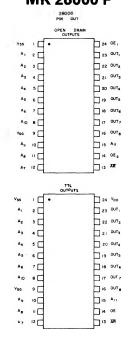
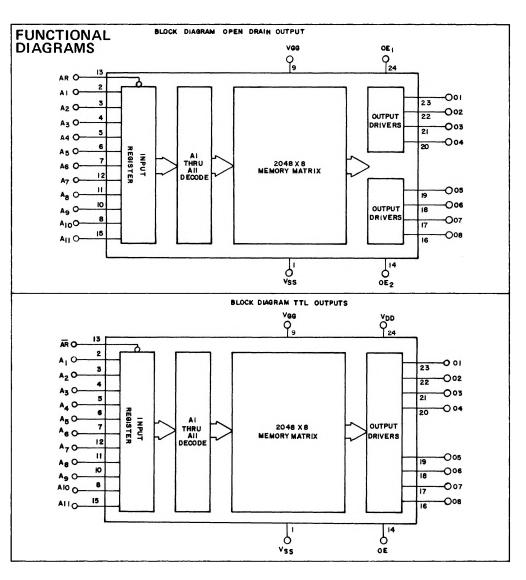

MOS Read — ONLY Memory

MOSTEK

FEATURES:

- □ 850 ns Maximum Access Time
- 1.1 μs Maximum Cycle Time
- □ Low Power Dissipation -.02 mW/bit Typ.
- ☐ EA 4800/4900 Pin-for-Pin Replacement
- Options Include 2Kx8 Organization with Three-State TTL Output Capability
- ☐ 2Kx8 or 4Kx4 Organization with Open Drain Outputs
- □ Standard Supplies +5 Volts, − 12 Volts
- □ Ion-Implanted for Full TTL/DTL Compatibility


DESCRIPTION:


The MK 28000 is a mask programmable read only memory utilizing low-threshold lon-Implant , P-channel technology. The 28000 is a pin-for-pin replacement for the EA 4800/4900. The organization may be either 2Kx8 or 4Kx4 with open drain outputs. The 2Kx8 organization may have TTL three-state outputs with only one output enable.

Output data is stored indefinitely after each memory access. If the output enables are held low during access, the outputs will be in a high impedance state.

All inputs are protected against static charge accumulation. Pullup resistors on all inputs are available as a programmable option.

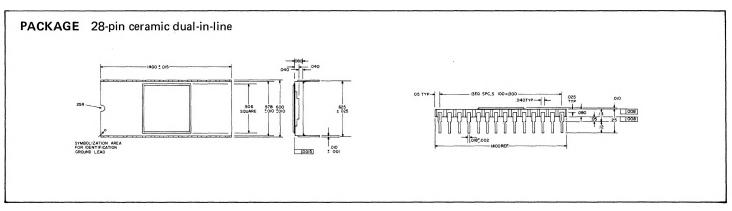
PIN CONNECTIONS MK 28000 P

ABSOLUTE MAXIMUM RATINGS

Voltage on any terminal relative to V _{SS}	.+0.3V to -20V
Operating temperature range (Ambient)	.0°C to 70°C
Storage temperature range (Ambient)	55°C to 150°C

RECOMMENDED OPERATING CONDITIONS

 $(0^{\circ} C \leqslant T_A \leqslant 70^{\circ} C)$

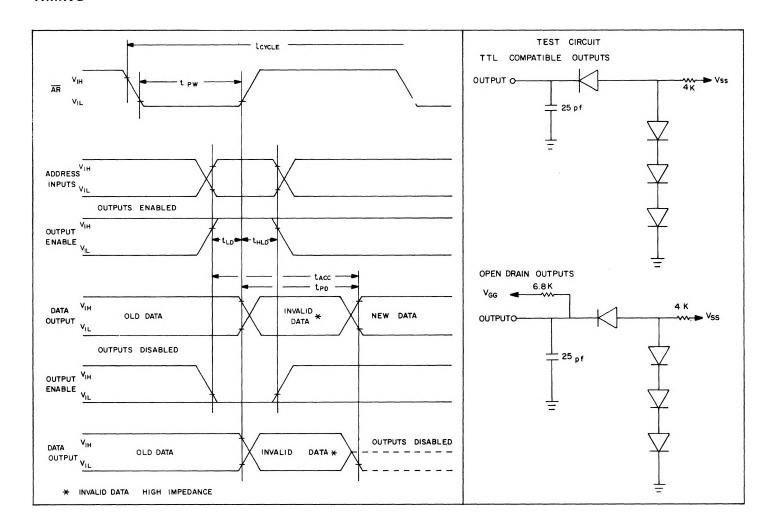


	PARAMETER	MIN	TYP	MAX	COMMENTS
V _{ss}	Supply Voltage	+4.75V	+5V	+5.25V	
V _{DD}	Supply Voltage	_	0	_	
V_{GG}	Supply Voltage	-12.6V	-12V	-11.4V	
VIL	Input Voltage, Logic "0"			+.8V	
V _{IH}	Input Voltage, Logic "1"	V _{ss} - 1.5V			Pullup resistors to V_s (\approx 5K) available as an option

ELECTRICAL CHARACTERISTICS

 $(V_{SS} = +5.0V \pm 5\%; V_{DD} = 0V; V_{GG} = -12V \pm 5\%; 0^{\circ}C \le T_{A} \le 70^{\circ}C)$

	PARAMETER	MIN	TYP	MAX	COMMENTS
I ss	Supply Current		12 mA	20 mA	Outputs unconnected
l _{GG}	Supply Current		12 mA	20 mA	Inputs at V _{SS}
CIN	Input Capacitance			10 pF	See Note 1
LIN	Input Leakage			10 μ A	See Note 2
R _{IN}	Input Pullup Resistors	3 K Ω		9 Κ Ω	Optional
V _{OL}	Output Voltage, Logic "0"			0.4V	I OL= 1.6 mA See Note 3
Voh	Output Voltage, Logic "1"	2.5V			See Note 4
I OL	Output Leakage Current	–10 μA		+ 10 μA	$V_0 = V_{SS} - 6V$, $T = 25^{\circ}C$ (outputs disabled)



	PARAMETER AR Pulse Width	MIN 400 ns	TYP	MAX	COMMENTS See timing and test circuit	
t PW						
tLD	Address Lead Time	200 ns				
t _{HLD}	Address Hold Time	200 ns				
t _{PD}	AR to Output Delay	650 ns				
t acc	Access Time			850 ns	$t_{acc} = t_{Id} + t_{pd}$	
tcycle	Cycle Time	1.1 μs			t _{cycle} = t _{pw} + t _{pd}	Read O Memori

NOTES:

V _{BIAS} - V _{SS} = 0v; f = 1 MHz
 This parameter is for inputs without pullups (optional)
 This parameter is for outputs with TTL compatible outputs.
 For open drain outputs, a 6.8K Ω load to V_{GG} is assumed. (See test circuits)

TIMING

MOSTEK 28000 ROM Punched Card Coding Format¹

First Card

Information Field Cols 1-30 Customer Customer Part Number MOSTEK Part Number² 31-50 60-72

Second Card

1-30 **Engineer at Customer Site** 31-50 Direct Phone Number for Engineer

Third Card

MOSTEK Part Number² 1-5 Organization (2048X8 or 4096X4) 10-16 Outputs (1=Open Drain, ϕ =Push Pull TTL) 29 Number of Output Enable Pins (1 or 2) 31 Input Pullups (1=yes, ϕ =no) 33

Fourth Card

Data Format³ 1-9

Logic – ("Positive Logic" or "Negative Logic") Verification Code⁴ 15-28

35-57

Data Cards

MOSTEK Format

or

EA Format (for EA Pin-for-Pin Replacement only)

1-4 **Decimal Address**

6-13 Output B8-B1 (MSB Thru LSB) 15-17 Octal Equivalent of Output Data

NOTES:

- 1. Positive or negative logic formats are accepted as noted in the fourth card.
- 2. Assigned by MOSTEK; may be left blank
- 3. MOSTEK or Electronic Arrays Punched card coding format may be used. Specify which card format used by punching either "MOSTEK" or "EA". Start at column one.
- 4. Punched as: (a) VERIFICATION HOLD i.e. customer verification of the data as reproduced by MOSTEK is required prior to production of the ROM. To accomplish this MOSTEK supplies a copy of its Customer Verification Data Sheet (CVDS) to the customer. (b) VERIFICATION PROCESS — i.e. the customer will receive a CVDS but production will begin prior to receipt of customer verification.
 - (c) VERIFICATION NOT NEEDED i.e. the customer will not receive a CVDS and production will begin immediately.

