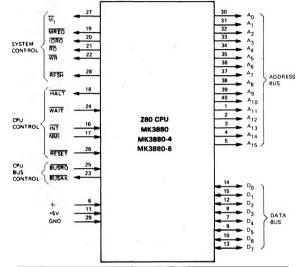


FEATURES


- The Z80 is fully software compatible with the 8080A CPU. The 78 instructions of the 8080A are a subset of the Z80's 158 instructions.
- The extensive instruction set includes relative and indexed addressing, block searches and block transfers, word, byte, and bit data operations.
- □ The architecture provides duplicate sets of general purpose Flag and Index registers to allow background/ foreground programming and easier single level interrupt processing and to facilitate array and table processing.
- On chip Dynamic memory refresh counter
- □ Single +5 V supply
- Single phase system clock
- Vectored interrupt handling system. This system allows for a Daisy Chain arrangement of a priority interrupt scheme with little if any additional hardware.

INTRODUCTION

The Mostek Z80 family of components is a significant advancement in the state-of-the-art of microcomputers. These components can be configured with any type of standard semiconductor memory to generate computer systems with an extremely wide range of capabilities. For example, as few as two LSI circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional memory and I/O devices, a computer can be constructed with capabilities that only a minicomputer could previously deliver. This wide range of computational power allows standard modules to be constructed by a user that can satisfy the requirements of an extremely wide range of applications.

The Z80 Central Processing Unit is the heart of the Z80 family. It provides arithmetic and bus control to operate with the bussed peripheral controllers such as the Parallel I/O, Serial I/O, Counter/Timer, and Direct Memory Access Circuits. The Z80-CPU utilizes N channel silicon gate depletion load technology and is packaged in a 40 pin DIP.

Z80 PIN CONFIGURATION Figure 1

Z80-CPU PIN DESCRIPTION

The Z80-CPU is packaged in an industry-standard 40 pin Dual In-Line Package. The I/O pins are shown in Figure 1, and the function of each is described below.

- A0-A15 Tri-state output, active high. Ao-A15 constitute a 16-bit address bus. The (Address Bus) address bus provides the address for memory (up to 64K bytes), data exchanges, and for I/O device data exchanges. I/O addressing uses the 8 lower address bits to allow the user to select up to 256 input or 256 output ports directly. An is the least significant address bit. During refresh time, the lower 7 bits contain a valid refresh address. $D_0 - D_7$ Tri-state input/output, active high. Do-(Data Bus) D7 constitute an 8-bit bidirectional data
 - bus. The data bus is used for data exchanges with memory and I/O devices.

M ₁ (Machine Cycle one)	Output, active low, $\overline{M_1}$ indicates that the current machine cycle is the OP code fetch cycle of an instruction execution. Note that during execution of 2-byte op-codes, $\overline{M_1}$ is generated as each op code byte is fetched. These two byte op-codes always begin with CBH, DDH, EDH, or FDH. $\overline{M_1}$ also occurs with \overline{IORQ} to indicate an interrupt acknow- ledge cycle.	WAIT* (Wait)	Output, active low. WAIT indicates to the Z80-CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active. This signal allows memory or I/O devices of any speed to be synchronized to the CPU.
MREQ (Memory Request)	Tri-state output, active low. The mem- ory request signal indicates that the address bus holds a valid address for a memory read or memory write opera- tion.	(Interrupt Request)	signal is generated by I/O devices. A re- quest will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (IFF) is enabled and if the BUSRO signal is not active. When the CPU accepts the interrupt, an acknow-
IORQ (Input/Output Request)	Tri-state output, active low. The \overline{IORQ} signal indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. An \overline{IORQ} signal is also generated with an $\overline{M_1}$ signal when an interrupt is being acknowledged to indicate that an interrupt response		ledge signal (\overline{IORQ} during M_1 time) is sent out at the beginning of the next instruction cycle. The CPU can respond to an interrupt in three different modes that are described in detail in section 8 of the Technical Manual, which is included in section IV of this data book.
	Nuclear that an interrupt response vector can be placed on the data bus. Interrupt Acknowledge operations occur during $\overline{M_1}$ time while I/O operations never occur during $\overline{M_1}$ time.	NMI	Input, negative edge triggered. The non maskable interrupt request line has a higher priority than INT and is always recognized at the end of the current instruction, independent of the status of
RD (Memory Read)	Tri-state output, active low. \overline{RD} indi- cates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.		the interrupt enable flip-flop. $\overline{\text{NMI}}$ automatically forces the Z80-CPU to restart to location $OO66_{\text{H}}$. The program counter is automatically saved in the external stack so that the user can return to the program that was interrupted. Note that continuous WAIT
WR (Memory Write)	Tri-state output, active low. WR indi- cates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.		cycles can prevent the current instruc- tion from ending, and that a BUSRQ will override an NMI.
RFSH (Refresh)	Output, active low. RFSH indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and current $\overline{\text{MREO}}$ signal should be used to do a refresh read to all dynamic memories. A ₇ is a logic zero and the upper 8 bits of the Address Bus contain the I Register.	RESET	Input, active low. RESET forces the program counter to zero and initializes the CPU. The CPU initialization will: 1) Disable the interrupt enable flip-flop 2) Set Register I = 00H 3) Set Register R = 00H 4) Set Interrupt Mode 0 During reset time, the address bus and
HALT (Halt state)	Output, active low. HALT indicates that the CPU has executed a HALT software instruction and is awaiting either a non maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOP's to maintain memory refresh ac- tivity.	BUSRQ (Bus Request)	data bus go to a high impedance state and all control output signals go to the inactive state. No refresh occurs. Input, active low. The bus request signal is used to request the CPU address bus, data bus and tri-state output control signals to go to a high impedance state so that other devices can control buses

to a high impedance state as soon as

the current CPU machine cycle is terminated.

BUSAK* Output, active low. Bus acknowledge is used to indicate to the requesting device that the CPU address bus, data bus and tri-state control bus signals have been set to their high impedance state and the external device can now control these signals. *While the Z80-CPU is in either a WAIT state or a Bus Acknowledge condition, Dynamic Memory Refresh will not occur.

For further details on this device, please consult the MK3880 Z80 CPU Technical Manual, included in Section IV.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	Specified Operating Range
Storage Temperature	65°C to +150°C
Voltage on Any Pin with Respect to Ground	0.3 V to +7V
Power Dissipation	1.5 W

All ac parameters assume a load capacitance of 50 pF max.

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 T_{A} = 0°C to 70°C, V_{CC} = 5 V \pm 5% unless otherwise specified

SYMBOL	PARAMETER	MIN	ΤΥΡ	MAX	UNITS	TEST CONDITIONS
V _{ILC}	Clock Input Low Voltage	-0.3		0.8	v	
VIHC	Clock Input High Voltage	V _{CC} 6		V _{CC} +.3	V	
V _{IL}	Input Low Voltage	-0.3		0.8	v	
VIH	Input High Voltage	2.0		V _{cc}	v	
V _{OL}	Output Low Voltage			0.4	V	I _{OL} = 1.8 mA
V _{OH}	Output High Voltage	2.4			v	I _{OH} = -250 μA
I _{cc}	Power Supply Current			150*	mA	
l _u	Input Leakage Current			±10	μA	$V_{IN} = 0$ to V_{CC}
ILO	Tri-State Output Leakage Current in Float			±10	μΑ	$V_{OUT} = 0.4 \text{ V to } V_{CC}$

*200 mA for -4, -10 or -20 devices

CAPACITANCE

 $T_A = 25^{\circ}C$, f = 1 MHz unmeasured pins returned to ground

SYMBOL	PARAMETER	MAX	UNIT
CФ	Clock Capacitance	35	pF
C _{IN}	Input Capacitance	5	pF
C _{OUT}	Output Capacitance	10	pF

MK3880-4, MK3880-6, MK3880-10 Z80-CPU

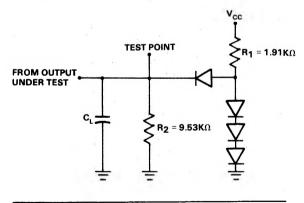
AC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = +5 V \pm 5\%$, Unless Otherwise Noted

			3880		3880-4		3880-6	
SIGNAL	SYMBOL	MBOL PARAMETER		MIN MAX		MAX	MIN MAX	
			(ns)	(ns)	(ns)	(ns)	(ns)	(ns)
	t _c	Clock Period	400	[12]	250	[12]	165	[12]
	-с t _w (ФН)	Clock Pulse Width, Clock High	180	(D)	110	(D)	65	(D)
Φ	t _w (ΦL)	Clock Pulse Width, Clock Low	180	2000	110	2000	65	2000
	t _{r,f}	Clock Rise and Fall Time		30		30		20
	t _{D(AD)}	Address Output Delay		145		110		90
	t _{F(AD)}	Delay to Float	1	110		90		80
	t _{acm}	Address Stable Prior to MREQ (Memory Cycle)	[[1]		[13]		[24]	
A ₀₋₁₅	t _{aci}	Address Stable Prior to IORO, RD or WR (I/O Cycle)	[2]		[14]		[25]	
	t	Address Stable From RD, WR, IORQ or MREQ	[3]	1	[15]		[26]	
	t _{ca}	Address Stable From RD or WR During Float	[4]		[16]		[27]	
	t _{caf}						[27]	
	t _{D(D)}	Data Output Delay Delay to Float During Write Cycle		230 90		150 90		130 80
	t _{F(D)}	Data Setup Time to Rising Edge of Clock During	50	90	35	90	30	
	t _S ⊕(D)	M1 Cycle	50		35		30	
D ₀₋₇	ts ⊕(D)	Data Setup Time to Falling Edge at Clock During M2 to M5	60		50		40	
	t _{dcm}	Data Stable Prior to WR (Memory Cycle)	[5]		[17]		[28]	
	t _{dci}	Data Stable Prior to WR (I/O Cycle)	[6]		[18]		[29]	
		Data Stable from WR	[7]	ł	[19]		[30]	1
	t _{cdf}	Input Hold Time					0	
	t _H							
		MREQ Delay From Falling Edge of Clock, MREQ Low	20	100	20	85	20	70
	t _{DHΦ} (MR)	MREQ Delay From Rising Edge of Clock, MREQ High		100		85		70
MREQ	t _{DH} (MR)	MREQ Delay From Falling Edge of Clock, MREQ High		100		85		70
	tw(MRL)	Pulse Width, MREQ Low	[8]		[20]		[20]	
		Pulse Width, MREQ High	[9]		[21]		[21]	
	tw(MRH)						[= 1]	<u> </u>
	^t DL⊈(IR)	IORQ Delay From Rising Edge of Clock, IORQ Low		90		75		65
IORO	tDL (IR)	IORO Delay From Falling Edge of Clock, IORO Low		110		85		70
	t _{DHΦ(IR)}	IORO Delay From Rising Edge of Clock,		100		85		70
		IORQ High		1	1	05		
	t _{DH} o (IR)	IORQ Delay From Falling Edge of Clock Clock, IORQ High		110		85		70
	t _{DL} (RD)	RD Delay From Rising Edge of Clock, RD Low		100		85		70
_	tDL (RD)	RD Delay From Falling Edge of Clock, RD Low		130		95		80
RD	t _{DH} (RD)	RD Delay From Rising Edge of Clock, RD High	15	100	15	85	15	70
	tDHQ(RD)	RD Delay From Falling Edge of Clock, RD High		110		85		70
		WR Delay From Rising Edge of Clock, WR Low		80		65		60
100		WR Delay From Falling Edge of Clock, WR Low	1	90	1	80		70
WR		WR Delay From Falling Edge of Clock, WR High	1	100		80		70
		Pulse Width, WR Low	[10]		[22]		[22]	
	tw(WRL)		1	1	(=~)		()	1

NOTES:

A. Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data should be enabled when M1 and IORQ are both active. B. The RESET signal must be active for a minimum of 3 clock cycles. [Cont'd. on next page].

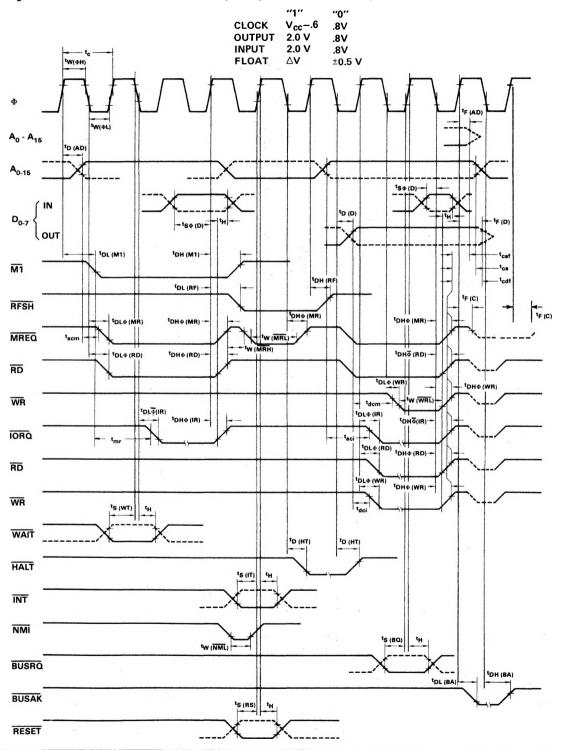

MK3880-4, MK3880-6, MK3880-10 Z80-CPU

	SYMBOL	PARAMETER	3880		3880-4		388	30-6
SIGNAL			MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)
M1		Mi Delay From Rising Edge of Clock M1 Low M1 Delay From Rising Edge of Clock M1 High		130 130		100 100		80 80
RFSH	t _{DL(RF)} t _{DH(RF)}	RFSH Delay From Rising Edge of Clock, RFSH Low RFSH Delay From Rising Edge of Clock, RFSH High		180 150		130 120		110 100
WAIT	t _{S(WT)}	WAIT Setup Time to Falling Edge of Clock	70		70		60	
HALT	t _{D(HT)}	HALT Delay Time From Falling Edge of Clock		300		300		260
INT	t _{s(IT)}	INT Setup Time to Rising Edge of Clock	80		80		70	
NMI	t _{w(NMI)}	Pulse Width, NMI Low	80		80		70	
BUSRQ	t _{S(BQ)}	BUSRO Setup Time to Rising Edge of Clock	80		50		50	
BUSAK	t _{DL(BA)} t _{DH(BA)}	BUSAK Delay From Rising Edge of Clock, BUSAK Low BUSAK Delay From Falling Edge of Clock, BUSAK High		120 110		100 100		90 90
RESET	t _{s(RS)}	RESET Setup Time to Rising Edge of Clock	90		60		60	
	t _{F(C)}	Delay to/from Float (MREQ, IORQ, RD and WR)		100		80		70
	t _{mr}	M1 Stable Prior to IORQ (Interrupt Ack.)	[11]		[23]		[31]	

[1]	$t_{ACM} = t_{W} (\Phi H) + t_{f} - 75$	[17] $t_{dcm} = t_c - 170$
[2]	$t_{aci} = t_c - 80$	[18] $t_{dci} = t_w (\Phi L) + t_r - 170$
[3]	$t_{CA} = t_{W} (\Phi L) + t_{f} - 40$	[19] $t_{cdf} = t_w (\Phi L) + t_r -70$
[4]	$t_{caf} = t_W (\Phi L) + t_f - 60$	[20] t _w (MRL) = t _c -30
[5]	t _{dcm} = t _C - 210	[21] $t_{W}(MRH) = t_{W}(\Phi H) + t_{f} - 20$
[6]	$t_{dci} = t_{w} (\Phi L) + t_{r} - 210$	[22] $t_W(\overline{WR}) = t_C - 30$
[7]	$t_{cdf} = t_w (\Phi L) + t_r - 80$	[23] $t_{mr} = 2t_c + t_w (\Phi H) + t_f - 65$
(8)	t _w (MRL) = t _c - 40	[24] $t_{ACM} = t_{W} (\Phi H) + t_{f} -50$
[9]	t_W (MRH) = t_W (Φ H) + t_f – 30	[25] t _{aci} = t _c -55
[10]	t _w (WR) = t _c - 40	[26] $t_{CA} = t_w (\Phi L) + t_r -50$
[11]	$t_{mr} = 2 t_{c} + t_{w} (\Phi H) + t_{f} - 80$	[27] $t_{caf} = t_w (\Phi L) + t_r - 45$
[12]	$t_{c} = t_{w} (\Phi H) + t_{w} (\Phi L) + t_{r} + t_{f}$	[28] t _{dcm} = t _C -140
[13]	$t_{acm} = t_{W} (\phi H) + t_{f} - 65$	[29] $t_{dci} = t_w (\Phi L) + t_r - 140$
[14]	t _{aci} = t _c -70	[30] $t_{cdf} = t_{W} (\Phi L) + t_{r} -55$
[15]	$t_{ca} = t_w (\Phi L) + t_r -50$	[31] $t_{mr} = 2t_c + t_w (\Phi H) + t_f -50$

[16] $t_{caf} = t_w (\Phi L) + t_r -45$

LOAD CIRCUIT FOR OUTPUT


NOTES (Cont'd.)

C. Output Delay vs. Load Capacitance $T_A = 70^{\circ}C V_{CC} = 5 V \pm 5\%$ Add 10 nsec delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

D. Although static by design, testing guarantees $t_{\rm W}$ (ΦH) of 200 μsec maximum.

A.C. TIMING DIAGRAM

Timing measurements are made at the following voltages, unless otherwise specified:

ORDERING INFORMATION

PART NO.	PACKAGE TYPE	MAX CLOCK FREQUENCY	TEMPERATURE RANGE
MK3880N Z80-CPU	Plastic	2.5 MHz	
MK3880P Z80-CPU	Ceramic	2.5 MHz	
MK3880N-4 Z80-CPU	Plastic	4.0 MHz	0° to + 70°C
MK3880P-4 Z80-CPU	Ceramic	4.0 MHz	
MK3880P-10 Z80-CPU	Ceramic	2.5 MHz	-40°C to +85°C