P
 S

em
iconductors

42

Table 1. Effects of reset

Receiving module Software control Detection Software action required?

Peripheral core_2 ME_CCTL[0] non safety related NO

Main core_0 (Safety Core) ME_CCTL[1] RCCU NO

Main core_0s (Checker Core) ME_CCTL[2] RCCU NO

Main core_1 (Computational Core) ME_CCTL[3] non safety related NO

HSM ME_CCTL[4] non safety related NO

dspi_0 RGM_PRST[99] DSPI module is enabled after reset (MDISrst=0) but is kept in
HALT state (HALTrst=1, stop transfers). Cfg after reset is a
valid one. DSPI Transfer Count Register (DSPIx_TCR) is reset
to zero.

NO, after reset no message will be
sent/received

dspi_1 RGM_PRST[98]

dspi_2 RGM_PRST[227]

dspi_3 RGM_PRST[226]

dspi_4 RGM_PRST[97]

dspi_5 RGM_PRST[225]

dspi_6 RGM_PRST[96]

dspi_12 RGM_PRST[93]

iic_0 RGM_PRST[101] module disable MDISrst=1. When high, the interface is held in
reset, but registers can still be accessed.
IIC is kept under reset and no message will be sent/received

NO, after reset no message will be
sent/received

iic_1 RGM_PRST[229]

pit_rti_0 RGM_PRST[30] module disable MDISrst=1.
No clock for PIT timers hence no interrupt nor DMA transfer
request is generated. Detection depends on how the module
is used by application software

YES, application dependent

pit_rti_1 RGM_PRST[31]

linflex_0 RGM_PRST[92] no enable bit and after reset the LIN controller is in NORMAL
state (not INIT: To enter this mode software sets the INIT bit in
the LINCR1. To exit the initialization mode software should
reset the INIT bit. When in initialization mode, all message
transfers to and from the LIN bus are stopped and the status
of LIN bus output LINTX is recessive). However, LIN baud rate
after reset is set to zero (LINIBRRrst=0, LIN clock disabled)
and is simple to check.

NO, after reset no message will be
sent/received

linflex_1 RGM_PRST[91]

linflex_2 RGM_PRST[220]

linflex_14 RGM_PRST[85]

linflex_15 RGM_PRST[213]

linflex_16 RGM_PRST[84]

F
u

n
ctio

n
al safety req

u
irem

en
ts fo

r ap
p

licatio
n

 so
ftw

are

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

N
X

P
 S

em
iconductors

43

psi5_0 RGM_PRST[111] Disable mode is the default state after module reset is
released (GCR[GLOBAL_DISABLE_REQ]rst = 1). Also, any
channel is individually disabled (PSI5_CH_Enrst=0). In this
mode the RX, TX, common time base counters are disabled
for any operation

NO, after reset RX,TX, common time
base are disabled

psi5_1 RGM_PRST[239]

psi5_s RGM_PRST[162]

sent_0 RGM_PRST[104] After reset, the SENT module comes up in the disabled state.
All channel enable bits (EN_CHxrst=0) and the global enable
bit (SENT_ENrst=0) are set to 0 and the user software must
program the SENT module parameters correctly before
enabling it

NO, no transmission after the unwanted
reset

sent_1 RGM_PRST[232]

dma_ch_mux RGM_PRST[36] After reset all DMA channels are in Disabled Mode and no
DMA transfer is performed. SW might need to check
periodically this bit as no transfer can result in stale data
(depends on the usage of DMA at application level).

YES, application dependent

flexray_0 RGM_PRST[107] module enable MENrst=0; the application requests the CC to
leave the Disabled Mode by writing 1 to this bit Before leaving
the Disabled Mode, the application must configure the SCM,
SBFF, CHB, CHA, TMODE, BITRATE values; once enabled
the module cannot be disabled by SW (i.e. write 0 not allowed)

NO, after reset no communication is
performed on the bus

flexray_1 RGM_PRST[235]

sipi_0 RGM_PRST[11] SIPIMCR[MOEN] = 0 after reset.
After reset SIPI is in disable mode and all activities on SIPI Tx
and Rx ports are immediately stopped

NO, after reset all activity on SIPI ports
are stopped

Table 1. Effects of reset (continued)

Receiving module Software control Detection Software action required?

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

F
u

n
ctio

n
al safety req

u
irem

en
ts fo

r ap
p

licatio
n

 so
ftw

are

N
X

P
 S

em
iconductors

44

gtm RGM_PRST[128] This is the AEI (CPU interface hardware) reset. After the reset
the MDIS bit becomes active removing the clocks from GTM
(MDISrst=1). All outputs will stop at the present value when
the clock is just removed. All GTM internal modules are halted
and keep their state, including the RAM modules. Automatic
detection depends on how module is used. In any case, the
detection can be implemented by polling the MDIS bit. A
software reset is needed in the AEI interface in order to put AEI
interface in a known state. Further re-initialization through
software is required in order to resume operation. Commands
in the "command buffer" will be lost thus the integrity of the
GTM module regarding registers/memory controlled by CPU
is compromised. Software action is required: AEI software
reset bit should be used. It is highly recommended to
re-initialize the whole GTM module before resume operation.

YES, application dependent

adcsar_dig_b RGM_PRST[112] module power-down PWDNrst=1 and ADC status
ADCSTATUSrst=001=power-down.
ADCSAR is in power-down mode after reset and no
conversion can be started (hence no end-of-conversion will be
generated, not clear if an error is flagged when trying to start
conversion)

NO, after reset no ADCSAR conversion
can be started

adcsar_dig_0 RGM_PRST[127]

adcsar_dig_1 RGM_PRST[254]

adcsar_dig_2 RGM_PRST[253]

adcsar_dig_3 RGM_PRST[252]

adcsar_dig_4 RGM_PRST[123]

adcsar_dig_5 RGM_PRST[250]

adcsar_dig_6 RGM_PRST[249]

adcsar_dig_7 RGM_PRST[248]

adcsar_dig_8 RGM_PRST[247]

adcsar_dig_9 RGM_PRST[246]

adcsar_dig_10 RGM_PRST[245]

Table 1. Effects of reset (continued)

Receiving module Software control Detection Software action required?

F
u

n
ctio

n
al safety req

u
irem

en
ts fo

r ap
p

licatio
n

 so
ftw

are

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

N
X

P
 S

em
iconductors

45

adcsd_dig_0 RGM_PRST[60] For SDADCDig the conversion start sequence steps are the
following:
1)After System Reset Deassertion, Enable SDADC by writing
MCR.EN Bit
2)Configure MCR to select the required mode, polarity,
common mode voltage, input gain,decimation rate; select the
required analog channel for data conversion. It is possible to
select the bias for each channel for AC coupling applications;
configure OSD delay according to SDADC startup time or
latency from reset exit.
3)Start The Conversion: Generate a reset event by writing
0x5AF0 to RESET_KEY of RKR.
If EN is not set (condition after reset), then Step2&3 has no
impact i.e No EOC received and start command is ignored by
SDADCDig

NO, after reset no ADCSD conversion
can be started

adcsd_dig_1 RGM_PRST[188]

adcsd_dig_2 RGM_PRST[59]

adcsd_dig_3 RGM_PRST[187]

adcsd_dig_4 RGM_PRST[58]

adcsd_dig_5 RGM_PRST[186]

adcsd_dig_6 RGM_PRST[57]

adcsd_dig_7 RGM_PRST[185]

adcsd_dig_8 RGM_PRST[56]

adcsd_dig_9 RGM_PRST[184]

crc_0 RGM_PRST[38] no enable bit but CRC_CFG reg includes length of data, poly
selection and other options. Also, it is possible to check
CRC_STAT, CRC_OUTP, CRC_OUTP_CHK (all 0/1 after rst).
After reset the status of the CRC unit is lost (including the
possibly partial signature computed and the use poly). Failure
will be detected when the signature is checked against the
expected value.

NO, reset is detected by the CRC when
signature is checked against the
expected valuecrc_1 RGM_PRST[166]

linflex_0 RGM_PRST[92] no enable bit and after reset the LIN controller is in NORMAL
state (not INIT: To enter this mode software sets the INIT bit in
the LINCR1. To exit the initialization mode software should
reset the INIT bit. When in initialization mode, all message
transfers to and from the LIN bus are stopped and the status
of LIN bus output LINTX is recessive). However, LIN baud rate
after reset is set to zero (LINIBRRrst=0, LIN clock disabled)
and is simple to check
LIN baud rate after reset is set to zero (LINIBRRrst=0, LIN
clock disabled) and no message is sent/received

NO, after reset no message will be
sent/received

linflex_1 RGM_PRST[91]

linflex_2 RGM_PRST[220]

linflex_14 RGM_PRST[85]

linflex_15 RGM_PRST[213]

linflex_16 RGM_PRST[84]

Table 1. Effects of reset (continued)

Receiving module Software control Detection Software action required?

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

F
u

n
ctio

n
al safety req

u
irem

en
ts fo

r ap
p

licatio
n

 so
ftw

are

N
X

P
 S

em
iconductors

46

lfast_0 RGM_PRST[9] Module enable DRFENrst=0
After reset LFAST is immediately disabled. All current/pending
requests are terminated and the Tx and Rx data FIFOs are
flushed. If a reset occurs in the middle of a transmit/receive
operation, then that operation is terminated immediately and
nothing is transmitted/received further. Registers read/write
operations can be performed through the IPS Bus.

cansubsys (canram controller) RGM_PRST[74] CAN RAM CTRL is reset together with the CAN subsystem. NO, reset is detected via CAN
subsystem reset

cansubsys (can1) RGM_PRST[70] After reset bit 0 [INIT] of the CCCR register = `1' in the CC
Control Register and enables software initialization. The
M_CAN does not influence the CAN bus until the CPU resets
bit 0 [INIT] of the CCCR register = `0'

NO, after reset no communication is
performed on the bus

cansubsys (can2) RGM_PRST[69]

cansubsys (can3) RGM_PRST[68]

cansubsys (can4) RGM_PRST[67]

cansubsys (TTCAN) RGM_PRST[72]

EBI_0 RGM_PRST[3] NO, after reset all activity on EBI ports
are stopped

SIUL RGM_PRST[15] YES, application dependent

FCCU RGM_PRST[169] YES

Table 1. Effects of reset (continued)

Receiving module Software control Detection Software action required?

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 47

3.3.15 Periodic Interrupt Timer (PIT)

If a failure in the PIT can cause the violation of a safety goal, some software mechanisms are needed to
guarantee the integrity of the PIT module.

Assumption: [SM_FMEDA_090]PIT operations (for example, the number of periodic triggers) are
checked and compared against the expected values every FTTI. [end]

To implement this test, the number of interrupts generated by the PIT within a given time period shall be
compared with the expected number of interrupts. To avoid CCF, the reference for the time period shall be
independent from the PIT (for example, SWT).

If not covered by other means, software shall read back the PIT configuration and compare it with the
expected configuration (for example, check for enabled channels and compared values, and so on.).

In all cases, when timing/latency of PIT interrupts is important, software shall check that the PIT interrupts
are generated within the expected time.

3.3.16 System Timer Module (STM) usage

Assumption: [SCG18.075]Since a failure in the System Timer Module (STM) can cause a violation of the
safety goal, one of the two assumptions below shall be satisfied. [end]

Assumption: [SCG18.076]At every STM interrupt, the IRQ handler shall compare the elapsed time since
the previous interrupt versus a free running counter to check whether the interrupt time is consistent with
the STM setting, or[end]

Assumption: [SCG18.077]The STM IRQ handler shall be under SWT protection. [end]

A second timer may be used to measure STM interrupts and compare with the STM measured time.

3.3.17 I/O and Peripheral Bridge

Assumption: [SCG18.084]The integrity of safety relevant periphery will be mainly ensured by
application-level measures (for example, connecting one sensor to different I/O modules, sensor validation
by sensor fusion, and so on) which are enabled on the hardware level by a replication of all potentially
safety-relevant I/O with appropriate freedom of interference but no hardware checkers. This replication
starts at the I/O bridges (including them). [end]

Safety relevant peripherals are assumed to be used redundantly in some way. Different approaches can be
used, for example by getting replicated input, (for example, connect one sensor to two DSPIs or even
connect two sensors measuring the same quantity to two ADCs) or by cross-checking some I/O operations
with different operations (for example, using sensor values of different quantities to check for validity).

Recommendation: The usage of different data coding (for example, inversion) is recommended for
redundant communication over safety relevant peripherals (for example, DSPI or LINFlex).

Assumption: [SCG18.952] Different data coding or message transfer timing is used for redundant
communication over DSPI_4 and DSPI_5. [end]

Users can choose the approach that better fits their needs.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors48

To allow a safety application to make redundant use of all I/O peripherals, the peripherals have two
instances and each instance is connected to a different peripheral bridge (PBRIDGE). The arrangement of
the I/O peripherals onto two PBRIDGEs allows redundant use of peripherals while limiting CCFs.

The MPC5777M architecture allows making redundant use of the communication peripherals like
LINFlexD, DSPI and PSI5. Figure 2 shows the distribution of the MPC5777M peripherals.

Figure 2. MPC5777M peripheral allocation

As a usage example, if an application needs to use LIN communications protocol, two different LINFlexD
modules may be used; one connected to the PBRIDGEA and one the PBRIDGEB.

Peripheral Bus (AIPS_0)

Peripheral
Cluster A

WKPU

LVIIO
LVIFLASH

LVI 1.2V
HVI 1.2V

PMC

PCU

RGM

CGM

RCOSC_DIG_0

OSC_DIG

CMU_PLL

ME

SUIL2

2 x SIPI

2 x LFAST

CFLASH_0

PASS

SSCM

BAF

PLL

PRAM

PFLASH

INTC_0

4 x SWT

3 x STM

2 x SMPU

3 x SAR ADC

PSI5_0

FLEXRAY_0

SENT_0

IIC_0

5 x DSPI

4 x LINFlexD

4 x MCAN

TTCAN_0

HSM INTERFACE

DTS

JDC

SRAM CAN

5 x SD ADC

2 x DMA

FEC

GTM

2 x LINFlexD 5 x SD ADC

9 x SAR ADC

PSI5_1

SENT_1

3 x DSPI

12 x CMU

CRC_1

FCCUPeripheral Bus (AIPS_1)

Peripheral
Cluster B

JTAGMSTCU2 MEMU IMA CRC_0 10 x DMAMUX 2 x PIT_RTCATX

SEMA4

FLEXRAY_1 IIC_1

TDM

PCM

2 x AXBS

EBI

2 x XBIC

TSENS

PSI5_S_0

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 49

NOTE
The safety concept for high bandwidth communication controllers (for
example, FlexRay, FlexCAN, FEC (Ethernet)) is not based on the redundant
use of multiple modules, but rather on the implementation of a fault tolerant
protocol. This is the reason they are typically not split over the PBRIDGEs.
Section 3.3.23, Communication peripherals discusses in more detail the
usage of these types of communication controllers.

Assumption: [SCG18.085]Comparison of redundant operation is the responsibility of the application
software. [end]

NOTE
Additional details can be found in the “I/O peripherals” section in the
“Functional Safety” chapter of the MPC5777M Reference Manual.

There are modules, particularly on-platform peripherals as INTC and eDMA, with a single peripheral
interface. For these modules, the integrity of accesses to their register interface is not guaranteed by the
PBRIDGE replication, and the following assumptions are required to cover failures affecting the value of
data read from or written to their register interface.

Assumption: [SM_FMEDA_091]Software periodically checks the contents of configuration registers,
and more than 10 registers of modules attached to PBRIDGEn are part of the countermeasure described in
Section 3.3.2, CRC of configuration registers. [end]

Assumption: [SCG18.132] To ensure safe usage of modules which do not exist redundantly and are
connected to only one PBRIDGE, one of the following shall be true for each user-visible (via the
PBRIDGEn) register:

• The register is not relevant for the safety goal of the application.

• The register has a constant value (typically a configuration register) which is periodically checked
for correct value (for example, by CRCing).

• Wrong values written into the register are detected by other safety measures.

Furthermore, for reading such registers the following is obviously true (due to the single nature of the data
source):

• Values read from such registers are not guaranteed to be free of SPFs[end]

NOTE
[SM_FMEDA_092]The FMEDA assumes that the above condition holds
for at least 99% of the respective registers, but it is recommended to ensure
it for 100% to reduce documentation complexities. [end]

Assumption: [SM_FMEDA_093]Software shall read back the values written to registers of
non-redundant peripherals. [end]

NOTE
Not necessary for configuration registers which are under
CONF_REG_CRC_SCAN (as described in SM_FMEDA_063 (on page
50)) as that serves as a read-back on its own.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors50

Assumption: [SM_FMEDA_094]When software reads a safety-relevant value from a peripheral, that
value is read twice in a row, then the two read values are compared. This helps detect transient errors in
the PBRIDGE for non-redundant peripherals. [end]

3.3.18 System Integration Unit Lite (SIUL2)

Since the SIUL2 PBRIDGE interface is unique, its failure, and particularly of its register protection
module, may impact redundant I/O functionalities leading to CCF.

Assumption: [SM_FMEDA_095]When the SIUL2 is used for the implementation of safety related I/O
functionality, application level redundancy is such that it covers at least 60% of failures introduced by the
REG_PROT module that can result in blocked writes (lost updates) to non-locked registers (mostly GPO
data registers). An additional software test shall run to detect such a failure mode. [end]

NOTE
A read-back after each write to the SIUL registers is sufficient to cover this
failure mode.

Assumption: [SM_FMEDA_096]To detect wrong or multiple addressing failures, the startup read-back
of SIUL configuration registers shall be executed after all SIUL2 registers have been written. [end]

Assumption: [SM_FMEDA_097]If the SIUL2 is used to perform a redundant digital input or output (read
two GPIs or write two GPOs), the application will execute a periodic CRC of configuration registers that
will be used to detect decoder hard faults that lead to CCF on data reads or writes. [end]

3.3.19 GTM Wrapper

Assumption: [SM_FMEDA_098]To detect if the GTM stops running due to a fault, application software
shall periodically verify the GTM is running by reading the GTM status register (GTMDI_DS). [end]

Assumption: [SM_FMEDA_170] Application software shall check the configuration of the GTM
Wrapper once per FTTI (for example, reading back the GTM configuration registers and compare them
against the expected values). [end]

Assumption: [SM_FMEDA_099] Safety analysis assumes that failures in data registers (other than
configuration failures), as well as in the GTM logic, are covered by application measures. [end]

3.3.20 External Bus Interface (EBI)

Assumption: [SM_FMEDA_100]Neither EBI nor LFAST are used in safety related applications. If used,
it is the responsibility of the application software to recognize and detect failures caused by internal FIFO
overflow or underflow (incorrect write or read operations), which may lead to wrong command, data or
message loss. [end]

Assumption: [SM_FMEDA_101]IRQs from the LFAST module should be disabled on the Safety Core to
prevent faulty LFAST communication from interfering with the execution of a safety related task. If not
disabled, other measures shall be implemented to detect possible IRQ flooding. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 51

3.3.21 Reading analog inputs

Acquisition of safety related analog inputs can be performed using two independent ADCs modules
redundantly.

The dual read analog input uses two analog input channels provided by two separate ADC modules to
acquire a replicated analog input signal. Both ADC units acquire and digitize the two copies of a redundant
analog signal connected to the inputs. In this configuration (if applied to all possible analog inputs), only
half of the analog inputs are available to the applications.

Assumption: [SM_FMEDA_102] Software will read back the SIUL2 configuration once after
programming to assess the correct configuration and connectivity of the two analog inputs. [end]

Assumption: [SM_FMEDA_103] Software will compare the value sampled by the two ADCs and decide
on their consistency (comparison has to take into account conversion differences and tolerances). [end]

3.3.22 Software Watchdog Timer (SWT) usage

The objective of the Software Watchdog Timer (SWT) is to detect a defective program sequence when
individual elements of a program are processed in the wrong sequence or period of time. Once the SWT
is enabled, it requires periodic and timely execution of the watchdog servicing procedure. The service
procedure must be performed within the configured time window, before the service timeout expires.

It is in general to be expected that software uses the software watchdog timer (SWT) to detect lost clocks
or significantly slow clocks. Using the SWT to detect clock issues is a secondary measure since there are
primary means for checking the clock integrity (for example, CMU).

MPC5777M provides the hardware support (SWT) to implement both control flow and temporal
monitoring methods. If Windowed mode and Keyed Service mode (two pseudorandom key values used to
service the watchdog) are enabled, it is possible to reach a high effective temporal flow monitoring.

Assumption: [SCG18.045]It is the responsibility of the application software to insert the control-flow
checkpoints with the required granularity according to application needs. [end]

SWT can be configured to stop, or continue, running when the MCU is in STOP mode by configuring
SWT_CR[STP]. If this SWT feature doesn't work as expected due to a fault, the safety function could be
impaired (for example, SWT could trigger an unwanted reset while the device is in STOP mode).

Assumption: [SM_FMEDA_106]Current FMEDA assumes that STOP mode is not used in normal
operations. [end]

3.3.23 Communication peripherals

Assumption: [SCG18.082]Communication over the following interfaces shall be protected by a
fault-tolerant communication protocol (implemented by the operating system or the application):

• FlexRay

• FlexCAN

• Ethernet[end]

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors52

— Typically such a layer would contain an E2E CRC, a sequence counter, a sender ID, and an
acknowledgement mechanism (if a transmission loss needs to be detected).

Assumption: [SCG18.083]If safety relevant, FlexRay and FlexCAN shall not be clocked directly by the
XOSC. [end]

NOTE
Directly using the XOSC as the source can expose the FlexRay or FlexCAN
engines to glitches that would otherwise be filtered by the PLL.

Customers can use the XOSC provided they implement safety mechanisms
to detect the effects of glitches. These mechanisms can be part of the fault
tolerant protocol.

An appropriate safety software protocol should be utilized for any communication peripheral employed to
meet ASIL D application requirements

FlexRay, FlexCAN and Ethernet don’t have special safety mechanisms other than what is included into
them by their protocol specs. The application software or operating system needs to provide the safety
measures on top of the IP modules to meet safety requirements.

3.3.24 Temperature sensor (TSENS)

The MPC5777M includes an on-board temperature sensor that monitors device temperature and delivers
an analog output signal.

The analog output signal is internally connected to an ADC input to acquire a value which is proportional
to the temperature. Starting from this value, software can measure the current device temperature.

This analog path requires some software steps (for example, acquiring the value and applying a formula
to obtain the temperature).

Assumption: [SM_FMEDA_039] Software shall read the analog output of the temperature sensor via the
ADC and check for temperature violations at least once per FTTI. [end]

NOTE
If only the analog output indicates undertemperature or overtemperature
(but no digital indication), a TSENS failure might be indicated.

3.3.25 Analog to Digital Converters

The basic idea to verify the integrity of the functional ADCs is to implement software redundancy. This
redundancy is supported by the hardware which allows acquiring analog inputs using independent ADC
modules1.

To decrease the probability of common cause of failure supervisor ADC and functional one don't share the
same analog multiplexer.

1.Simultaneous sampling of two ADCs on the same analog input is not allowed (see the MPC5777M Reference Man-
ual for details).

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 53

Assumption: [SM_FMEDA_157]Analog inputs, which are safety relevant, shall be acquired redundantly
by the functional and supervisor ADCs. The acquired values shall be compared by software.1 [end]

NOTE
Other types of redundancy can be implemented at application level. For
example, information can be acquired redundantly by the MCU using
analog data, i.e. via ADC, and digital data, i.e. via a communication
protocol. Choosing the best strategy depends on the application.

This assumption is the main measure to be implemented. Some additional measures have been considered
during the safety analysis to guarantee the integrity of all modules involved with the analog acquisition.

The SD ADC is expected to convert fast signals. The redundant acquisitions may not be effective if the
frequency of the input analog signal is too high compared to conversion time and the time between the 2
redundant acquisitions. In such a case other mechanisms can be implemented, for example plausibility
checks.

Assumption: [SM_FMEDA_158]In case analog input signal is expected to have certain
dynamic/transient characteristics which make the redundant acquisition ineffective, the acquired data shall
analyzed for such characteristics to verify the plausibility of the conversion. [end]

NOTE
This measure mainly applies on the SDADC which is supposed to convert
fast signals. User is expected to implement such a mechanism whether the
redundant acquisition is not effective, for example due to the dynamic of the
input signal.

An example of this mechanism is to verify if the FFT of the input signal is compatible with the expected
one.

Assumption: [SM_FMEDA_159]Software periodically checks the contents of configuration registers of
ADCs to ensure that the configuration has not accidentally changed. [end]

NOTE
This counter-measure is part of the one described in Section 3.3.2, CRC of
configuration registers.

ADCs embed an analog watchdog mechanism to trigger automatically DMA/interrupt request in case the
converted value is outside configurable thresholds. The integrity of this hardware mechanism and the
proper generation of DMA and interrupt from ADC can be verified by software.

Assumption: [SM_FMEDA_160] Once every FTTI, The ADC shall trigger a DMA/interrupt request by
manipulating the thresholds of the analog watchdog with respect to a reference conversion. [end]

1.Functional and supervisor ADCs share the same bias; a specific software mechanism to detect failures affecting the
bias is presented (for example, SELFTEST_SARB_FTTI).

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors54

NOTE
This safety mechanism doesn't cover the analog watchdog only, but it
verifies the integrity of the interrupt and DMA generation by the ADC
module. This procedure is required to run even if the analog watchdog is not
used by the safety application.

Assumption: [SM_FMEDA_161] Every trigger (either hardware or software), which starts a conversion
sequence, also initiates a timer or watchdog to monitor the conversion sequence duration. [end]

NOTE
In case conversion time exceeds the expected value, this timer or watchdog
shall abort the corresponding ADC conversion.

In case of scan mode, the conversion time is monitored for duration deviation more than the conversion
time of a single channel.

Assumption: [SM_FMEDA_162] At the end of the conversion of all enabled channels (or after a
CONV_TIME_MON time-out), software shall check the status of the conversion to detect any missed or
spurious request. The status of the last conversion shall be cleared before starting a new one. [end]

NOTE
In case of SAR ADC some registers which give information about the status
of the conversion are showed below:

— VALID and OVERW flags of the CDR registers

— EOC/ECH flags

— ECAWORRx (or ICAWOOR) and WTISR to verify any violation
triggered by the analog watchdog.

In case of SDADC the register showing status information is the SFR.

Please check the SDADC section in the MPC5777M Reference Manual to
have all details.

Assumption: [SM_FMEDA_163]In case the DMA is used to transfer the converted data from ADC
modules to the memory, at the end of the conversion of all enabled channel VALID and OVERW flags of
the CDR register and EOC status flags are verified against programmed configuration of DMA to detect
any missing or spurious request. [end]

Functional and supervisor ADCs share the same reference bias. Since a failure affecting the bias can cause
the violation of the safety goal, its integrity shall be verified at least per FTTI. This check can be done via
software by acquiring some known analog values via the supervisor ADC.

Assumption: [SM_FMEDA_164] At least once per FTTI, the supervisor ADC shall acquire some known
internal analog voltage signals and compare them with the expected values before being used to monitor
the functional ADCs. [end]

NOTE
The implementation of this software mechanism is the same than the
SELFTEST_SARB one. The only difference is the execution frequency.

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 55

3.3.26 Mode Entry (MC_ME)

The MPC5777M can be configured in different functional modes. Each mode has its own unique
configuration (for example, enabled peripherals and clock).

The mode configurations and the transition between different modes is controlled by the MC_ME. The
correct execution of a mode transition shall be verified by application software.

Assumption: [SM_FMEDA_165] After the mode transition request, application software shall verify the
status of the transition within the expected completion delay. Also, the new configuration is compared with
the intended configuration. Completion delay is always monitored while the status check is performed,
unless the target mode is low-power. [end]

Assumption: [SM_FMEDA_151] Mode transition process duration, from transition request to transition
complete, shall be monitored. [end]

3.3.27 Semaphores (SEMA42)

Semaphores embedded in the MPC5777M is robust hardware support for implementing a simple
mechanism to achieve “lock/unlock” operation of shared resources.

Assumption: [SM_FMEDA_166] To verify the integrity of the semaphores logic, application software
before locking (or unlocking) a gate, shall check that the value of the gate is the expected one. [end]

NOTE
Checking the gate state after the locking (or unlocking) request verifies if
the gate has been properly locked (or unlocked).

Checking before unlocking the gate helps detect if other masters erroneously received the lock before it
was released by the current master.

Checking before locking helps detect if the gate is already erroneously assigned to the requesting master.

3.4 Operational interference protection
As a multi-master system, the MPC5777M provides safety mechanisms to prevent non-safety masters
from interfering with the operation of the Safety Core, as well as mechanisms to handle the concurrent
operation of software tasks with different or lower ASIL.

3.4.1 Core Memory Protection Unit (CMPU)

The Core Memory Protection Unit (CMPU) ensures inter-task interference protection by providing the
capability of protecting regions of memory from access by software tasks with different privilege levels.
The CMPU features a 24-entry region descriptor table that defines memory regions and their associated
access rights. Only accesses with the sufficient rights are allowed to complete.

Using pre-defined region descriptors that define memory spaces and their associated access rights, the
CMPU concurrently monitors Core initiated memory accesses and evaluates the appropriateness of each
transfer.

Safety Manual for MPC5777M, Rev. 1.1

Functional safety requirements for application software

NXP Semiconductors56

Assumption: [SM_FMEDA_108] The application software shall configure the CMPU (at least of the
Safety Core) to define the location, size, access permissions and memory attributes for each memory
region that needs to be protected. [end]

Recommendation: [SM_FMEDA_109] For ASIL D applications, the CMPU should be used to ensure
that only authorized software tasks can configure modules and can access only their allocated resources
according to their access rights. [end]

3.4.2 System Memory Protection Unit (SMPU)

The System MPU (SMPU) provides memory protection at the crossbar (XBAR). The SMPU splits the
physical memory into 16 different regions. Each XBAR master (Core, DMA, FlexRay, SIPI) can be
assigned different access rights to each region.

Assumption: [SM_FMEDA_110] The SMPU will be used to prevent non-safety masters (all except the
Safety Core) from accessing restricted memory regions unless those regions are similarly protected by
mechanisms shown in Section 3.4.3, AIPS protection mechanism or Section 3.4.4, Register protection
(REG_PROT). [end]

Assumption: [SM_FMEDA_111] The SMPU shall only be programmed by the Safety Core. This
software shall prevent write accesses to the SMPU’s registers from all other masters. [end]

NOTE
See “System Memory Protection Unit (SMPU)” chapter in the MPC5777M
Reference Manual for details.

3.4.3 AIPS protection mechanism

The peripheral bridges (PBRIDGEn) translate accesses on the switched AMBA bus (XBAR) to
point-to-point accesses to the majority of peripherals on the MPC5777M. The peripherals connected to the
PBRIDGEs are PBRIDGE slaves.

The PBRIDGEs implement an additional protection mechanism to support the requirement that non-safety
relevant masters and safety relevant masters do not interfere with one another. The protection mechanism
allows for protection of each slave from master accesses (for example, read/write or supervisor/user
access).

Assumption: [SM_FMEDA_112] The application software will configure the PBRIDGEs to define the
access permissions for each slave module that requires access protection, unless protected by the
mechanisms in sections Section 3.4.2, System Memory Protection Unit (SMPU) or Section 3.4.4, Register
protection (REG_PROT). [end]

Assumption: [SCG18.052]After safety software takes control of the MPU it will check: [end]

• Assumption: [SCG18.053]That the HSM did assign itself only the expected access rights at the
SMPU in the expected regions. [end]

• Assumption: [SCG18.054]That the configuration of SMPU/AIPS has been changed in such a way
that the HSM no longer has writing access to the SMPU. [end]

Functional safety requirements for application software

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 57

PBRIDGEn should be configured to prevent any write access to the entire MC_RGM address space for all
masters except the Safety Core.

Assumption: [SCG18.133]Safety software shall program the Peripheral Access Control in the
PBRIDGEn so no write access to the MC_RGM_PRST[n] (individual module reset programming model)
is allowed to access other cores. [end]

3.4.4 Register protection (REG_PROT)

Accidental writes to configuration registers can affect the execution of the MCU’s safety function and
disable the safety mechanism due to their change. Register protection offers a mechanism to protect
defined memory mapped address locations in a module against writes. The address locations that can be
protected are module specific.

Register protection includes these distinctive features:

• Register protection can restrict accesses for the module under protection to supervisor mode. This
access restriction is in addition to any access restrictions imposed by the protected module.

• A register cannot be written once Soft Lock Protection is set. Soft Lock Protection can be cleared
by software or system reset.

• A register cannot be written once Hard Lock Protection is set. Hard Lock Protection can only be
cleared by system reset.

Recommendation: It is recommended that only hardware related software (OS, drivers) run in supervisor
mode.

Assumption: [SM_FMEDA_114]Configuration registers are to be locked 90% of the time, either by Soft
Lock or Hard Lock Protection, to prevent unwanted modifications. [end]

NOTE
Implementation hint: Each peripheral register that can be protected
through register protection has a Set Soft Lock bit reserved in the Register
Protection address space. This bit should be asserted to enable the protection
of the related peripheral registers. Moreover, the Hard Lock Bit
(REG_PROT_GCR[HLB] = 1) should be set for best write protection.

Assumption: [SM_FMEDA_171] The REG_PROT configuration registers shall be read and compared
against the expected values at least once after being programmed. [end]

3.4.5 Performance (Core_1) and Peripheral (Core_2) Cores

Performance (Core_1) or Peripheral (Core_2) cores are considered Non-safety modules (NoSaMo). If they
execute any safety task, counter measures must be used in application software.

Some hardware resources are shared between Core_1, Core_2 and the Safety Core (Master Core and
Checker Core). It is required that interference between Core_1 and Core_2 with safety relevant modules
is avoided.

Safety Manual for MPC5777M, Rev. 1.1

Functions of external devices for ASIL D applications

NXP Semiconductors58

Assumption: [SM_FMEDA_115]No more than 20% of the entire address space contains writable
safety-relevant modules or data. [end]

Assumption: [SM_FMEDA_116]To avoid excessive accesses to shared resources, the NoSaMo cores
(Core_1 and Core_2) have lower XBAR priority than the Safety Core (Master Core and Checker Core).
[end]

Assumption: [SM_FMEDA_123]The local memories of the NoSaMo cores must not be used to store
safety-relevant data, or only if software protection against spurious changes by the NoSaMo cores exists.
[end]

Assumption: [SM_FMEDA_117]To avoid unwanted software interrupts triggered by the Peripheral Core
(Core_2) and Computational Core (Core_1) which are handled by the Safety Core, one of the following
holds: [end]

• Accidental access to the triggering registers of these interrupts is prevented (typically by SMPU
and/or AIPS_PACR)

• There exists an additional indicator (in addition to the triggering register, for example, a variable
in RAM) which can be used to execute an ISR_CHECK_TRIGGER_SET (on page 39) like
functionality.

Alternatively, the Safety Core could be configured to ignore software triggered interrupts.

Assumption: [SCG18.953] Safety-relevant software will enable the INTC_MPROT lock bit. [end]

4 Functions of external devices for ASIL D applications
This section describes the external components needed to use with MPC5777M in a system for ASIL D
applications. It is assumed that the system reacts safely to MPC5777M being in or entering all Safe
stateMCU.

It should be noted that the failure rates of external services are not included in the FMEDA of MPC5777M
and have to be included in the system FMEDA by the user himself.

4.1 External reset output
MPC5777M has pin named external reset output (ESR0). The signal on this pin can be used as input to
one, or more, external devices. It is possible that an unwanted or spurious assertion of ESR0 may not be
detected by the MPC5777M. This could cause the external device to get reset without any automatic
detection by MPC5777M. Assumption is that countermeasures against this failure mode must be
considered at system level.

Assumption: [SM_FMEDA_118]System level I/O safety measures have at least 99% DC against joint
spurious reset of all external devices. [end]

4.2 High impedance outputs
System-level countermeasures have to be placed in order to bring the safety-critical outputs to their safe
state (for example, by pull-up or pull-down resistors) when an output high-impedance is not considered

Functions of external devices for ASIL D applications

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 59

safe. Normally this requirement will be fulfilled by ensuring the error out pin(s) are pulled to the failure
state. Additionally, users may drive pins (for example, CAN Tx pins) to levels that prevent interference
with other parts of the system that are assumed to be independent.

Assumption: [SCG18.086]If a high impedance state on an output pin is not safe, pull-up or pull-down
resistors need to be added to outputs that are safety-critical depending on application requirements for the
MPC5777M during unpowered or reset conditions. [end]

4.3 External Watchdog (EXWD)
An external device, acting as supervisor of the operations, must provide a watchdog to cover
common-cause failures of MPC5777M for ASIL D applications.

Assumption: [SCG18.087]An external watchdog shall exist to detect failures completely disabling the
MPC5777M, including its safety mechanisms. [end]

The external watchdog will detect CCFs, such as failure of the power supply. If a failure is detected, the
external watchdog should move the system to a Safe statesystem within the FTTI.

Assumption: [SCG18.088]The EXWD shall be triggered periodically, either by the software providing
the safety function on the MPC5777M or by a toggling protocol on the error output pin(s). [end]

Implementation of the watchdog communication between MPC5777M and the external device is up to the
user (for example, communication via serial link, ethernet, via toggling pin, or via the FCCU error out
signals).

Assumption: [SM_FMEDA_119]To avoid undetected reset cycling under rare circumstances the external
watchdog will not be reset by the MCU reset output. [end]

NOTE
There must be a signalling path from the safety software to the external
system through which the software can confirm correct initialization. This
is not automatically guaranteed by the FI[n] signals which communicate the
status of the device independently from software. On the other hand, a
different communications interface (such as a serial link) can be used to
detect incorrect software initialization.

4.4 Power supply
Assumption: [SCG18.089]The device has been developed with the assumption that an external power
supply of appropriate voltage shall be supplied (see the MPC5777M Data Sheet’s for operating voltage
specifications). All internal and external supplies are considered safety critical and shall be monitored for
deviations beyond predefined thresholds. [end]

Assumption: [SCG18.090]External power supply shall be supervised for high and low voltage deviations
as shown in Table 2. Required monitors for each power supply can be found in column “External monitor
required”. [end]

Safety Manual for MPC5777M, Rev. 1.1

Functions of external devices for ASIL D applications

NXP Semiconductors60

NOTE
Voltage monitors are provided on the MPC5777M to monitor the internal
supplies of the device. See table “POR and voltage monitors description” in
the “Power management” chapter of the MPC5777M Reference Manual for
a list of monitored supplies.

LVD/HVD are necessary to ensure logic functionality. External LVD can be
removed if the failure can be detected by other means, but the external HVD
is necessary to prevent physical damage.

Assumption: [SCG18.091] External supervision shall hold the MPC5777M in a Safe stateMCU and the
system in its Safe statesystem if the external voltage is outside specifications. The MCU shall be protected
against voltages over the maximum survivable level of the technology. [end]

Recommendation: It is recommended to protect the MCU against voltage above the maximum survivable
level of the technology (for example, using a Zener diode) to prevent destruction of the MCU.

NOTE
See the MPC5777M Data Sheet’s “Absolute maximum ratings” and “DC
electrical specifications” sections for power supplies requirements.

[SCG18.123]The MPC5777M embeds two types of voltage supervisors, Low Voltage Detect (LVD) and
High Voltage Detect (HVD) monitors. Safety relevant voltages are supervised for voltages that are out of
these ranges. Since safety relevant voltages have the potential to disable the failure indication mechanisms
of the MPC5777M (such as FCCU, Pads, and so on) their error indication directly causes a transition into
the Safe stateMCU (for example, reset assertion). [end]

Some LVDs and HVDs are configurable and enabled by default. Application should not disable safety
relevant LVDs or HVDs. See the “POR and voltage monitors description” table in the “Power
management” chapter of the MPC5777M Reference Manual for the list of configurable LVDs and HVDs.

4.5 Error Out Monitor (ERRM)
The FCCU has two external pins: FI[0] and FI[1]. An external device must be connected to the FCCU via
FI[0] and optionally FI[1] to continually monitor the error output pins of the FCCU.

Assumption: [SCG18.092]The overall system needs to include measures to monitor the error output
pin(s) of the MPC5777M and move the system into a Safe statesystem when an error is indicated. [end]

Table 2. MPC5777M required external monitors

Name Description External Monitor Required

VDD_HV_ADR_D Voltage reference of ADC sigma/delta module LVD/HVD

VDD_HV_ADR_S Voltage reference of ADC SAR module LVD/HVD

VDD_HV_IO_MAIN High voltage Power supply for the I/O’s HVD

VDD_HV_IO_FLEX FlexRay/Ethernet 3.3 V I/O supply HVD

VDD_HV_IO_JTAG Oscillator and JTAG pin supply HVD

Functions of external devices for ASIL D applications

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 61

Assumption: [SCG18.093]If the MPC5777M is signalling a failure via its error output pin(s), other output
pins can not be relied on. [end]

4.5.1 Both FCCU pins connected to external device

Depending on user selection, there are two different ways to interface to the FCCU:

• Both FCCU pins connected to the external device

• Only a single FCCU pin connected to the external device

The user can choose between these two FCCU configurations, depending on which best fits the hardware
and software system.

Assumption: [SM_FMEDA_120] If both error out pins are connected to the external device, the external
device itself shall check both signals, taking into account the behavior of the two pins as defined in Table 3.
[end]

In this configuration the external device continuously monitors the output of the FCCU. Thus it can detect
if the error out pins are not working properly. The advantage of the two pin configuration with respect to
the single pin option is that it does not require any dedicated software.

NOTE
Implementation hint: Monitoring the error output pins through a
combinatorial logic (for example, XOR port) can generate some glitches.
Oversampling these pins reduces the possibility that the glitches occur. A
functional reset has no affect on FI[0], but it sets FI[1] to high-impedance
with a pull-up. To avoid changing FI[1] during a functional reset when
time-switching or bistable protocol is used, it is recommended to configure
FCCU_CFG[PS] = 0.

4.5.2 Single FCCU pin connected to external device

In this configuration, only the FI[0] pin is connected to the external device. If a fault occurs, the FCCU
communicates it to the external device through the FI[0] pin.

Table 3. FCCU EOUT pin behavior1

NOTES:
1 See “EOUT interface” section in the “Fault Collection and Control Unit (FCCU)” chapter of the MPC5777M

Reference Manual for details. If Error phase is accompanied by a functional reset, FI[1]/EOUT1 becomes high-z
with weak pull-up, while FI[0]/EOUT0 behaves as described.

2-pin protocol FI[1] FI[0] Definition of faulty state

Bi-stable 1 0 Two pins are out of phase and FI[0] is low

Time switching 1 0 Two pins are out of phase and FI[0] is low

Dual rail toggle_inv toggle_inv Tow pins are not out of phase

Dual rail 1 toggle_inv Two pins are not out of phase

Safety Manual for MPC5777M, Rev. 1.1

Functions of external devices for ASIL D applications

NXP Semiconductors62

The functionality of FI[0] can be verified in two ways on a system level by testing that FI[0] can trigger
the Safe statesystem. If only FI[0] needs to be tested (without the rest of the shutdown path), this can be
accomplished with either of the following:

• FI[0] output, and FI[0] input (loop through the IO pad).

• FI[0] output connected externally to a normal GPIO.

The customer must choose which solution best fits their requirement.

Assumption: [SM_FMEDA_121] After boot, but before executing the safety function, the functionality
of FI[0] pin shall be verified1. [end]

As access to FI[0] is shared between the FCCU and GPIO there is a failure mode where the multiplexing
fails and FI[0] becomes controlled by GPIO. To make this detectable, the respective GPIO needs to be
configured to drive FI[0] into the fail state.

Assumption: [SCG18.094]If an error indication protocol is selected which makes use of only one error
out pin (for example, FI[0]), then SW configures any I/O MUXed to that pin to drive low before switching
the pin to FCCU control [end] (see the MPC5777M Reference Manual’s “Signal Description” chapter and
the “I/O Signal Description table” for pin MUXing specifics).

The advantage of this configuration with respect to the configuration where two error indication signals
are used, is that it can use an external device that does not compare the two signals.

Assumption: [SM_FMEDA_122] If the system is using the MPC5777M in a single error output pin mode,
the application software shall configure the pins and pads neighboring the FI[0] to use a lower drive
strength. [end]

Using a lower drive strength on the pins near FI[0] will reduce the effects of simultaneously switching
outputs on signal integrity. Software must configure the slew rate for the relevant pads in the Pad
Configuration Register.

1. Since FCCU is a monitor, it is sufficient to verify the FI[0] signal only at start-up in order to avoid latent faults.

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 63

5 Address decoding coverage

5.1 Overview
The MPC5777M embeds a hardware mechanism called Single Bit Error Correction and Dual Bit Error
Detection to detect and, if possible, correct failures impacting the RAM array. This hardware measure is
based on a modified Hamming code algorithm.

Faults impacting the addressing logic (for example, addressing faults) generally cause Multi Bit Errors
(MBEs). The MPC5777M does not embed a specific hardware mechanism to manage this type of fault,
but these MBEs can be interpreted by the modified Hamming code algorithm as Single Bit Errors (SBEs).
This may cause a violation of the safety goal.

This chapter explains how, in case of an ECC hit, a software test can differentiate between an SBE and an
MBE due to a permanent fault in the addressing logic.

5.2 Test implementation
The basic mechanism behind addressing fault detection is the ECC with address contribution embedded
in the MPC5777M devices.

Reading from locations affected by permanent addressing faults returns a random pattern. The Diagnostic
Coverage (DC) of the ECC against addressing faults on a single access is about 70%.

To improve this DC, the idea is to perform multiple memory reads in order to trigger the failure mechanism
multiple times, say K, and in multiple locations in such a way that the overall DC increases up to
DC = 1 - (1 - 70%)K.

This formula is valid under the assumption the K failures are somehow independent. It is necessary to:

• understand how to trigger K independent failures in case of addressing fault, and

• minimize the number of memory operations, say M, necessary to trigger the K failures.

The described algorithm is focused on the detection of failures affecting RAM address decoder
considering both rows and columns of the array.

To achieve these objectives, user shall know the “hit address” and details on how the memory is
implemented.

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

A
d

d
ress d

eco
d

in
g

 co
verag

e

N
X

P
 S

em
iconductors

64 Table 4. Address decoding

Word address predecoding bits

Row selection
Column

selection

Location Memory
Shall be
tested?

Mux
Number of

words

Bits
per

word

Number
of

address
bits

Dec D Dec C Dec B Dec A Dec E
Block

address

Core_0
(Safety Core)

I-Mem yes 8 2048 72 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

D-Mem01 yes 8 8192 40 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

D-Mem11 yes 8 8192 40 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

Core_1

I-Mem not mandatory
application
dependent

8 2048 72 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

D-Mem01 8 8192 40 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

D-Mem11 8 8192 40 13 — A<12> A<11:9> A<8:6> A<5:3> A<2:0>

FlexRay0

DRAM
not mandatory
application
dependent

4 128 26 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

LRAM1,2 4 96 63 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

FlexRay1

DRAM
not mandatory
application
dependent

4 128 26 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

LRAM1,2 4 96 63 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

TTCAN TTCAN
not mandatory
application
dependent

16 5120 39 13 A<12:10> A<9:8> A<7:6> A<5:4> A<3:0> —

NAR NAR1...4 4 64 128 12 — A<11> A<10:8> A<7:5> A<4:3> A<2:0>

A
d

d
ress d

eco
d

in
g

 co
verag

e

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

N
X

P
 S

em
iconductors

65

Platform DMA0,1
not mandatory
application
dependent

4 256 72 10
—

A<9:7> A<6:4> A<3:2> A<1:0> —

Platform Overlay1,2 yes 4 1024 72 12 — A<11> A<10:8> A<7:5> A<4:3> A<2:0>

Platform SRAM1...6 yes 16 8192 72 13 A<12:10> A<9:8> A<7:6> A<5:4> A<3:0> —

Platform SRAM7 yes 16 2560 72 13 A<12:10> A<9:8> A<7:6> A<5:4> A<3:0> —

Platform FEC/FICO
not mandatory
application
dependent

4 128 44 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

Platform FEC/MIB
not mandatory
application
dependent

4 64 40 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

Table 4. Address decoding (continued)

Word address predecoding bits

Row selection
Column

selection

Location Memory
Shall be
tested?

Mux
Number of

words

Bits
per

word

Number
of

address
bits

Dec D Dec C Dec B Dec A Dec E
Block

address

S
afety M

an
u

al fo
r M

P
C

5777M
, R

ev. 1.1

A
d

d
ress d

eco
d

in
g

 co
verag

e

N
X

P
 S

em
iconductors

66

GTM

FIFO1,2
not mandatory
application
dependent

8 1024 36 12 A<11:9> A<8:7> A<6:5> A<4:3> A<2:0> —

(MCSi)-RA
M0, i=0-2...6

not mandatory
application
dependent

8 1024 39 12 A<11:9> A<8:7> A<6:5> A<4:3> A<2:0> —

(MCSi)-RA
M1, i=0-2...6

not mandatory
application
dependent

4 512 39 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

DPLL-1A
not mandatory
application
dependent

4 128 31 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

DPLL-1B
not mandatory
application
dependent

4 384 31 10 — A<9:7> A<6:4> A<3:2> A<1:0> —

DPLL-2
not mandatory
application
dependent

16 4096 31 13 A<12:10> A<9:8> A<7:6> A<5:4> A<3:0> —

NOTES:
1 Internal data memory of Core_0 (and Core_1) is implemented by 2 separated memory instantiations, i.e. D-Mem0 and D-Mem1. Such memories are connected

in parallel. Considering a 64bit word, the first 32bit are located in D-Mem0 and the second 32bit in D-Mem1. Each memory has its own decoding logic. In case
of single bit error correction, the self-test to detect failure in the addressing logic shall be executed only in the memory in which the error is detected, either
D-Mem0 or D-Mem1.

Table 4. Address decoding (continued)

Word address predecoding bits

Row selection
Column

selection

Location Memory
Shall be
tested?

Mux
Number of

words

Bits
per

word

Number
of

address
bits

Dec D Dec C Dec B Dec A Dec E
Block

address

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 67

Table 4 reports multiple details about the design of each RAM impacted by the described software
self-test. Details below must be used to implement the testing algorithm:

• Muxing

• Number of words for the whole array

• Bits per words

• Number of address bits

• Number of bits used as address by the RAM

• Info about decoder addressing structure in terms of multiplexer

— testing algorithm is based on several reading of different RAM locations; list of these locations
depends on the decoding structure of the RAM.

During each memory access operation, the word is selected via multiple decoders connected to the RAM
cells. How the address bus is decoded for the memory array depends on the design parameters described
in Table 4.

The address bus is partitioned to:

• Row decoders (for example,. DecD, DecC, DecB and DecA)

— these bits are used to select the row to be accessed

• Column decoders (for example, DecA)

— these bits are used to select the column to be accessed

• Block selection (for example, block address)

— these bits are used to select the block to be accessed in case the memory is internally partitioned
in multiple blocks.

Let’s assume a permanent failure in the addressing logic causes an MBE. This MBE may be incorrectly
interpreted as single bit error by the ECC/EDC hardware. The address of the reported single bit error is
indicated as Ah1.

To distinguish this permanent addressing fault from an SBE, some back-to-back reads from Ah and their
coupled addresses shall be executed.

Considering the hit address as starting point, the self-test requires reading a list of locations correlated in
some way to hit address.

This list includes different locations whose address is obtained by changing one by one the bits of each
decoding group (DecD, DecC, and so on).

All these memory locations shall be read following a specific order as described below.

Table 5 (Example of back-to-back read to implement test) reports an example of list of addresses obtained
starting from a specific hit address (also called victim).

This example assumes a single bit error reported at the hit address Ah of the SRAM. With reference to
Table 1, the addressing logic of the system RAM consists of 13 bits which go through multiple decoders:

• Row selection

1.Hitting address.

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors68

— DecD – A<12:10>

— DecC – A<9:8>

— DecB – A<7:6>

— DecA – A<5:4>>

• Column selection

— DecE – A<3:0>

Having these parameters in mind the user, starting from the victim address, shall build a list of the locations
which shall be read by the self-test.

For this example the list of locations to be read is shown in Table 5 (Example of back-to-back read to
implement test). All locations in grey shall be read. Some locations have an associated number; this
number is the read order. Location #1 shall be read first, location #2 second, and so on. The order is not
important for location without any number specified.

In such example the SRAM locations to be read are:

1. 100.01.00.11.110b

2. 011.10.11.00.110b

3. 011.10.11.00.001b

4. and so on.

Next section describes how to compile such a list.

Table 5. Example of back-to-back read to implement test

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 6 4 10 14 16 12 2 7 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 5 3 9 13 15 11 1 7 Complementary address

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 69

5.3 Obtaining the list of locations to be read
This section describes, with an example, the different steps to get the list of location to be read. The
procedure starts when a single bit error correction at certain address, i.e. victim address, is reported.

Let assume the victim address is the address 011101100001 in the SRAM.

The first step is to split the victim address in “bit grouping” depending on the decoding structure of the
memory (see Table 4).

Figure 3 shows the bit grouping for the victim address of the example.

Figure 3. Bit grouping of victim address considering the SRAM

With reference to the Table 6, the first locations to be read are the victim address (in red), its
complementary (in yellow) and all locations belonging to the word-line of the victim and complementary
addresses (in grey).

In the next step starting from the victim address, the value of DecD, DecC and DecB is kept unchanged
and all combinations of DecA are considered.

As result three additional word-lines are added to the list (in gray in Table 7).

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

DecD DecC DecB DecA DecE

Victim address
Ah

011 10 11 00 001

row selection column selection

Table 6. Victim address and complement

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

011 10 11 00 Ah : victim address (red cell)

100 01 00 11 Complementary address

Table 5. Example of back-to-back read to implement test (continued)

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors70

In the next step starting from the victim address, the value of DecD, DecC and DecA is kept unchanged
and all combinations of DecB are considered.

As result 3 additional word-lines are added into the list (in grey in Table 7 and Table 8).

Same procedure shall be applied for remaining address decoders, i.e. DecD and DecC, as result some
additional word-lines are added to the list (in grey in Table 9).

Table 7. All combinations of DecA considered

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

011 10 11 00 Ah : victim address (red cell)

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

Table 8. All combinations of DecB considered

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

011 10 00 00 DecB combination

011 10 01 00 DecB combination

011 10 10 00 DecB combination

011 10 11 00 Ah : victim address (red cell)

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 71

All locations listed in Table 10 should be read to perform the self-test. To minimize the testing time, the
pattern can be optimized by reducing the number of locations to be read.

Table 9. All combinations of DecC and DecD considered

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

Table 10. All cells should be read

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 Ah : victim address (red cell)

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors72

This reduction is performed into 2 steps.

First, all words belonging to the row and column of the victim and complementary addresses shall be read
(in gray in Table 11).

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

Table 11. All cells should be read

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

Table 10. All cells should be read (continued)

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 73

For the second step of the reduction all of the following rules shall be considered:

• Not all columns needs to be read from each row.

• At least 4 different columns per each row shall be read.1

• At least 4 different rows per each column shall be read.

An example of result for this reduction is shown in Table 12.

At this point we have the list of the locations which shall be read by the self-test (in grey in Table 1Table
10).

Last step is the order of reading these locations. The rows related to the victim and complementary
addresses shall be read in a specific order. The basic idea is that starting from the complementary address
the addressing logic shall be stressed by alternate reads from the 2 rows.

First 4 locations to be read are shown in Table 13.2

1.This rules is not valid for the word-lines of the hit-address and its complement. All columns of these word-lines shall
be read.

Table 12. The locations to be read by self-test (colored gray)

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

2.This specific order is represented by the number in the cell of Table 13.

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors74

To determine the reading order of the other locations of these 2 word-lines the following principles shall
be considered:

• Alternate reads between the 2 word-lines starting from the word-line of the complementary
address.

• First, read from columns close to the victim address; second, a column close to the complementary
address, and so on.

Table 14 shows an example about the required reading order for victim and complementary rows. No
ordering requirements for the remaining locations.

To summarize:

• All grey locations of this table shall be read

• Reading of victim and complement word-lines shall follow a specific order.1

Table 13. First four cells read

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 4 2 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 3 1 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

1.The number in the cell represents the reading order.

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 75

5.3.1 Memories including block address decoding

Some memories (for example, D-Mem) include a block address decoder. In this case a further step shall
be added to the procedure described in Section 5.3, Obtaining the list of locations to be read.

Figure 4. Bit grouping of victim address considering D-Mem

To describe the needed additional steps, an example is considered. Let’s assume a single bit error is
reported at the hit address 1.110.010.001.001b of the D-Mem.

Following the steps described in Section 5.3, Obtaining the list of locations to be read, the list of locations
to be read in the block containing the hit-address are shown in Table 13 (in gray).

Table 14. First four cells read

DecE

DecD DecC DecB DecA 000 001 010 011 100 101 110 111 Description

000 10 11 00 DecD combination

001 10 11 00 DecD combination

010 10 11 00 DecD combination

011 10 01 00 DecB combination

011 10 11 00 DecB combination

011 00 11 00 DecC combination

011 01 11 00 DecC combination

011 10 11 00 6 4 10 14 16 12 2 8 Ah : victim address (red cell)

011 11 11 00 DecC combination

011 10 11 01 DecA combination

011 10 11 10 DecA combination

011 10 11 11 DecA combination

100 01 00 11 5 3 9 13 15 11 1 7 Complementary address

100 10 11 00 DecD combination

101 10 11 00 DecD combination

110 10 11 00 DecD combination

111 10 11 00 DecD combination

DecC DecB DecA DecE Block

Victim address
Ah

1 110 010 101 001

row selection column selection block selection

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors76

Additional reads must be added considering the other memory blocks.

First step is to add in the list above some reads considering the complementary block.

The same word-lines of the victim address, but considering the complementary block shall be read in a
specific order1 as shown in Table 16 (blue cells).

Table 15. List of locations read on block 001b

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

0 001 101 13 5 3 9 11 1 7 15 001 Complementary address

0 110 010 001 DecC combination

1 000 010 001 DecB combination

1 001 010 001 DecB combination

1 010 010 001 DecB combination

1 011 010 001 DecB combination

1 100 010 001 DecB combination

1 101 010 001 DecB combination

1 110 000 001 DecA combination

1 110 001 001 DecA combination

1 110 010 14 6 4 10 12 2 8 16 001 Ah : victim address (red cell)

1 110 011 001 DecA combination

1 110 100 001 DecA combination

1 110 101 001 DecA combination

1 110 110 001 DecA combination

1 110 111 001 DecA combination

1 111 010 001 DecB combination

1.The procedure to find the requested order is the same used to obtain the order for the complementary word-line in
section 5.3

Table 16. Reads related to complementary block

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

0 001 101 19 7 4 13 16 1 10 22 001 Complementary address

0 110 010 001 DecC combination

1 000 010 001 DecB combination

1 001 010 001 DecB combination

1 010 010 001 DecB combination

1 011 010 001 DecB combination

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 77

The second step considers all other blocks. At least 4 reads shall be done on the same word-line of the
victim address, but considering other blocks (blue cells in Table 17). No specific read order is required.

1 100 010 001 DecB combination

1 101 010 001 DecB combination

1 110 000 001 DecA combination

1 110 001 001 DecA combination

1 110 010 20 8 5 14 17 2 11 23 001 Ah : victim address (red cell)

1 110 010 21 9 6 15 18 3 12 24 110 Complementary address

1 110 011 001 DecA combination

1 110 100 001 DecA combination

1 110 101 001 DecA combination

1 110 110 001 DecA combination

1 110 111 001 DecA combination

1 111 010 001 DecB combination

Table 17. Reading same word-line, but different blocks

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

0 001 101 19 7 4 13 16 1 10 22 001 Complementary address

0 110 010 001 DecC combination

1 000 010 001 DecB combination

1 001 010 001 DecB combination

1 010 010 001 DecB combination

1 011 010 001 DecB combination

1 100 010 001 DecB combination

1 101 010 001 DecB combination

1 110 000 001 DecA combination

1 110 010 001 DecA combination

1 110 010 000 Block combination

1 110 010 20 8 5 14 17 2 11 23 001 Ah : victim address (red cell)

1 110 010 010 Block combination

1 110 010 011 Block combination

1 110 010 100 Block combination

Table 16. Reads related to complementary block (continued)

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors78

Table 18 shows the final list of locations which are required to be read in case of memory implementing
the block decoding.

1 110 010 101 Block combination

1 110 010 21 9 6 15 18 3 12 24 110 Complementary address

1 110 010 111 Block combination

1 110 011 001 DecA combination

1 110 100 001 DecA combination

1 110 101 001 DecA combination

1 110 110 001 DecA combination

1 110 111 001 DecA combination

1 111 010 001 DecB combination

Table 18. Final list of locations which shall be read including the order in case of memory with block
decoding

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

0 001 101 19 7 4 13 16 1 10 22 001 Complementary address

0 110 010 001 DecC combination

1 000 010 001 DecB combination

1 001 010 001 DecB combination

1 010 010 001 DecB combination

1 011 010 001 DecB combination

1 100 010 001 DecB combination

1 101 010 001 DecB combination

1 110 000 001 DecA combination

1 110 010 001 DecA combination

1 110 010 000 Block combination

1 110 010 20 8 5 14 17 2 11 23 001 Ah : victim address (red cell)

1 110 010 010 Block combination

1 110 010 011 Block combination

1 110 010 100 Block combination

1 110 010 101 Block combination

1 110 010 21 9 6 15 18 3 12 24 110 Complementary address

1 110 010 111 Block combination

Table 17. Reading same word-line, but different blocks (continued)

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

Address decoding coverage

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 79

5.4 Test result
Let’s recap the needed steps to perform the test and to analyze the result:

1. A single bit error correction is triggered at the address Ah.

2. Starting from this address and from the RAM architecture, the user shall gather a list of memory
locations which shall be read (for example, greyed cells in Table 12 or Table 16).

3. These locations shall be read to verify if any additional single/double bit error is triggered.

This self-test detects a potential permanent RAM addressing failure if one of the following conditions
appears while reading selected RAM locations:

• a not correctable error bit is detected, or

• multiple single bit errors are detected by the ECC logic and the number of these errors is bigger
than the buffer depth of the MEMU, or

• more than a single bit error are detected on different words of the same word-line (more details on
such a case on section 5.4.1).

As described above additional SBE can be detected by the ECC while the software test runs. In this case
additional iteration of the software test shall be executed considering this new SBE as new hitting address.

5.4.1 Multiple single bit error in the same word-line

A Single Event Effect (SEE) in RAM can cause single bit upset on multiple adjacent words (for example,
Multiple Cell Upset (MCU)).

MCU causes SBEs on different words of the same word-line. In this case, an additional software step is
needed to distinguish between:

• a MCU event, or

• a permanent fault affecting the address decoders.

Additional memory locations shall be read to discriminate between either case above.

1 110 011 001 DecA combination

1 110 100 001 DecA combination

1 110 101 001 DecA combination

1 110 110 001 DecA combination

1 110 111 001 DecA combination

1 111 010 001 DecB combination

Table 18. Final list of locations which shall be read including the order in case of memory with block
decoding (continued)

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

Safety Manual for MPC5777M, Rev. 1.1

Address decoding coverage

NXP Semiconductors80

These locations are showed in blue in Table 19. The procedure to gather these locations is described below.
Let’s assume multiple locations of the Ah word-line trigger the ECC:

1. Complementary address, i.e. Ac, shall be obtained.

2. 3-to-8 address decoders are consider, i.e. in such example DecB and DecA

3. The user shall consider the complementary of DecA and DecB from the Ac to obtain additional
word-lines to be read (blue word-line in Table 19).

If multiple SEC are detected while reading these additional word-lines, there is a high probability they are
all the result of addressing fault.

Table 19. Additional cells shall be read in case of multiple SBEs in same word-line

DecE

DecC DecB DecA 000 001 010 011 100 101 110 111 Block Description

0 001 010 001 Complementary address

0 110 101 001 Complementary address

0 001 101 001 Ah : complementary address

1 110 010 001 Ah : victim address (red cell)

Testing All-X in RAM

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 81

6 Testing All-X in RAM

6.1 Candidate address for testing All-X issue
This section describes a Perl script which can be used for finding a candidate address for testing All-X in
the RAMs. Some examples of usage of the script are provided.
#--- start Perl script ---:
: # -*- perl -*-
eval 'exec perl -w -S $0 ${1+"$@"}'

if 0;
use strict;
my $base = hex($ARGV[0]);
my $num_to_find = ($#ARGV > 0) ? $ARGV[1] : 1;
my $all0_found = 0;
my $all1_found = 0;
my $guesses = 0;
my $addr = $base;
my $ecc;
my $bit_count;

printf "RAM base address = 0x%08x\n", $base;
printf " All 0s - Addresses with two bits set in the address ECC contribution:\n";

while(($guesses < 131072) && ($all0_found < $num_to_find)) {
$ecc = get_ecc($addr, 0, 0);
$bit_count = count_ones($ecc);
if($bit_count == 2) {
$all0_found++;
printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all0_found, $addr, $ecc;
}

$addr += 8;
$guesses++;
}

printf "\n All 1s - Addresses with two bits cleared in the address ECC contribution:\n";

$addr = $base;
while(($guesses < 131072) && ($all1_found < $num_to_find)) {

$ecc = get_ecc($addr, 0xffffffff, 0xffffffff);
$bit_count = count_zeroes($ecc);
if($bit_count == 2) {

$all1_found++;
printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all1_found, $addr, $ecc;

}
$addr += 8;
$guesses++;

}

sub count_ones {
my $string = sprintf("%08b", shift);
my $count = 0;
my $i;
for($i=0; $i<8; $i++) {

if(substr($string, $i, 1) eq "1") {
$count++;

Safety Manual for MPC5777M, Rev. 1.1

Testing All-X in RAM

NXP Semiconductors82

}
}
return($count);

}

sub count_zeroes {
my $string = sprintf("%08b", shift);
my $count = 0;
my $i;
for($i=0; $i<8; $i++) {

if(substr($string, $i, 1) eq "0") {
$count++;

}
}
return($count);

}

sub get_ecc {
my $addr = shift;
my $data_be0 = shift;
my $data_be1 = shift;

my @addrx8;
my @data_bex8;
my @data_lex8;
my $i;
my $j;
my $bit;

for($i=3; $i<32; $i++) {
$bit = ($addr >> $i) & 1;
$addrx8[$i] = $bit;
$addrx8[$i] |= $bit << 1;
$addrx8[$i] |= $bit << 2;
$addrx8[$i] |= $bit << 3;
$addrx8[$i] |= $bit << 4;
$addrx8[$i] |= $bit << 5;
$addrx8[$i] |= $bit << 6;
$addrx8[$i] |= $bit << 7;

}

for($i=0; $i<64; $i++) {
if($i < 32) {
$bit = ($data_be1 >> $i) & 1;
} else {

$bit = ($data_be0 >> ($i-32)) & 1;
}

$data_bex8[$i] = $bit;
$data_bex8[$i] |= $bit << 1;
$data_bex8[$i] |= $bit << 2;
$data_bex8[$i] |= $bit << 3;
$data_bex8[$i] |= $bit << 4;
$data_bex8[$i] |= $bit << 5;
$data_bex8[$i] |= $bit << 6;
$data_bex8[$i] |= $bit << 7;

}

Testing All-X in RAM

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 83

for($i=0; $i<8; $i++) {
for($j=0; $j<8; $j++) {

$data_lex8[$i*8+$j] = $data_bex8[(7-$i)*8+$j];
}

}

my $addr_ecc
= (0x1f & $addrx8[31])
^ (0xf4 & $addrx8[30])
^ (0x3b & $addrx8[29])
^ (0xe3 & $addrx8[28])
^ (0x5d & $addrx8[27])
^ (0xda & $addrx8[26])
^ (0x6e & $addrx8[25])
^ (0xb5 & $addrx8[24])
^ (0x8f & $addrx8[23])
^ (0xd6 & $addrx8[22])
^ (0x79 & $addrx8[21])
^ (0xba & $addrx8[20])
^ (0x9b & $addrx8[19])
^ (0xe5 & $addrx8[18])
^ (0x57 & $addrx8[17])
^ (0xec & $addrx8[16])
^ (0xc7 & $addrx8[15])
^ (0xae & $addrx8[14])
^ (0x67 & $addrx8[13])
^ (0x9d & $addrx8[12])
^ (0x5b & $addrx8[11])
^ (0xe6 & $addrx8[10])
^ (0x3e & $addrx8[9])
^ (0xf1 & $addrx8[8])
^ (0xdc & $addrx8[7])
^ (0xe9 & $addrx8[6])
^ (0x3d & $addrx8[5])
^ (0xf2 & $addrx8[4])
^ (0x2f & $addrx8[3]);

my $addr_ecc_tcm
= (0x1f & $addrx8[31])
^ (0xf4 & $addrx8[30])
^ (0x3b & $addrx8[29])
^ (0xe3 & $addrx8[28])
^ (0x5d & $addrx8[27])
^ (0xda & $addrx8[26])
^ (0x6e & $addrx8[25])
^ (0xb5 & $addrx8[24])
^ (0x8f & $addrx8[23])
^ (0xd6 & $addrx8[22])
^ (0x79 & $addrx8[21])
^ (0xba & $addrx8[20])
^ (0x9b & $addrx8[19])
^ (0xe5 & $addrx8[18])
^ (0x57 & $addrx8[17])
^ (0xec & $addrx8[16]);

Safety Manual for MPC5777M, Rev. 1.1

Testing All-X in RAM

NXP Semiconductors84

my $ecc_tcm_fix
= (0xc7 & $addrx8[15])
^ (0xae & $addrx8[14])
^ (0x67 & $addrx8[13])
^ (0x9d & $addrx8[12])
^ (0x5b & $addrx8[11])
^ (0xe6 & $addrx8[10])
^ (0x3e & $addrx8[9])
^ (0xf1 & $addrx8[8])
^ (0xdc & $addrx8[7])
^ (0xe9 & $addrx8[6])
^ (0x3d & $addrx8[5])
^ (0xf2 & $addrx8[4])
^ (0x2f & $addrx8[3]);

my $data_ecc
= (0xb0 & $data_lex8[63])
^ (0x23 & $data_lex8[62])
^ (0x70 & $data_lex8[61])
^ (0x62 & $data_lex8[60])
^ (0x85 & $data_lex8[59])
^ (0x13 & $data_lex8[58])
^ (0x45 & $data_lex8[57])
^ (0x52 & $data_lex8[56])

^ (0x2a & $data_lex8[55])
^ (0x8a & $data_lex8[54])
^ (0x0b & $data_lex8[53])
^ (0x0e & $data_lex8[52])
^ (0xf8 & $data_lex8[51])
^ (0x25 & $data_lex8[50])
^ (0xd9 & $data_lex8[49])
^ (0xa1 & $data_lex8[48])

^ (0x54 & $data_lex8[47])
^ (0xa7 & $data_lex8[46])
^ (0xa8 & $data_lex8[45])
^ (0x92 & $data_lex8[44])
^ (0xc8 & $data_lex8[43])
^ (0x07 & $data_lex8[42])
^ (0x34 & $data_lex8[41])
^ (0x32 & $data_lex8[40])

^ (0x68 & $data_lex8[39])
^ (0x89 & $data_lex8[38])
^ (0x98 & $data_lex8[37])
^ (0x49 & $data_lex8[36])
^ (0x61 & $data_lex8[35])
^ (0x86 & $data_lex8[34])
^ (0x91 & $data_lex8[33])
^ (0x46 & $data_lex8[32])

^ (0x58 & $data_lex8[31])
^ (0x4f & $data_lex8[30])
^ (0x38 & $data_lex8[29])
^ (0x75 & $data_lex8[28])

Testing All-X in RAM

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 85

^ (0xc4 & $data_lex8[27])
^ (0x0d & $data_lex8[26])
^ (0xa4 & $data_lex8[25])
^ (0x37 & $data_lex8[24])

^ (0x64 & $data_lex8[23])
^ (0x16 & $data_lex8[22])
^ (0x94 & $data_lex8[21])
^ (0x29 & $data_lex8[20])
^ (0xea & $data_lex8[19])
^ (0x26 & $data_lex8[18])
^ (0x1a & $data_lex8[17])
^ (0x19 & $data_lex8[16])

^ (0xd0 & $data_lex8[15])
^ (0xc2 & $data_lex8[14])
^ (0x2c & $data_lex8[13])
^ (0x51 & $data_lex8[12])
^ (0xe0 & $data_lex8[11])
^ (0xa2 & $data_lex8[10])
^ (0x1c & $data_lex8[9])
^ (0x31 & $data_lex8[8])

^ (0x8c & $data_lex8[7])
^ (0x4a & $data_lex8[6])
^ (0x4c & $data_lex8[5])
^ (0x15 & $data_lex8[4])
^ (0x83 & $data_lex8[3])
^ (0x9e & $data_lex8[2])
^ (0x43 & $data_lex8[1])
^ (0xc1 & $data_lex8[0]);

my $ecc = $data_ecc ^ $addr_ecc;
my $ecc_tcm = $data_ecc ^ $addr_ecc ^ $addr_ecc_tcm ^ 0x55;
my $ecc_flash = $data_ecc ^ 0xff;
return($ecc);

}

##printf "addr = 0x%08x\n", $addr;
##printf "data_be = 0x%08x_%08x\n", $data_be0, $data_be1;
##printf "addr_ecc = 0x%02x\n", $addr_ecc;
##printf "data_ecc = 0x%02x\n", $data_ecc;
##printf "ecc = 0x%02x\n", $ecc;
##printf "ecc_tcm = 0x%02x\n", $ecc_tcm;
##printf "ecc_tcm_fix = 0x%02x\n", $ecc_tcm_fix;
##printf "ecc_flash = 0x%02x\n", $ecc_flash;
#----- end per script -----

This script finds the first N addresses with 2 bits set and 2 bits cleared in the address ECC contribution.
Usage is as follows:

• find_allx_addr address [number]

• address – starting address to start searching from

• number – number of addresses to find, default is 1

Safety Manual for MPC5777M, Rev. 1.1

Testing All-X in RAM

NXP Semiconductors86

Example:

1. Find the first address of each type for system RAM:

— ./find_allx_addr 40000000h

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

• addr = 40000010h, addr_ecc = 06h

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. Find the first 5 addresses of each type for system RAM:

— ./find_allx_addr 40000000 5

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

1. addr = 40000010h, addr_ecc = 06h

2. addr = 40000038h, addr_ecc = 14h

3. addr = 40000058h, addr_ecc = C0h

4. addr = 40000080h, addr_ecc = 28h

5. addr = 400000F8h, addr_ecc = 21h

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. addr = 40000098h, addr_ecc = F5h

3. addr = 400000B0h, addr_ecc = E7h

4. addr = 400000C8h, addr_ecc = EEh

5. addr = 400000E0h, addr_ecc = FCh

6.2 ECC checkbit/syndrome coding scheme
The E2E ECC scheme implements a single-error correction, double-error detection (SECDED) code using
the so-called Hsiao odd-weight column criteria. These codes are named for M.Y. Hsiao, an IBM researcher
who published extensively in the early 1970s on SECDED codes better suited for implementation in
protecting (mainframe) computer memories than traditional Hamming codes.

The Hsiao codes are Hamming distance 4 implementations which provide the SECDED capabilities. The
minimum odd-weight constraints defined by Hsiao are relatively simple in the resulting implementation
of the parity check H matrix which defines the association between the data (and address) bits and the
checkbits. They are:

1. There are no all zeroes columns.

2. Every column is distinct.

3. Every column contains an odd number of ones, and hence is “odd weight”.

Testing All-X in RAM

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 87

In defining the H-matrix for this family of devices, these requirements from Hsiao were applied.
Additionally, there are a variety of ECC codeword requirements associated with specific functional
requirements associated with the flash memory that further dictated the specific column definitions. In any
case, the resulting ECC is organized based on 64 data bits plus 29 address bits (the upper bits of the 32-bit
address field minus the 3 bits which select the byte within 64-bit (8-byte) data field.

The basic H-matrix for this (101, 93) code (93 is the total number of “data” bits, 101 is the total number
of data bits (93) plus 8 checkbits) is shown in Table 20. A ‘*’ in Table 20 indicates the corresponding data
or address bit is XOR’d to form the final checkbit value on the left. For 64-bit data writes, the table sections
corresponding to D[63:32], D[31:0], and A[31:3] are logically summed (output of each table section is
XOR’ed) together to the final value driven on the hwchkbit[7:0] outputs. Note that this table uses the AHB
bit numbering convention where bit[0] is the least significant bit.

Safety Manual for MPC5777M, Rev. 1.1

Testing All-X in RAM

NXP Semiconductors88

Table 20. E2E ECC basic H-matrix definition

Checkbits
[7:0]

Data Bit1

Byte 7 Byte 6 Byte 5 Byte 4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

7 * * * * * * * * * * * * * *

6 * * * * * * * * * * * *

5 * * * * * * * * * * * * * *

4 * * * * * * * * * * * *

3 * * * * * * * * * * * *

2 * * * * * * * * * *

1 * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * *

Byte 3 Byte 2 Byte 1 Byte 0

Checkbits
[7:0]

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

7 * * * * * * * * * * * *

6 * * * * * * * * * * * * * *

5 * * * * * * * * * * * *

4 * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * *

0 * * * * * * * * * * * *

Checkbits
[7:0]

Address Bit1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3

7 * * * * * * * * * * * * * * * * * *

6 * * * * * * * * * * * * * * * * * *

5 * * * * * * * * * * * * * * * * * *

4 * * * * * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * * * * * *

Testing All-X in RAM

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 89

Figure 5 shows an alternative representation of the ECC encode process, written as a C language function.

Figure 5. C Language encodeECC function description

encodeEcc (addr, data_a2_is_zero, data_a2_is_one)
 unsigned int addr; /* 32-bit byte address */
 unsigned int data_a2_is_zero; /* 32-bit data lower, a[2]=0 */
 unsigned int data_a2_is_one; /* 32-bit data upper, a[2]=1 */

{
 unsigned int addr_ecc; /* 8 bits of ecc for address */
 unsigned int ecc; /* 8 bits of ecc codeword */

 /* the following equation calculates the 8-bit wide ecc codeword by examining
 each addr or data bits and xor'ing the appropriate H-matrix value if the bit = 1 */

 addr_ecc
 = (((addr >> 31) & 1) ? 0x1f : 0x0) /* addr[31] */
 ^ (((addr >> 30) & 1) ? 0xf4 : 0x0) /* addr[30] */
 ^ (((addr >> 29) & 1) ? 0x3b : 0x0) /* addr[29] */
 ^ (((addr >> 28) & 1) ? 0xe3 : 0x0) /* addr[28] */
 ^ (((addr >> 27) & 1) ? 0x5d : 0x0) /* addr[27] */
 ^ (((addr >> 26) & 1) ? 0xda : 0x0) /* addr[26] */
 ^ (((addr >> 25) & 1) ? 0x6e : 0x0) /* addr[25] */
 ^ (((addr >> 24) & 1) ? 0xb5 : 0x0) /* addr[24] */

 ^ (((addr >> 23) & 1) ? 0x8f : 0x0) /* addr[23] */
 ^ (((addr >> 22) & 1) ? 0xd6 : 0x0) /* addr[22] */
 ^ (((addr >> 21) & 1) ? 0x79 : 0x0) /* addr[21] */
 ^ (((addr >> 20) & 1) ? 0xba : 0x0) /* addr[20] */
 ^ (((addr >> 19) & 1) ? 0x9b : 0x0) /* addr[19] */
 ^ (((addr >> 18) & 1) ? 0xe5 : 0x0) /* addr[18] */
 ^ (((addr >> 17) & 1) ? 0x57 : 0x0) /* addr[17] */
 ^ (((addr >> 16) & 1) ? 0xec : 0x0) /* addr[16] */

 ^ (((addr >> 15) & 1) ? 0xc7 : 0x0) /* addr[15] */
 ^ (((addr >> 14) & 1) ? 0xae : 0x0) /* addr[14] */
 ^ (((addr >> 13) & 1) ? 0x67 : 0x0) /* addr[13] */
 ^ (((addr >> 12) & 1) ? 0x9d : 0x0) /* addr[12] */
 ^ (((addr >> 11) & 1) ? 0x5b : 0x0) /* addr[11] */
 ^ (((addr >> 10) & 1) ? 0xe6 : 0x0) /* addr[10] */
 ^ (((addr >> 9) & 1) ? 0x3e : 0x0) /* addr[9] */
 ^ (((addr >> 8) & 1) ? 0xf1 : 0x0) /* addr[8] */

 ^ (((addr >> 7) & 1) ? 0xdc : 0x0) /* addr[7] */
 ^ (((addr >> 6) & 1) ? 0xe9 : 0x0) /* addr[6] */
 ^ (((addr >> 5) & 1) ? 0x3d : 0x0) /* addr[5] */
 ^ (((addr >> 4) & 1) ? 0xf2 : 0x0) /* addr[4] */
 ^ (((addr >> 3) & 1) ? 0x2f : 0x0); /* addr[3] */

 ecc = (((data_a2_is_zero >> 31) & 1) ? 0xb0 : 0x0) /* data[63] */
 ^ (((data_a2_is_zero >> 30) & 1) ? 0x23 : 0x0) /* data[62] */
 ^ (((data_a2_is_zero >> 29) & 1) ? 0x70 : 0x0) /* data[61] */

NOTES:
1 Bit numbering is AHB convention, bit 0 is LSB. D[7:0] corresponds to byte at address 0. D[63:56] corresponds to

byte at address 7.

Safety Manual for MPC5777M, Rev. 1.1

Testing All-X in RAM

NXP Semiconductors90

 ^ (((data_a2_is_zero >> 28) & 1) ? 0x62 : 0x0) /* data[60] */
 ^ (((data_a2_is_zero >> 27) & 1) ? 0x85 : 0x0) /* data[59] */
 ^ (((data_a2_is_zero >> 26) & 1) ? 0x13 : 0x0) /* data[58] */
 ^ (((data_a2_is_zero >> 25) & 1) ? 0x45 : 0x0) /* data[57] */
 ^ (((data_a2_is_zero >> 24) & 1) ? 0x52 : 0x0) /* data[56] */

 ^ (((data_a2_is_zero >> 23) & 1) ? 0x2a : 0x0) /* data[55] */
 ^ (((data_a2_is_zero >> 22) & 1) ? 0x8a : 0x0) /* data[54] */
 ^ (((data_a2_is_zero >> 21) & 1) ? 0x0b : 0x0) /* data[53] */
 ^ (((data_a2_is_zero >> 20) & 1) ? 0x0e : 0x0) /* data[52] */
 ^ (((data_a2_is_zero >> 19) & 1) ? 0xf8 : 0x0) /* data[51] */
 ^ (((data_a2_is_zero >> 18) & 1) ? 0x25 : 0x0) /* data[50] */
 ^ (((data_a2_is_zero >> 17) & 1) ? 0xd9 : 0x0) /* data[49] */
 ^ (((data_a2_is_zero >> 16) & 1) ? 0xa1 : 0x0) /* data[48] */

 ^ (((data_a2_is_zero >> 15) & 1) ? 0x54 : 0x0) /* data[47] */
 ^ (((data_a2_is_zero >> 14) & 1) ? 0xa7 : 0x0) /* data[46] */
 ^ (((data_a2_is_zero >> 13) & 1) ? 0xa8 : 0x0) /* data[45] */
 ^ (((data_a2_is_zero >> 12) & 1) ? 0x92 : 0x0) /* data[44] */
 ^ (((data_a2_is_zero >> 11) & 1) ? 0xc8 : 0x0) /* data[43] */
 ^ (((data_a2_is_zero >> 10) & 1) ? 0x07 : 0x0) /* data[42] */
 ^ (((data_a2_is_zero >> 9) & 1) ? 0x34 : 0x0) /* data[41] */
 ^ (((data_a2_is_zero >> 8) & 1) ? 0x32 : 0x0) /* data[40] */

 ^ (((data_a2_is_zero >> 7) & 1) ? 0x68 : 0x0) /* data[39] */
 ^ (((data_a2_is_zero >> 6) & 1) ? 0x89 : 0x0) /* data[38] */
 ^ (((data_a2_is_zero >> 5) & 1) ? 0x98 : 0x0) /* data[37] */
 ^ (((data_a2_is_zero >> 4) & 1) ? 0x49 : 0x0) /* data[36] */
 ^ (((data_a2_is_zero >> 3) & 1) ? 0x61 : 0x0) /* data[35] */
 ^ (((data_a2_is_zero >> 2) & 1) ? 0x86 : 0x0) /* data[34] */
 ^ (((data_a2_is_zero >> 1) & 1) ? 0x91 : 0x0) /* data[33] */
 ^ ((data_a2_is_zero & 1) ? 0x46 : 0x0) /* data[32] */

 ^ (((data_a2_is_one >> 31) & 1) ? 0x58 : 0x0) /* data[31] */
 ^ (((data_a2_is_one >> 30) & 1) ? 0x4f : 0x0) /* data[30] */
 ^ (((data_a2_is_one >> 29) & 1) ? 0x38 : 0x0) /* data[29] */
 ^ (((data_a2_is_one >> 28) & 1) ? 0x75 : 0x0) /* data[28] */
 ^ (((data_a2_is_one >> 27) & 1) ? 0xc4 : 0x0) /* data[27] */
 ^ (((data_a2_is_one >> 26) & 1) ? 0x0d : 0x0) /* data[26] */
 ^ (((data_a2_is_one >> 25) & 1) ? 0xa4 : 0x0) /* data[25] */
 ^ (((data_a2_is_one >> 24) & 1) ? 0x37 : 0x0) /* data[24] */

 ^ (((data_a2_is_one >> 23) & 1) ? 0x64 : 0x0) /* data[23] */
 ^ (((data_a2_is_one >> 22) & 1) ? 0x16 : 0x0) /* data[22] */
 ^ (((data_a2_is_one >> 21) & 1) ? 0x94 : 0x0) /* data[21] */
 ^ (((data_a2_is_one >> 20) & 1) ? 0x29 : 0x0) /* data[20] */
 ^ (((data_a2_is_one >> 19) & 1) ? 0xea : 0x0) /* data[19] */
 ^ (((data_a2_is_one >> 18) & 1) ? 0x26 : 0x0) /* data[18] */
 ^ (((data_a2_is_one >> 17) & 1) ? 0x1a : 0x0) /* data[17] */
 ^ (((data_a2_is_one >> 16) & 1) ? 0x19 : 0x0) /* data[16] */

 ^ (((data_a2_is_one >> 15) & 1) ? 0xd0 : 0x0) /* data[15] */
 ^ (((data_a2_is_one >> 14) & 1) ? 0xc2 : 0x0) /* data[14] */
 ^ (((data_a2_is_one >> 13) & 1) ? 0x2c : 0x0) /* data[13] */
 ^ (((data_a2_is_one >> 12) & 1) ? 0x51 : 0x0) /* data[12] */
 ^ (((data_a2_is_one >> 11) & 1) ? 0xe0 : 0x0) /* data[11] */
 ^ (((data_a2_is_one >> 10) & 1) ? 0xa2 : 0x0) /* data[10] */

Further information

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 91

 ^ (((data_a2_is_one >> 9) & 1) ? 0x1c : 0x0) /* data[9] */
 ^ (((data_a2_is_one >> 8) & 1) ? 0x31 : 0x0) /* data[8] */

 ^ (((data_a2_is_one >> 7) & 1) ? 0x8c : 0x0) /* data[7] */
 ^ (((data_a2_is_one >> 6) & 1) ? 0x4a : 0x0) /* data[6] */
 ^ (((data_a2_is_one >> 5) & 1) ? 0x4c : 0x0) /* data[5] */
 ^ (((data_a2_is_one >> 4) & 1) ? 0x15 : 0x0) /* data[4] */
 ^ (((data_a2_is_one >> 3) & 1) ? 0x83 : 0x0) /* data[3] */
 ^ (((data_a2_is_one >> 2) & 1) ? 0x9e : 0x0) /* data[2] */
 ^ (((data_a2_is_one >> 1) & 1) ? 0x43 : 0x0) /* data[1] */
 ^ ((data_a2_is_one & 1) ? 0xc1 : 0x0); /* data[0] */

 ecc = ecc ^ addr_ecc; /* combine data and addr ecc values */

 return(ecc);
}

On a memory read operation, the E2E ECC logic performs the same type of optional adjustment on the
read checkbits.

As the ECC syndrome is calculated on a read operation by applying the H-matrix to the data plus the
checkbits, an all zero syndrome indicates an error free operation. If the generated syndrome value is
non-zero and matches one of the H-matrix values associated with the data or checkbits, it represents a
single-bit error correction case and the specific bit is complemented to produce the correct data value. If
the syndrome value matches one of the H-matrix values associated with the address bits, or is an even
weight value, or represents an unused odd weight value, a non-correctable ECC event has been detected
and the appropriate error termination response is initiated.

The preceding discussion has provided a generic overview of the end-to-end ECC strategy implemented
in this family of automotive MCUs.

7 Further information

7.1 Conventions and terminology
Table 21 shows the list of conventions for this document.

7.2 Acronyms and abbreviations
A short list of acronyms and abbreviations used in this document is shown in Table 22.

Table 21. List of conventions and terminology

Convention Description

error Discrepancy between a computed, observed, or measured value or condition and the true, specified
or theoretically correct value or condition.

fault Abnormal condition that may cause a reduction in, or loss of, the capability of a functional unit to
perform a required function.

failure The termination of the ability of a functional unit to perform a required function.

Safety Manual for MPC5777M, Rev. 1.1

Further information

NXP Semiconductors92

Table 22. Acronyms and abbreviations

Terms Meanings

ADC Analog to Digital Converter

BAF Boot Assist Flash

BAR Boot Assist ROM

CCF Common Cause Failure

CMU Clock Monitor Unit

CRC Cyclic Redundancy Check

CTU Cross-Triggering Unit

DC Diagnostic Coverage

ECC Error Correcting Code

DMA Direct Memory Access

ERRM Error Out Monitor function

EXWD External Watchdog function

FCCU Fault Collection and Control Unit

FMEDA Failure Modes, Effects & Diagnostic Analysis

FMPLL Frequency-Modulated Phase-Locked Loop

GPIO General Purpose Input/Output

LBIST Logic Built-In Self-test

MBIST Memory Built-In Self-test

MC_CGM Clock Generation Module

MC_ME Mode Entry

MCU Microcontroller Unit

MPU Memory Protection Unit

NCF Non-Critical Fault

NMI Non-Maskable Interrupt

NVM Non-Volatile Memory

PMU Power Management Unit

PSM Power Supply and Monitor function

PST Process Safety Time

RCCU Redundancy Control Checking Unit

MC_RGM Reset Generation Module

SM Safety Manual

SIL Safety Integrity Level

SSCM System Status and Control Module

SWG Sine Wave Generator

SWT Software Watchdog Timer

Document revision history

Safety Manual for MPC5777M, Rev. 1.1

NXP Semiconductors 93

8 Document revision history
Table 23 summarizes revisions to this document.

Table 23. Revision history

Revision Date Description of changes

1 15 Jan 2015 Initial release.

1.1 10 Apr 2017 Converted the document to use NXP branding.

Document Number: MPC5777M_GMSM
Rev. 1.1
10 Apr 2017

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customers technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
nxp.com

Web Support:
nxp.com/support

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ìVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2017 NXP B.V.

http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com
http://www.nxp.com/support

	1 Preface
	2 General information
	2.1 Mission profile
	2.2 Functional safety - ISO 26262 compliance
	2.3 Safety goals
	2.3.1 Safe state

	2.4 Correct operation
	2.5 Failure indication signaling
	2.6 Failure indication time
	2.6.1 Minimum failure indication time

	2.7 Failure handling

	3 Functional safety requirements for application software
	3.1 Disabled modes of operation
	3.1.1 Debug mode
	3.1.2 Test mode

	3.2 Initial checks and configurations
	3.2.1 I/O ball configuration
	3.2.2 MCU configuration
	3.2.3 Mode Entry (MC_ME)
	3.2.4 Start-up configuration check
	3.2.5 Dual core lockstep mode
	3.2.6 FCCU fault reaction configuration
	3.2.7 Reset Generation Module (MC_RGM)
	3.2.8 Self-test completion
	3.2.9 MEMU initial checks
	3.2.10 Flash memory configuration and tests
	3.2.11 Voltage monitor configuration
	3.2.12 Temperature monitoring configuration
	3.2.13 Clock monitoring configuration
	3.2.14 System clock availability
	3.2.15 Clock Generation Module (MC_CGM)
	3.2.16 PLL generated clocking
	3.2.17 XBAR configuration
	3.2.18 Platform flash memory controller
	3.2.19 Wake-Up Unit (WKPU) / External NMI
	3.2.20 Cache
	3.2.21 Software Watchdog Timer (SWT)
	3.2.22 Analog to Digital Converters
	3.2.23 Temperature sensor (TSENS)

	3.3 Runtime checks
	3.3.1 General requirements
	3.3.2 CRC of configuration registers
	3.3.3 XBAR usage
	3.3.4 System Memory Protection Unit (SMPU)
	3.3.5 Platform flash memory controller
	3.3.6 Flash memory
	3.3.6.1 Overlay operations
	3.3.6.2 Flash memory program and erase
	3.3.6.3 Flash memory multibit error
	3.3.6.4 EEPROM emulation

	3.3.7 PRAMC configuration
	3.3.8 RAM
	3.3.8.1 Error Correcting Code (ECC)
	3.3.8.2 Repair logic
	3.3.8.3 Error reporting

	3.3.9 ECC Bypass using core registers and Indirect Memory Access (IMA)
	3.3.10 Decorated Storage Memory Controller (DSMC)
	3.3.11 Interrupt management
	3.3.12 eDMA usage
	3.3.13 Reset Generation Module (MC_RGM)
	3.3.14 Detection of unwanted resets
	3.3.15 Periodic Interrupt Timer (PIT)
	3.3.16 System Timer Module (STM) usage
	3.3.17 I/O and Peripheral Bridge
	3.3.18 System Integration Unit Lite (SIUL2)
	3.3.19 GTM Wrapper
	3.3.20 External Bus Interface (EBI)
	3.3.21 Reading analog inputs
	3.3.22 Software Watchdog Timer (SWT) usage
	3.3.23 Communication peripherals
	3.3.24 Temperature sensor (TSENS)
	3.3.25 Analog to Digital Converters
	3.3.26 Mode Entry (MC_ME)
	3.3.27 Semaphores (SEMA42)

	3.4 Operational interference protection
	3.4.1 Core Memory Protection Unit (CMPU)
	3.4.2 System Memory Protection Unit (SMPU)
	3.4.3 AIPS protection mechanism
	3.4.4 Register protection (REG_PROT)
	3.4.5 Performance (Core_1) and Peripheral (Core_2) Cores

	4 Functions of external devices for ASIL D applications
	4.1 External reset output
	4.2 High impedance outputs
	4.3 External Watchdog (EXWD)
	4.4 Power supply
	4.5 Error Out Monitor (ERRM)
	4.5.1 Both FCCU pins connected to external device
	4.5.2 Single FCCU pin connected to external device

	5 Address decoding coverage
	5.1 Overview
	5.2 Test implementation
	5.3 Obtaining the list of locations to be read
	5.3.1 Memories including block address decoding

	5.4 Test result
	5.4.1 Multiple single bit error in the same word-line

	6 Testing All-X in RAM
	6.1 Candidate address for testing All-X issue
	6.2 ECC checkbit/syndrome coding scheme

	7 Further information
	7.1 Conventions and terminology
	7.2 Acronyms and abbreviations

	8 Document revision history

